WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO
|
|
- Krzysztof Olejniczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 ELEKTRYKA 2012 Zeszyt 3-4 ( ) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia Poznańsa WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO Streszczenie. W artyule przedstawiono, ja działa filtr cząsteczowy przy działaniu różnych olorów szumu. W wyniu badania stwierdzono, tóry rodzaj szumu sprawia najwięsze problemy przy filtracji. Zaproponowano taże sposób polepszenia efetów filtracji dla olorów szumu, tóre sprawiały najwięsze problemy. Pierwszy rozdział został poświęcony filtrowi cząsteczowemu, w drugim rozdziale przedstawiono olory szumów, a w trzecim rozdziale opisano doświadczenie i przedstawiono wynii symulacji. Słowa luczowe: filtr cząsteczowy, szum olorowy INFLUENCE OF COLOR NOISES ON PARTICLE FILTER EFFECTS Summary. In the paper particle filter principle of operation with color noises is presented. Noise, which causes the worst filtration effects was indicated, and for this case was proposed method for improving filtration results. Particle filter is briefly described in the Chapter 1. In Chapter 2 different types of noise are presented. In Chapter 3 there are description and results of simulation. Keywords: particle filter, noise color 1. FILTR CZĄSTECZKOWY Filtr cząsteczowy (PF) jest jedną z odmian sewencyjnych metod Monte Carlo. Zadaniem PF jest filtracja Bayesa, czyli estymacja funcji gęstości prawdopodobieństwa (PDF) a posteriori p x Y, tórą można zapisać jao y x px Y 1 py Y p p x Y. (1) 1
2 38 P. Koziersi, M. Lis gdzie p y x to wiarygodność, p x Y 1 to PDF a priori, natomiast y Y 1 p to parametr normujący, dzięi tóremu pole pod PDF a posteriori jest równe 1 [3]. W powyższym zapisie przyjęto, że x to wartość zmiennej stanu w chwili, y to obserwacja w tej samej chwili, natomiast Y to zbiór obserwacji ze wszystich chwil czasowych od 1 do. PF jest onretną metodą implementacji filtru Bayesa, w tórej luczowym pomysłem jest przedstawienie PDF za pomocą zbioru próbe, z tórych ażda ma pewną wartość oraz wagę i q i x,. Można zatem zapisać postać miary prawdopodobieństwa p N i i x Y q x x, (2) i1 przy czym na podstawie mocnego prawa wielich liczb, dla można wstawić zna równości [2]. N w wyrażeniu (2) będzie Możliwości zastosowania PF są bardzo szeroie, ponieważ mogą być filtrowane dowolne, nawet silnie nieliniowe obiety. W literaturze można znaleźć prace wyorzystujące PF zazwyczaj do estymacji zmiennych stanu, ale taże do identyfiacji parametrycznej obietów [9], a taże do loalizacji robota w przestrzeni [10]. Pierwszy algorytm filtru cząsteczowego został zaproponowany przez Gordona w [5] w 1993 rou. Poza inicjalizacją ma on 3 podstawowe roi: predycję, atualizację i resampling, tóre należy wyonać dla ażdej z N cząstecze. Predycja polega na oszacowaniu, w jai sposób mogły zmienić się wartości zmiennych stanu obliczane jest to na podstawie znajomości strutury obietu, sygnałów wejściowych oraz wariancji szumu wewnętrznego. Atualizacja polega na obliczeniu przewidywanej wartości wyjściowej obietu na podstawie oszacowanych wcześniej zmiennych stanu, a następnie na podstawie PDF p y x (wymagana jest wiedza na temat wariancji szumu pomiarowego) obliczana jest waga cząsteczi. Po obliczeniu wszystich wag następuje normalizacja. Ostatnim roiem jednej iteracji filtru cząsteczowego jest resampling, czyli ponowne próbowanie. Polega ono na wylosowaniu N nowych cząstecze z PDF uzysanej po normalizacji wag. Opisany w [5] algorytm to ta zwany Bootstrap Filter, natomiast do dziś powstało wiele jego odmian, ja na przyład Auxiliary PF [8], Gaussian PF [6], czy Lielihood PF [1], jedna wszystie działają na podobnej zasadzie.
3 Wpływ szumów olorowych SZUM Poniżej opisano 5 rodzajów szumu, tóre zostały wzięte pod uwagę. Różnią się przede wszystim widmową gęstością mocy (WGM), tóra jest odwrotnie proporcjonalna do częstotliwości podniesionej do pewnej potęgi S f 1. (3) a f 2.1. Szum biały Jest to najczęściej wyorzystywany do symulacji rodzaj szumu. Wartość współczynnia szumu wynosi 0. Na rys. 1 przedstawiono WGM oraz wygląd próbe szumu w czasie. Ja można zaobserwować, WGM jest stała, a więc w szumie równy udział mają wszystie częstotliwości. Rys. 1. WGM i fragment sygnału szumu białego Fig. 1. Power density and sample of white noise 2.2. Szum różowy Dla tego oloru szumu współczynni szumu jest równy 1. Na rys. 2 można zaobserwować WGM, tóra opada z szybością 10dB/de (co jest równoznaczne z szybością 3dB/ot). Oznacza to, że w szumie bardziej będą się objawiać nisie częstotliwości. Rys. 2. Power density and sample of pin noise Fig. 2. WGM i fragment sygnału szumu różowego
4 40 P. Koziersi, M. Lis 2.3. Szum brązowy Nazwa pochodzi od R. Browna, tóry odrył tzw. ruch Browna, będący efetem opisywanego szumu. Czasami nazywany jest też szumem czerwonym. Współczynni wynosi 2, co oznacza, że nisie częstotliwości mają jeszcze więszy wpływ, niż w przypadu szumu różowego potwierdza się to na rys. 3, gdzie wyres WGM opada z szybością 20 db/de (6 db/ot). Rys. 3. WGM i fragment sygnału szumu brązowego Fig. 3. Power density and sample of brown noise Sygnały szumów różowego oraz brązowego można otrzymać poprzez odpowiednie scałowanie szumu białego Szum niebiesi Dla tego oloru szumu współczynni jest równy 1. Ja można zaobserwować na rys. 4, w tym przypadu więszy udział mają wysoie częstotliwości. Rys. 4. WGM i fragment sygnału szumu niebiesiego Fig. 4. Power density and sample of blue noise 2.5. Szum purpurowy Szum purpurowy jest oreślony dla parametru 2, a tym samym wyres WGM narasta z szybością 20 db/de (rys. 5).
5 Wpływ szumów olorowych 41 Rys. 5. WGM i fragment sygnału szumu purpurowego Fig. 5. Power density and sample of purple noise Ta ja w przypadu dodatniego parametru sygnał szumu mógł być otrzymywany poprzez całowanie, ta też dla ujemnego parametru można stwierdzić, że olejne próbi sygnału szumu są zależne od różnic dwóch ostatnich wartości sygnału. 3. WYNIKI SYMULACJI Do symulacji wyorzystano obiet dany przez równania stanu x y 0.8 x x n exp 0.1 x 1 1 v x 1 gdzie v 1 to szum wewnętrzny, tórego funcja gęstości prawdopodobieństwa będzie zmieniana w zależności od rozpatrywanego przypadu, natomiast n to szum pomiarowy o rozładzie normalnym i wariancji równej 1. Do otrzymania szumu wewnętrznego sorzystano z gotowego generatora szumu [7]. Poszczególne sygnały załóceń znormalizowano w tai sposób, aby miały taą samą moc daną wzorem [11] M (4) 1 P x x 2 i 1. (5) M i1 Do symulacji wyorzystano N 200 cząstecze, a sama symulacja miała długość M 1000 chwil czasowych. Po zaończonej symulacji obliczono średni wadrat błędu (MSE) estymacji. Wyonano po 100 taich symulacji dla ażdej wartości, a w tabeli 1 zamieszczono wartości średnie ze wszystich 100 symulacji. Tabela 1 Średnie wartości MSE dla poszczególnych wartości parametru α PDF szumu wewnętrznego zależna od wygenerowanego sygnału szumu α = -2 α = -1 α = 0 α = 1 α = 2 MSE
6 42 P. Koziersi, M. Lis Należy zauważyć bardzo duże błędy estymacji dla szumu fioletowego, a do obliczeń zostały wzięte pod uwagę tylo te symulacje, z tórych udało się uzysać wynii (ooło co druga symulacja ończyła się prawidłowo). W drugiej części doświadczenia za szum wewnętrzny przyjęto szum normalny o wariancji 2, niezależnie od rodzaju szumu, z jaim miał do czynienia obiet. Tym samym symulacje przebiegały identycznie, a jedynie w algorytmie PF przyjęto inną funcję gęstości prawdopodobieństwa. Pozostałe parametry symulacji pozostały bez zmian, a wynii przedstawiono w tabeli 2. Średnie wartości MSE dla poszczególnych wartości parametru α za szum wewnętrzny przyjęto szum normalny o wariancji równej 2 Tabela 2 α = -2 α = -1 α = 0 α = 1 Α = 2 MSE Należy taże zauważyć, że tym razem nie było żadnych problemów z uzysaniem wyniów dla szumu fioletowego. 4. WNIOSKI Na podstawie uzysanych wyniów można stwierdzić, że rodzaj szumu ma wpływ na działanie PF. Zarazem stwierdzić również można, że szum fioletowy jest najbardziej problematyczny spośród rozpatrywanych może być wyorzystywany podczas badań jao najgorszy z możliwych przypadów. Porównując wynii z obu części doświadczenia, zauważono, że dla srajnych wartości parametru, przy przyjęciu wariancji szumu wewnętrznego równej 2, nastąpiła poprawa. Widać zatem, że przyjęcie wariancji więszej, niż rzeczywista może zarówno polepszyć, ja i pogorszyć wynii, ale w przypadu problemów z symulacją warto taie rozwiązanie (zwięszenie wariancji szumu wewnętrznego) rozważyć. Można taże zauważyć, że w wyniach uzysanych w pierwszej części doświadczenia to dla szumu różowego uzysano najlepsze efety filtracji, a nie dla szumu białego, ja można by się spodziewać. W związu z powyższym wyonano dodatowe doświadczenia, identyczne ja w pierwszej części doświadczenia (modelowanie szumu wewnętrznego zależne od parametru ; N 200, M 1000 ; 100 powtórzeń), a jedyną zmienną było ziarno szumu. Uzysane wynii (już tylo dla trzech wartości ) przedstawiono w tabeli 3.
7 Wpływ szumów olorowych 43 Tabela 3 Średnie wartości MSE dla poszczególnych wartości parametru α przy zmiennym ziarnie generatora PDF szumu wewnętrznego zależna od wygenerowanego sygnału szumu MSE ziarno α = -1 α = 0 α = 1 generatora Na podstawie wyniów z tabeli 3 można stwierdzić, że te uzysane w tabeli 1 są szczególnym przypadiem, a w przeważającej więszości przypadów szum biały oazuje się najprostszym szumem do filtracji. BIBLIOGRAFIA 1. Arulampalam S., Masell S., Gordon N., Clapp T.: A Tutorial on Particle Filters for Online Non-linear/Non-Gaussian Bayesian Tracing, IEEE Proceedings on Signal Processing, Vol. 50, No. 2, 2002, s Brzozowsa-Rup K., Dawidowicz A.L.: Metoda filtru cząsteczowego. Matematya Stosowana: Matematya dla Społeczeństwa 2009, T. 10/51, s Candy J.V.: Bayesian signal processing, WILEY, New Jersey 2009, s Doucet A., Freitas N., Gordon N.: Sequential Monte Carlo Methods in Practice, Springer- Verlag, New Yor 2001, s Gordon N.J., Salmond N.J., Smith A.F.M.: Novel approach to nonlinear/non-gaussian Bayesian state estimation. IEE Proceedings-F 1993, Vol. 140, No. 2, s Kotecha J.H., Djurić P.M.: Gaussian Particle Filtering. IEEE Trans Signal Processing 2003, Vol. 51, No. 10, s Little M., McSharry P., Roberts S., Costello D., Moroz I.: Exploiting Nonlinear Recurrence and Fractal Scaling Properties for voice Disorder Detection. BioMedical Eng. OnLine 2007, vol. 6, no. 23, s Pitt M., Shephard N.: Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association 1999, Vol. 94, No. 446, s Schön T.B., Wills A., Ninness B., System identification of nonlinear state-space models, Automatica 2011, Vol. 47, p Thrun S.: Particle Filters in Robotics, Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI), 2002.
8 44 P. Koziersi, M. Lis 11. Zielińsi T.: Cyfrowe przetwarzanie sygnałów: Od teorii do zastosowań. Wydawnictwa Komuniacji i Łączności, Warszawa 2007, s Wpłynęło do Redacji dnia 20 październia 2012 r. Recenzent: Prof. dr hab. inż. Janusz Walcza Mgr inż. Piotr KOZIERSKI Politechnia Poznańsa Instytut Automatyi i Inżynierii Informatycznej ul. Piotrowo 3a Poznań Tel.: (061) ; piotr.oziersi@gmail.com Mgr inż. Marcin LIS Politechnia Poznańsa Instytut Eletrotechnii i Eletronii Przemysłowej ul. Piotrowo 3a Poznań Tel. (061)
Filtracja pomiarów z głowic laserowych
dr inż. st. of. Paweł Zalewsi Filtracja pomiarów z głowic laserowych słowa luczowe: filtracja pomiaru odległości, PNDS Założenia filtracji pomiaru odległości. Problem wyznaczenia odległości i parametrów
Bardziej szczegółowoOptymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
Bardziej szczegółowoMODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH
MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa
Bardziej szczegółowoGrupowanie sekwencji czasowych
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
Bardziej szczegółowoDetekcja i śledzenie ruchomych obiektów w obrazie
Detecja i śledzenie ruchomych oietów w orazie Piotr Dala Plan prezentacji Wprowadzenie Metody wyrywania oietów ruchomych Podstawowe metody Modelowanie tła Usuwanie cienia Przetwarzanie morfologiczne Metody
Bardziej szczegółowoRACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
Bardziej szczegółowo(u) y(i) f 1. (u) H(z -1 )
IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne
Bardziej szczegółowoPROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE
PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś
Bardziej szczegółowoPrawdopodobieństwo i statystyka
Zadanie Rozważmy następujący model strzelania do tarczy. Współrzędne puntu trafienia (, Y ) są niezależnymi zmiennymi losowymi o jednaowym rozładzie normalnym N ( 0, σ ). Punt (0,0) uznajemy za środe tarczy,
Bardziej szczegółowoPodstawy rachunku prawdopodobieństwa (przypomnienie)
. Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń
Bardziej szczegółowoMatematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki
Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi
Bardziej szczegółowoWYKORZYSTANIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDENTYFIKACJI UKŁADÓW AUTOMATYKI
Piotr KOZIERSKI WYKORZYSTAIE FILTRU CZĄSTECZKOWEGO W PROBLEMIE IDETYFIKACJI UKŁADÓW AUTOMATYKI STRESZCZEIE W artyule przedstawioo sposób idetyfiacji parametryczej obietów ieliiowych zapisaych w przestrzei
Bardziej szczegółowoWybrane rozkłady zmiennych losowych i ich charakterystyki
Rozdział 1 Wybrane rozłady zmiennych losowych i ich charaterystyi 1.1 Wybrane rozłady zmiennych losowych typu soowego 1.1.1 Rozład równomierny Rozpatrzmy esperyment, tóry może sończyć się jednym z n możliwych
Bardziej szczegółowoOptymalizacja harmonogramów budowlanych - problem szeregowania zadań
Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów
Bardziej szczegółowoWPŁYW INFORMACJI O ZMIENNYCH STANU OBIEKTU NA JAKOŚĆ STEROWANIA PRZEZ NEUROSTEROWNIK
ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Rok LVIII Marcin LIS Instytut Elektrotechniki i Elektroniki Przemysłowej, Politechnika Poznańska Piotr KOZIERSKI Instytut Automatyki i Inżynierii Informatycznej, Politechnika
Bardziej szczegółowoRestauracja a poprawa jakości obrazów
Restauracja obrazów Zadaniem metod restauracji obrazu jest taie jego przeształcenie aby zmniejszyć (usunąć) znieształcenia obrazu powstające przy jego rejestracji. Suteczność metod restauracji obrazu zależy
Bardziej szczegółowoMetody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera
Bardziej szczegółowo( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
Bardziej szczegółowoKoła rowerowe kreślą fraktale
26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina
Bardziej szczegółowo1. Wprowadzenie. Jacek Michalski 1, Piotr Kozierski 2, 1 1
Pomiary Automatyka Robotyka, ISSN 1427-9126, R. 21, Nr 4/2017, 41 47, DOI: 10.14313/PAR_226/41 Jacek Michalski 1, Piotr Kozierski 2, 1 1 Streszczenie: W pracy poruszono problem estymacji stanu dla układów
Bardziej szczegółowoKoła rowerowe malują fraktale
Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego
Bardziej szczegółowoSTATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych
Bardziej szczegółowoZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU
Mirosław Tomera Aademia Morsa w Gdyni Wydział Eletryczny Katedra Automatyi Orętowej ZASTOSOWANIE SIECI NEURONOWEJ RBF W REGULATORZE KURSU STATKU W pracy przedstawiona została implementacja sieci neuronowej
Bardziej szczegółowoZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH
Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE
Bardziej szczegółowo4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)
256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia
Bardziej szczegółowoWYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ
WYKŁAD 5 METODY OPTYMALIZACJI NIELINIOWEJ BEZ OGRANICZEŃ Wstęp. Za wyjątie nielicznych funcji, najczęściej w postaci wieloianów, dla tórych ożna znaleźć iniu na drodze analitycznej, pozostała więszość
Bardziej szczegółowo116 Paweł Kobus Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu
116 Paweł Kobus Stowarzyszenie Eonomistów Rolnictwa i Agrobiznesu Rocznii Nauowe tom XVII zeszyt 6 Paweł Kobus Szoła Główna Gospodarstwa Wiejsiego w Warszawie Wpływ ubezpieczeń rolniczych na stabilność
Bardziej szczegółowoSygnały stochastyczne
Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie
Bardziej szczegółowoMetody probabilistyczne Rozwiązania zadań
Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi
Bardziej szczegółowoP k k (n k) = k {O O O} = ; {O O R} =
Definicja.5 (Kombinacje bez powtórzeń). Każdy -elementowy podzbiór zbioru A wybrany (w dowolnej olejności) bez zwracania nazywamy ombinacją bez powtórzeń. Twierdzenie.5 (Kombinacje bez powtórzeń). Liczba
Bardziej szczegółowoPolitechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w
Bardziej szczegółowoREGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Bardziej szczegółowoZastosowania programowalnych układów analogowych isppac
Zastosowania programowalnych uładów analogowych isppac 0..80 strutura uładu "uniwersalnego" isppac0 ułady nadzorujące na isppac0, 30 programowanie filtrów na isppac 80 analiza częstotliwościowa projetowanych
Bardziej szczegółowoWykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Bardziej szczegółowoWykład 21: Studnie i bariery cz.1.
Wyład : Studnie i bariery cz.. Dr inż. Zbigniew Szlarsi Katedra Eletronii, paw. C-, po.3 szla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szlarsi/ 3.6.8 Wydział Informatyi, Eletronii i Równanie Schrödingera
Bardziej szczegółowo4. Weryfikacja modelu
4. Weryfiacja modelu Wyznaczenie wetora parametrów struturalnych uładu ończy etap estymacji. Kolejnym etapem jest etap weryfiacji modelu. Przeprowadza się ją w dwóch ujęciach: merytorycznym i statystycznym.
Bardziej szczegółowoPRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO
PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO Mgr Beata Malec, dr Mare Biesiada, dr Anicenta Buba Instytut Medycyny Pracy i Zdrowia Środowisowego, Sosnowiec Wstęp Zagrożenia zdrowotne stwarzane
Bardziej szczegółowoSterowanie Ciągłe. Używając Simulink a w pakiecie MATLAB, zasymulować układ z rysunku 7.1. Rys.7.1. Schemat blokowy układu regulacji.
emat ćwiczenia nr 7: Synteza parametryczna uładów regulacji. Sterowanie Ciągłe Celem ćwiczenia jest orecja zadanego uładu regulacji wyorzystując następujące metody: ryterium amplitudy rezonansowej i metodę
Bardziej szczegółowoWYKORZYSTANIE AKCELEROMETRU I ŻYROSKOPU MEMS DO POMIARU DRGAŃ W NAPĘDZIE BEZPOŚREDNIM O ZŁOŻONEJ STRUKTURZE MECHANICZNEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 87 Electrical Engineering 2016 Tomasz KULCZAK* Bartosz SZCZERBO* Stefan BROCK* WYKORZYSTANIE AKCELEROMETRU I ŻYROSKOPU MEMS DO POMIARU DRGAŃ W NAPĘDZIE
Bardziej szczegółowoOPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH
OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH Andrzej SZYMONIK, Krzysztof PYTEL Streszczenie: W złożonych sieciach omputerowych istnieje problem doboru przepustowości
Bardziej szczegółowoKodowanie informacji w systemach cyfrowych
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 2. Kodowanie informacji w systemach cyfrowych Cel dydatyczny: Nabycie umiejętności posługiwania się różnymi odami wyorzystywanymi w systemach
Bardziej szczegółowowtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz
Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno
Bardziej szczegółowoMikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Bardziej szczegółowoP(T) = P(T M) = P(T A) = P(T L) = P(T S) = P(T L M) = P(T L A) = P(T S M) = P(T S A) =
Przyład (obrona orętów USA przed ataami lotnictwa japońsiego) Możliwe dwie wyluczające się tatyi: M = manewr A = artyleria przeciwlotnicza Departament Marynari Wojennej na podstawie danych z wojny na Pacyfiu
Bardziej szczegółowoColloquium 3, Grupa A
Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące
Bardziej szczegółowoUZUPEŁNIENIA DO WYKŁADÓW A-C
UZUPEŁNIENIA DO WYKŁADÓW A-C Objaśnienia: 1. Uzupełnienia sładają się z dwóch części właściwych uzupełnień do treści wyładowych, zwyle zawierających wyprowadzenia i nietóre definicje oraz Zadań i problemów.
Bardziej szczegółowoWAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
Bardziej szczegółowoREFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.
REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu
Bardziej szczegółowoANALIZA METROLOGICZNA UKŁADU DO DIAGNOSTYKI ŁOŻYSK OPARTEJ NA POMIARACH MOCY CHWILOWEJ
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 01 Ariel DZWONKOWSKI* ANALIZA METROLOGICZNA UKŁADU DO DIAGNOSTYKI ŁOŻYSK OPARTEJ NA POMIARACH MOCY CHWILOWEJ W artyule przedstawiono
Bardziej szczegółowoOCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Anna DOBROWOLSKA* Jan MIKUŚ* OCENA JAKOŚCI PROCESU LOGISTYCZNEGO PRZEDSIĘBIORSTWA PRZEMYSŁOWEGO METODĄ UOGÓLNIONEGO PARAMETRU CZĘŚĆ II Przedstawiono
Bardziej szczegółowodr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW
dr Bartłomiej Roici atedra Maroeonomii i Teorii Handlu Zagranicznego Wydział Nau Eonomicznych UW dr Bartłomiej Roici Maroeonomia II Model Solowa z postępem technologicznym by do modelu Solowa włączyć postęp
Bardziej szczegółowoAlgorytmy estymacji stanu (filtry)
Algorytmy estymacji stanu (filtry) Na podstawie: AIMA ch15, Udacity (S. Thrun) Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 21 kwietnia 2014 Problem lokalizacji Obserwowalność? Determinizm?
Bardziej szczegółowoMateriały dydaktyczne. Matematyka. Semestr III. Wykłady
Materiały dydatyczne Matematya Semestr III Wyłady Aademia Morsa w Szczecinie ul. Wały Chrobrego - 70-500 Szczecin WIII RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE PIERWSZEGO RZĘDU. Pojęcia wstępne. Równania różniczowe
Bardziej szczegółowoIndukcja matematyczna
Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,
Bardziej szczegółowokoszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.
Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się
Bardziej szczegółowoAlgebra liniowa z geometrią analityczną
WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór
Bardziej szczegółowoNr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej
Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia
Bardziej szczegółowoWyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze
Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...
Bardziej szczegółowo9. Sprzężenie zwrotne własności
9. Sprzężenie zwrotne własności 9.. Wprowadzenie Sprzężenie zwrotne w uładzie eletronicznym realizuje się przez sumowanie części sygnału wyjściowego z sygnałem wejściowym i użycie zmodyiowanego w ten sposób
Bardziej szczegółowoL.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)
ZADANIA - ZESTAW 1 Zadanie 11 Rzucamy trzy razy monetą A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie Oreślić zbiór zdarzeń elementarnych Wypisać zdarzenia elementarne sprzyjające
Bardziej szczegółowoWyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego
Politechnia Łódza FTIMS Kierune: Informatya ro aademici: 2008/2009 sem. 2. Termin: 16 III 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spetrometru siatowego Nr.
Bardziej szczegółowoA4: Filtry aktywne rzędu II i IV
A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową
Bardziej szczegółowoGenerowanie sygnałów na DSP
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Generowanie sygnałów na DSP Wstęp Dziś w programie: generowanie sygnałów za pomocą
Bardziej szczegółowoDRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o
Bardziej szczegółowoA. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
Bardziej szczegółowoĆwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Bardziej szczegółowoPRAKTYCZNE OBLICZENIA W INSTALACJACH SŁONECZNEGO OGRZEWANIA WODY
Zeszyty Nauowe Wydziału Eletrotechnii i Automatyi Politechnii Gdańsiej Nr 7 XXXV Konerencja Nauowo - Techniczna GDAŃSKIE DNI ELEKTRYKI 010 Stowarzyszenie Eletryów Polsich Oddział Gdańsi Reerat nr 5 PRAKTYCZNE
Bardziej szczegółowoROZDZIAŁ 10 METODA KOMPONOWANIA ZESPOŁU CZYNNIKI EFEKTYWNOŚCI SKŁADU ZESPOŁU
Agniesza Dziurzańsa ROZDZIAŁ 10 METODA KOMPONOWANIA ZESPOŁU 10.1. CZYNNIKI EFEKTYWNOŚCI SKŁADU ZESPOŁU Przeprowadzona analiza formacji, jaą jest zespół (zobacz rozdział 5), wyazała, że cechy tóre powstają
Bardziej szczegółowoFuzja sygnałów i filtry bayesowskie
Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna
Bardziej szczegółowoPLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy
PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności
Bardziej szczegółowoi = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =
Druga zasada inducji matematycznej Niech m będzie liczbą całowitą, niech p(n) będzie ciągiem zdań zdefiniowanych na zbiorze {n Z: n m} oraz niech l będzie nieujemną liczbą całowitą. Jeśli (P) wszystie
Bardziej szczegółowoDSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH. Ćwiczenie 5. Przemysław Korohoda, KE, AGH
DSP-MATLAB, Ćwiczenie 5, P.Korohoda, KE AGH Instrucja do laboratorium z cyfrowego przetwarzania sygnałów Ćwiczenie 5 Wybrane właściwości Dysretnej Transformacji Fouriera Przemysław Korohoda, KE, AGH Zawartość
Bardziej szczegółowoZastosowanie zespołów prądotwórczych do awaryjnego zasilania obiektów budowlanych mgr inż. Julian Wiatr CKSI i UE SEP
astosowanie zespołów prądotwórczych do awaryjnego zasilania obietów budowlanych mgr inż. Julian Wiatr CKSI i UE SE 1. odział odbiorniów energii eletrycznej na ategorie zasilania i ułady zasilania obietu
Bardziej szczegółowo(U.3) Podstawy formalizmu mechaniki kwantowej
3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne
Bardziej szczegółowoAnaliza nośności poziomej pojedynczego pala
Poradni Inżyniera Nr 16 Atualizacja: 09/016 Analiza nośności poziomej pojedynczego pala Program: Pli powiązany: Pal Demo_manual_16.gpi Celem niniejszego przewodnia jest przedstawienie wyorzystania programu
Bardziej szczegółowoSzacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Bardziej szczegółowoKomputerowa reprezentacja oraz prezentacja i graficzna edycja krzywoliniowych obiektów 3d
Komputerowa reprezentacja oraz prezentacja i graficzna edycja rzywoliniowych obietów 3d Jan Prusaowsi 1), Ryszard Winiarczy 1,2), Krzysztof Sabe 2) 1) Politechnia Śląsa w Gliwicach, 2) Instytut Informatyi
Bardziej szczegółowoMonte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Bardziej szczegółowoWstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak
Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak 1 Wprowadzenie. Zmienne losowe Podczas kursu interesować nas będzie wnioskowanie o rozpatrywanym zjawisku. Poprzez wnioskowanie rozumiemy
Bardziej szczegółowoσ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;
Zdarzenie losowe i zdarzenie elementarne Zdarzenie (zdarzenie losowe) - wyni pewnej obserwacji lub doświadczenia; może być ilościowy lub jaościowy. Zdarzenie elementarne - najprostszy wyni doświadczenia
Bardziej szczegółowoPomiary napięć przemiennych
LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych
Bardziej szczegółowoFOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 9, Oeconomica 68 54), 55 6 Anna LANDOWSKA ZASTOSOWANIE DYSKRETNEGO PROGRAMOWANIA DYNAMICZNEGO DO ROZWIĄZANIA PROBLEMU
Bardziej szczegółowoAnaliza B. Paweł Głowacki
Analiza B Paweł Głowaci Pojęcie liczby rzeczywistej uważać będziemy za intuicyjnie oczywiste. Tym niemniej celowe wydaje się przypomnienie i ugruntowanie nietórych fundamentalnych własności liczb rzeczywistych.
Bardziej szczegółowoOBLICZENIA W POMIARACH POŚREDNICH
ROZDZAŁ 6 OBLCZENA W POMARACH POŚREDNCH Stefan ubisa Zachodniopoorsi niwersytet Technologiczny. Wstęp Poiar pośredni to tai w tóry wartość wielości ierzonej wielości wyjściowej ezurandu y oblicza się z
Bardziej szczegółowoKierunki racjonalizacji jednostkowego kosztu produkcji w przedsiębiorstwie górniczym
Kieruni racjonalizacji jednostowego osztu producji w przedsiębiorstwie górniczym Roman MAGDA 1) 1) Prof dr hab inż.; AGH University of Science and Technology, Kraów, Miciewicza 30, 30-059, Poland; email:
Bardziej szczegółowoDOBÓR PRZEKROJU PRZEWODÓW OBCIĄŻONYCH PRĄDEM ZAWIERAJĄCYM WYŻSZE HARMONICZNE
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 90 Electrical Engineering 2017 DOI 10.21008/j.1897-0737.2017.90.0020 Andrzej KSIĄŻKIEWICZ* Marcin RACŁAW** DOBÓR PRZEKROJU PRZEWODÓW OBCIĄŻONYCH
Bardziej szczegółowoFILTRACJA KALMANA W TECHNICE NA PRZYKŁADZIE URZĄDZENIA SST
Zeszyty Nauowe WSInf Vol 12, Nr 1, 2013 Mirosław Zając Politechnia Łódza, Instytut mechatronii i Systemów Informatycznych ul. Stefanowsiego 18/22, 90-924 Łódź email: mire21.mire21@wp.pl FILRACJA KALMANA
Bardziej szczegółowoWYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Bardziej szczegółowoTemat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,
sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża
Bardziej szczegółowoZASTOSOWANIE METODY MONTE CARLO DO WYZNACZANIA KRZYWYCH KINETYCZNYCH ZŁOŻONYCH REAKCJI CHEMICZNYCH
MONIKA GWADERA, KRZYSZTOF KUPIEC ZASTOSOWANIE METODY MONTE CARLO DO WYZNACZANIA KRZYWYCH KINETYCZNYCH ZŁOŻONYCH REAKCJI CHEMICZNYCH APPLICATION OF MONTE CARLO METHOD FOR DETERMINATION OF MULTIPLE REACTIONS
Bardziej szczegółowoMikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Bardziej szczegółowoCYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie
Bardziej szczegółowoObliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Bardziej szczegółowoZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali
ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej
Bardziej szczegółowoZagadnienia AI wykład 3
Zagadnienia I wyład 3 Rozmyte systemy wniosujące by móc sterować pewnym procesem technologicznym lub tez pracą urządzeń onieczne jest zbudowanie modelu, na podstawie tórego można będzie podejmować decyzje
Bardziej szczegółowoĆwiczenie 4. Zagadnienia: spektroskopia emisyjna, budowa i działanie spektrofluorymetru, widma. Wstęp. Część teoretyczna.
Ćwiczenie 4 Wyznaczanie wydajności wantowej emisji. Wpływ długości fali wzbudzenia oraz ształtu uweti i jej ustawienia na intensywność emisji i na udział filtru wewnętrznego. Zagadnienia: spetrosopia emisyjna,
Bardziej szczegółowoMetody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Bardziej szczegółowo