INWESTOWANIE W SEKTORZE ENERGETYCZNYM, PALIWOWYM I SUROWCOWYM NA GPW W WARSZAWIE Z UŻYCIEM MODELI SHARPE A I MARKOWITZA

Wielkość: px
Rozpocząć pokaz od strony:

Download "INWESTOWANIE W SEKTORZE ENERGETYCZNYM, PALIWOWYM I SUROWCOWYM NA GPW W WARSZAWIE Z UŻYCIEM MODELI SHARPE A I MARKOWITZA"

Transkrypt

1 Studa Ekonomczne. Zeszyty Naukowe Unwersytetu Ekonomcznego w Katowcach ISSN Nr Współczesne Fnanse 7 Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk adranna.mastalerz-kodzs@ue.katowce.pl Ewa Pośpech Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk ewa.pospech@ue.katowce.pl INWESTOWANIE W SEKTORZE ENERGETYCZNYM, PALIWOWYM I SUROWCOWYM NA GPW W WARSZAWIE Z UŻYCIEM MODELI SHARPE A I MARKOWITZA Streszczene: Celem pracy jest ocena ryzyka oraz efektywnośc nwestowana w wybranych sektorach GPW w Warszawe. Za pomocą model Sharpe a Markowtza, a także wykorzystując wybrane metody analzy portfelowej dla spółek należących do sektorów: surowce, palwa energa, przeprowadzono badana empryczne. Praca składa sę z dwóch częśc. Perwsza ma charakter metodyczny, druga zawera ważnejsze wynk badań wnosk. Na podstawe przeprowadzonych analz można stwerdzć, że nwestowane w ww. sektorach daje wysoke stopy zwrotu, zatem jest atrakcyjne dla nwestora. Nezbędna jest jednak dogłębna analza danych hstorycznych w celu wyboru walorów najbardzej bezpecznych oraz zyskownych. Słowa kluczowe: model Sharpe a, model Markowtza, analza portfelowa, ryzyko nwestycyjne. Wprowadzene W XXI w. tematem cen surowców energetycznych oraz bezpeczeństwem energetycznym Polsk Europy zajmuje sę welu specjalstów, zarówno teoretyków, jak praktyków. Nnejsza praca ma charakter loścowy koncentruje sę na cenach gełdowych oraz ryzyku nwestowana w spółk należące do trzech wybranych sektorów zwązanych z rynkem energ. Kształtowane sę cen gełdowych spółek funkcjonujących na rynku surowców, palw energ ma stotny wpływ na stablność oraz równowagę na omawanym rynku.

2 Inwestowane w sektorze energetycznym, palwowym surowcowym W pracy wykorzystano model Sharpe a. W modelu tym wyznacza sę współczynnk kerunkowy ln regresj parametr β, w oparcu o dane gełdowe: ceny zamknęca akcj oraz ndeks rynku. Jednak w zależnośc od tego, który z stnejących ndeksów rynku będze brany pod uwagę, wartość tego parametru może być różna. W celu porównana efektywnośc analzowanych portfel rozważono także model Markowtza. Celem pracy jest zbadane zman wartośc wskaźnka w zależnośc od zastosowanego ndeksu gełdowego oraz analza wpływu wyboru syntetycznego ndeksu rynku na skład efektywność portfela akcj. 1. Elementy metodyk badań Po opublkowanu teor Harry ego M. Markowtza w 1952 r. dotyczącej wyboru portfel optymalnych mnmalzacj ryzyka przy ustalonym z góry pozome zysku rozważano, czy zaproponowany model jest jedynym możlwym opsem rynku. Poszukwano metody konstruowana portfel, która dawałaby równe dobre efekty jak model Markowtza, jednak w szybszy prostszy sposób. W roku 1963 został opracowany jednondeksowy model gełdy Wllama Sharpe a. Zyskał dużą popularność, bowem był łatwejszy od konstrukcj portfela Markowtza, co jednak ne wpływało znacząco na jakość wynków. W modelu Sharpe a zakłada sę, że stopy zwrotu z akcj notowanych na gełdze zależą od stopy zwrotu całego rynku. Zachowane sę rynku jest wyrażone za pomocą ndeksu gełdowego, którego wzrostow towarzyszy wzrost cen wększośc akcj, spadkow zaś spadek cen znacznej częśc akcj. Zatem stopy zwrotu z akcj pozostają w ścsłym zwązku z ndeksem gełdy. Model opsany ponżej został zaproponowany przez Sharpe a, a dalej zmodyfkowany przez Johna Lntnera Model Wllama Sharpe a Propozycja Sharpe a wynkała z praktycznych dośwadczeń, które wykazywały, że zachowane poszczególnych akcj może być wytłumaczone za pomocą jednego syntetycznego czynnka, opsującego zachowane całej gełdy. Jednakże na gełdze występuje wele ndeksów bazujących na różnych walorach. Pojawło sę pytane, według którego z nch badać ryzyko nwestycyjne w modelu Sharpe a.

3 54 Adranna Mastalerz-Kodzs, Ewa Pośpech Zakłada sę, że wększość akcj zmena swoją wartość zgodne z zachowanem gełdy. Zauważono w trakce badań emprycznych, że akcje, które tracą na wartośc szybcej nż ndeks gełdowy, równeż zyskują na wartośc szybcej nż ten ndeks. Wyznaczono matematyczną zależność zachowana akcj w stosunku do zman ndeksu gełdowego [Brzeszczyńsk, Kelm, 2002; Doman, Doman, 2009; Jóźwck, 2011]. Stopa zwrotu akcj jest zależna od trzech składnków: stałego nezależnego od zman na rynku α, zmennego proporcjonalnego do zman ndeksu gełdowego; można wyznaczyć współczynnk proporcjonalnośc nazwany β, składnka losowego ξ o zmanach nedających wytłumaczyć sę przy użycu wykorzystywanych parametrów. Stały składnk wyjaśna długookresowy trend zman cen poszczególnych akcj. Parametr zmenny opsuje słę zależnośc zachodzących mędzy zmanam ndeksu a opsywanym walorem. Składnk losowy wprowadzony został w celu wyjaśnena ruchów akcj nezgodnych z modelem. Równane opsujące zachowane akcj w zależnośc od zman zachodzących na gełdze pownno być konstruowane w tak sposób, by wpływ składnka losowego był jak najmnejszy. Model Sharpe a przyjmuje następującą postać: gdze: R stopa zwrotu z -tej akcj, R = α + β R + ξ (1) R stopa zwrotu z rynku merzona stopą zwrotu z ndeksu gełdowego, m α parametr strukturalny, β parametr wrażlwośc na zmany rynku, ξ składnk losowy równana. Parametr β jest marą ryzyka, nazywany jest także współczynnkem agresywnośc akcj. Równane (1) zwane jest lną charakterystyczną paperu wartoścowego. Współczynnk β opsuje zachowane waloru w zależnośc od zachowana całego rynku. W przypadku, gdy: spodzewamy sę hossy, należy nwestować w akcje posadające wysoke współczynnk β; pozwol to na przyrost kaptału szybszy od przyrostu gełdy, spodzewamy sę bessy (jednak jej prawdopodobeństwo ne jest zbyt wysoke), pownnśmy nwestować w papery o nskej wartośc β; w przypadku wzro- m

4 Inwestowane w sektorze energetycznym, palwowym surowcowym stu na gełdze spowoduje to wolny wzrost naszych kaptałów, zabezpeczy nas jednak w przypadku załamana notowań, stneje duże prawdopodobeństwo bessy, zamast w akcje należy nwestować w oblgacje. Tabela 1. Ops zachowana akcj w zależnośc od parametru β Zakres β Ops zachowana akcj β < 0 Akcja zachowuje sę przecwne nż ndeks rynkowy Na wzrost gełdy akcja reaguje spadkem wartośc β = 0 Stopa zwrotu akcj jest nezależna (statystyczne) od rynku Akcja jest pozbawona ryzyka rynkowego 0 < β < 1 Akcja defensywna na zmany gełdowe reaguje wolnej nż rynek β = 1 Akcja podlega takm samym zmanom jak cała gełda Akcja agresywna, ryzykowna β >1 Wzrostow gełdy odpowada szybszy wzrost wartośc akcj Spadek na gełdze powoduje szybszy spadek tej akcj Przy konstrukcj modelu Sharpe a należy pamętać, że duże znaczene ma wybór ndeksu rynku, który posłuży do modelu ndeksowego. Można np. wyznaczyć średną wartość nedopasowana modelu dla różnych ndeksów używanych w Polsce (dla różnych horyzontów czasowych). Powstaje pytane, jak jest wpływ wyboru ndeksu rynku na wartość parametru β oraz dalej, jak wpływa to na udzały poszczególnych walorów w analze portfelowej uwzględnającej β. Ponżej, w przeprowadzonych badanach emprycznych, posłużono sę ndeksam rynkowym: WIG, WIG 20, WIG 30 oraz ndeksam sektorowym dla opsu akcj wchodzących w skład sektorów: energa, palwa surowce Konstrukcja portfela akcj Markowtza z uwzględnenem parametru β W klasycznym modelu Markowtza ne występuje parametr β. Można ten model jednak zmodyfkować, dodając warunek zawerający parametr β [Dembny, 2005; Przekota, Szczepańska-Przekota, 2008; Relly, Brown, 2001]. Wówczas postać modelu optymalzacyjnego mnmalzująca warancję portfela jest następująca: 2 funkcja celu: f ( x K, x ) σ ( x, K, x ) mn 1, n = 1 n dla zadanych warunków ogranczających brzegowych:

5 56 Adranna Mastalerz-Kodzs, Ewa Pośpech n =1 R x R x n ( R) x s( R) s =1 n β x β = 1 n = 1 x = 1 0 = 1, K, n, n N, (2) gdze: x udzał -tej spółk w portfelu, R stopa zwrotu dla -tej spółk, s R odchylene standardowe stopy zwrotu, ( ) s( R) R,, β wartośc średne dla wszystkch badanych spółek. Dodano także do modelu warunk dotyczące maksymalnego udzału walorów w portfelach optymalnych. W poszczególnych modelach przyjęto dodatkowe warunk ogranczające udzał akcj w portfelach. 2. Wynk badań emprycznych Badana empryczne prowadzono na podstawe danych zaczerpnętych z GPW w Warszawe. Rysunek 1 przedstawa wartośc ndeksów sektorowych: energa, palwa surowce w okrese Analzowany okres dla wększośc ndeksów sektorowych oraz dla znacznej wększośc spółek notowanych na GPW cechował sę spadkem notowań, ujemnym trendem oraz ujemną, hstoryczną stopą zwrotu.

6 Inwestowane w sektorze energetycznym, palwowym surowcowym Rys. 1. Notowana wybranych ndeksów sektorowych za okres Źródło: [wwww 1]. Tabela 2. Skład procentowy udzał spółek na dzeń r. r w portfelachh wybranych ndeksów sektorowych WIG ENERGIA WIG PALIWA WIG SUROWCE PGE TAURONPE ENERGA ENEA CEZ KOGENERA PEPP ZEPAK INTERAOLT 51,3% 15, 1% 12,6% 12,0% 3,2% 2,8% 1,6% 0,9% 0,4% PKNORLEN PGNIG LOTOS MOL SERINUS EXILLON 65,8% 24,5% 7,0% 2,5% 0,1% 0,007% KGHM JSW BOGDANKA B 90,0% 6,2% 3,8% Źródło: Na podstawe: [www 1]. Analzowano skład portfel sektorowych. Procentowyy udzał spółek w port- jednak felach zameszczono w tab. 2. W skład portfel wchodz klka spółek, znaczące udzały (powyżej 10%) dla sektora energa mają tylko cztery spółk, dla sektora palwa dwe, zaś w sektorze surowce lczyy sę w zasadze tylko jedna spółka Analza wskaźnka β dla spółek z wybranych sektorów W tabel 2 zameszczono akcje wchodzące w składd portfel sektorowych według malejących udzałów w portfelach. Na podstawe notowańń (cen za- mknęca) akcj dla spółek wchodzących w skład ndeksów sektorowych: ener-

7 58 Adranna Mastalerz-Kodzs, Ewa Pośpech ga, palwa, surowce oraz borąc pod uwagę wartośc ndeksów z GPW w Warszawe: WIG, WIG 20, WIG 30 oraz ndeks sektorowy właścwy dla danej spółk, wyznaczono wartośc współczynnka β. Analzując wynk zawarte w tab. 3, można zaproponować wnosk: 1. Wartośc współczynnka β, nezależne od zastosowanego ndeksu rynku, dla danej spółk przyjmują ten sam znak, jednak wartośc neznaczne różną sę mędzy sobą. 2. Akcje 16 spośród 18 spółek wchodzących w skład analzowanych sektorów cechowały sę dodatną wartoścą współczynnka β; wyjątkem były dwe spółk o bardzo małych udzałach w portfelach (Exllon, Interaolt). 3. Wartośc parametru β dla ndeksów WIG, WIG20 WIG30 są sobe blższe, anżel wartość β dla ndeksu sektorowego. Tabela 3. Wartośc współczynnka β dla różnych ndeksów, hstoryczna stopa zwrotu akcj R oraz odchylene standardowe stopy zwrotu s(r) w okrese SPÓŁKA β SEKTOROWY β WIG β WIG20 β WIG30 R s(r) ENERGIA PALIWA SUROWCE PGE 1, , , , , ,02155 TAURONPE 1, , , , , ,02316 ENERGA 0, , , , , ,02150 ENEA 0, , , , , ,02147 CEZ 0, , , , , ,01675 KOGENERA 0, , , , , ,01555 PEP 0, , , , , ,02187 ZEPAK 0, , , , , ,02245 INTERAOLT -0,0120-0, , , , ,01588 PKNORLEN 1, , , , , ,01971 PGNIG 0, , , , ,3E-006 0,02224 LOTOS 0, , , , , ,01729 MOL 0, , , , , ,01426 SERINUS 0, , , , , ,03819 EXILLON -0,0374-0, , , , ,03164 KGHM 1, , , , , ,02900 JSW 0, , , , , ,03797 BOGDANKA 0, , , , , ,04058 Nota: Czarnym kolorem zaznaczono wartośc dla spółek wchodzących w skład danego ndeksu, szarym, gdy spółka ne należy do ndeksu.

8 Inwestowane w sektorze energetycznym, palwowym surowcowym Konstrukcja portfela akcj W tabel 4 pokazano rozwązana zadana (2), czyl udzały walorów w portfelach. Następne oblczono efektywność otrzymanych portfel dla cen zamknęca akcj w dnach oraz Tabela 4. Rozwązana zadań optymalzacyjnych, udzały x spółek w portfelach. Efektywność uzyskanych rozwązań SPÓŁKA x 0,5, x 0,4, x 0,3, x 0,2 x 0,1 PGE 0 0 TAURONPE 0 0 ENERGA 0,03 0,07 ENEA 0,06 0,06 CEZ 0,07 0,1 KOGENERA 0,19 0,1 PEP 0,08 0,1 ZEPAK 0,04 0,07 INTERAOLT 0,2 0,1 PKNORLEN 0,05 0,08 PGNIG 0 0,02 LOTOS 0,03 0,08 MOL 0,18 0,1 SERINUS 0 0,02 EXILLON 0,06 0,09 KGHM 0 0 JSW 0 0 BOGDANKA 0 0 Tygodnowa stopa zwrotu w okrese ,004-0,012 Roczna stopa zwrotu 0,206-0,625 Uzyskane roczne stopy zwrotu śwadczą o wysokej efektywnośc uzyskanych rozwązań optymalnych, ponad 20% rocznej stope zwrotu dla warunków dodatkowych x 0,5, x 0,4, x 0,3, x 0,2, nezależne od ndeksu rynku w modelu. Ujemną stopę zwrotu otrzymano dla dodatkowego warunku x 0,1. Bardzej bezpeczne metody nwestowana, np. lokaty bankowe, w omawanym okrese były oprocentowane około 2,5%-3% roczne (w zależnośc od banku). Z przeprowadzonych analz można wywnoskować: 1. Zastosowane modelu Markowtza z uwzględnenem parametru β pozwala na wyłonene spółek najatrakcyjnejszych dla nwestora, nawet w przypadku bessy na gełdze. 2. W modelach uzyskanych w tab. 4 dodatne udzały mają spółk o nskch współczynnkach β.

9 60 Adranna Mastalerz-Kodzs, Ewa Pośpech 3. W zależnośc od trendu na gełdze warunek dodatkowy zawerający parametr β, można modyfkować zgodne z sugestam z tab Na otrzymane rozwązana optymalne ne ma wpływu zastosowany ndeks rynku. 5. Efektywność wększośc model cechuje sę wysoką, ponad 20% roczną stopą zwrotu. 6. Portfele optymalne uzyskane w pracy poprzez rozwązane model (2) cechują sę znaczącą efektywnoścą merzoną roczną stopą zysku. 7. Inwestowane w spółk z sektorów energetycznego, palwowego surowcowego daje zdywersyfkowane portfele z trzech sektorów o wysokej stope zysku. Podsumowane W pracy pokazano, że nwestowane w sektorach energetycznym, palwowym surowcowym pozwala na uzyskane portfel o dodatnch stopach zysku, nawet w przypadku bessy na gełdze, zatem jest to atrakcyjne dla nwestora. W celu wyboru strateg nwestycyjnej decydent może posłużyć sę zaproponowaną w pracy metodyką, wymaga to jednak dokładnej analzy danych hstorycznych. Połączene model Sharpe a Markowtza wydaje sę zatem być nteresujące dla nwestora. Lteratura Brzeszczyńsk J., Kelm R. (2002), Ekonometryczne modele rynków fnansowych, WIG- -PRESS, Warszawa. Dembny A. (2005), Budowa portfel ogranczonego ryzyka, CeDeWu.pl, Warszawa. Doman M., Doman R. (2009), Modelowane zmennośc ryzyka. Metody ekonometr fnansowej, Wolters Kluwer Polska, Kraków. Jóźwck R. (2011), Stratege nwestycyjne, CeDeWu.pl, Warszawa. Przekota G., Szczepańska-Przekota A. (2008), Analza empryczna efektywnośc polskego rynku akcj, Ośrodek Analz Statystycznych, Warszawa. Relly F.K., Brown K.C. (2001), Analza nwestycj zarządzane portfelem, PWE, Warszawa. [www 1] (dostęp: ).

10 Inwestowane w sektorze energetycznym, palwowym surowcowym ENERGY, OIL AND GAS INDUSTRY AND BASIC MATERIALS INDUSTRY SECTORS INVESTMENTS ON WARSAW STOCK EXCHANGE USING SHARPE S AND MARKOWITZ MODELS Summary: The am of the paper s to estmate the nvestment rsk n selected sectors on Warsaw Stock Exchange. Usng Sharpe s, Markowtz s model and some methods of portfolo analyss nvestment rsk and nvestment effcency were examned. In Sharpe s model the slope of a straght lne (beta coeffcent) s apponted (usng closng stock prces and market ndex). However, dependng on chosen market ndex the values of the coeffcent are dfferent. In the artcle the values of estmated beta coeffcents were examned and compared. The paper conssts of two parts: the frst s methodologcal one, the second presents man results and conclusons. Keywords: Sharpe s model, Markowtz s model, portfolo analyss, nvestment rsk.

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2014 Sera: ORGANIZACJA I ZARZĄDZANIE z. 68 Nr kol. 1905 Adranna MASTALERZ-KODZIS Unwersytet Ekonomczny w Katowcach OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH SCRIPTA COMENIANA LESNENSIA PWSZ m. J. A. Komeńskego w Leszne R o k 0 0 8, n r 6 TOMASZ ŚWIST* WERYFIKACJA EKONOMETRYCZNA MODELU CAPM II RODZAJU DLA RÓŻNYCH HORYZONTÓW STÓP ZWROTU I PORTFELI RYNKOWYCH

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Adranna Mastalerz-Kodzs Ewa Pośpech Unwersytet Ekonomczny w Katowcach ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH Wprowadzene Zagadnene wyznaczana optymalnych

Bardziej szczegółowo

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Ewa Pośpech Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk posp@ue.katowce.pl WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP Streszczene: W artykule rozważano zagadnene

Bardziej szczegółowo

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie

Wpływ płynności obrotu na kształtowanie się stopy zwrotu z akcji notowanych na Giełdzie Papierów Wartościowych w Warszawie Agata Gnadkowska * Wpływ płynnośc obrotu na kształtowane sę stopy zwrotu z akcj notowanych na Gełdze Paperów Wartoścowych w Warszawe Wstęp Płynność aktywów na rynku kaptałowym rozumana jest przez nwestorów

Bardziej szczegółowo

ZASTOSOWANIE MODELI ILOŚCIOWYCH W KONSTRUOWANIU STRATEGII INWESTYCYJNYCH

ZASTOSOWANIE MODELI ILOŚCIOWYCH W KONSTRUOWANIU STRATEGII INWESTYCYJNYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2015 Seria: ORGANIZACJA I ZARZĄDZANIE z. 86 Nr kol. 1946 Adrianna MASTALERZ-KODZIS, Ewa POŚPIECH Uniwersytet Ekonomiczny w Katowicach Wydział Zarządzania adrianna.mastalerz-kodzis@ue.katowice.pl,

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ZESZYTY AUKOWE UIWERSYTETU SZCZECI SKIEGO R 394 PRACE KATEDRY EKOOMETRII I STATYSTYKI R 5 004 SEBASTIA GAT Unwersytet Szczec sk KRYTERIA BUDOWY PORTFELI PAPIERÓW WARTO CIOWYCH W OKRESIE BESSY A GIEŁDA

Bardziej szczegółowo

ZASTOSOWANIE MODELU MOTAD DO TWORZENIA PORTFELA AKCJI KLASYFIKACJA WARUNKÓW PODEJMOWANIA DECYZJI

ZASTOSOWANIE MODELU MOTAD DO TWORZENIA PORTFELA AKCJI KLASYFIKACJA WARUNKÓW PODEJMOWANIA DECYZJI Krzysztof Wsńsk Katedra Statystyk Matematycznej, AR w Szczecne e-mal: kwsnsk@e-ar.pl ZASTOSOWANIE MODELU MOTAD DO TWORZENIA PORTFELA AKCJI Streszczene: W artykule omówono metodologę modelu MOTAD pod kątem

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYBRANYCH METOD GRUPOWANIA SPÓŁEK GIEŁDOWYCH

ANALIZA PORÓWNAWCZA WYBRANYCH METOD GRUPOWANIA SPÓŁEK GIEŁDOWYCH Studa Ekonomczne. Zeszyty Naukowe Unwersytetu Ekonomcznego w Katowcach ISSN 2083-8611 Nr 297 2016 Ewa Pośpech Unwersytet Ekonomczny w Katowcach Wydzał Zarządzana Katedra Matematyk posp@ue.katowce.pl ANALIZA

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3 Stansław Cchock Natala Nehrebecka Katarzyna Rosak-Lada Zajęca 3 1. Dobrod dopasowana równana regresj. Współczynnk determnacj R 2 Dekompozycja warancj zmennej zależnej Współczynnk determnacj R 2 2. Zmenne

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

TEORIA PORTFELA MARKOWITZA

TEORIA PORTFELA MARKOWITZA TEORIA PORTFELA MARKOWITZA Izabela Balwerz 28 maj 2008 1 Wstęp Teora portfela została stworzona w 1952 roku przez amerykańskego ekonomstę Harry go Markowtza Opera sę ona na mnmalzacj ryzyka nwestycyjnego

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych dr nż. Zbgnew Tarapata: Optymalzacja decyzj nwestycyjnych, cz.ii 8. Optymalzacja decyzj nwestycyjnych W rozdzale 8, część I przedstawono elementarne nformacje dotyczące metod oceny decyzj nwestycyjnych.

Bardziej szczegółowo

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji OeconomA coperncana 2013 Nr 3 ISSN 2083-1277, (Onlne) ISSN 2353-1827 http://www.oeconoma.coperncana.umk.pl/ Klber P., Stefańsk A. (2003), Modele ekonometryczne w opse wartośc rezydualnej nwestycj, Oeconoma

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4 Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =

Bardziej szczegółowo

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

CAPM i APT. Ekonometria finansowa

CAPM i APT. Ekonometria finansowa CAPM APT Ekonometra fnansowa 1 Lteratura Elton, Gruber, Brown, Goetzmann (2007) Modern portfolo theory and nvestment analyss, John Wley and Sons. (rozdz. 13-16 [, 5, 7]) Campbell, Lo, MacKnlay (1997) The

Bardziej szczegółowo

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3.

Ryzyko inwestycji. Ryzyko jest to niebezpieczeństwo niezrealizowania celu, założonego przy podejmowaniu określonej decyzji. 3. PZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFOMTYCZNYCH 3. 3. Istota, defncje rodzaje ryzyka Elementem towarzyszącym każdej decyzj, w tym decyzj nwestycyjnej, jest ryzyko. Wynka to z faktu, że decyzje operają

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Krzysztof Dmytrów * Marusz Doszyń ** Unwersytet Szczecńsk PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA

Bardziej szczegółowo

r. Komunikat TFI PZU SA w sprawie zmiany statutu PZU Funduszu Inwestycyjnego Otwartego Parasolowego

r. Komunikat TFI PZU SA w sprawie zmiany statutu PZU Funduszu Inwestycyjnego Otwartego Parasolowego 02.07.2018 r. Komunkat TFI PZU SA w sprawe zmany statutu PZU Funduszu Inwestycyjnego Otwartego Parasolowego Towarzystwo Funduszy Inwestycyjnych PZU Spółka Akcyjna, dzałając na podstawe art. 24 ust. 5 ustawy

Bardziej szczegółowo

Podstawowe algorytmy indeksów giełdowych

Podstawowe algorytmy indeksów giełdowych Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 25-11-13 Podsawowe algorymy ndeksów gełdowych Wersja 1.1 San na 2013-11-25 Sps reśc I. Algorymy oblczana warośc ndeksów gełdowych...3 1. Warość beżąca

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Zachowania indeksów branżowych GPW czerwiec październik 2013, część 1

Zachowania indeksów branżowych GPW czerwiec październik 2013, część 1 Zachowania indeksów branżowych GPW czerwiec październik 2013, część 1 WIG Budownictwo oraz WIG Inaczej Warszawski Indeks Giełdowy. W jego skład wchodzą wszystkie spółki z Głównego Rynku Giełdy Papierów

Bardziej szczegółowo

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza

Bardziej szczegółowo

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej

Regulacje i sądownictwo przeszkody w konkurencji między firmami w Europie Środkowej i Wschodniej Łukasz Goczek * Regulacje sądownctwo przeszkody w konkurencj mędzy frmam w Europe Środkowej Wschodnej Wstęp Celem artykułu jest analza przeszkód dla konkurencj pomędzy frmam w Europe Środkowej Wschodnej.

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI.

Dywersyfikacja portfela poprzez inwestycje alternatywne. Prowadzący: Jerzy Nikorowski, Superfund TFI. Dywersyfkacja ortfela orzez nwestycje alternatywne. Prowadzący: Jerzy Nkorowsk, Suerfund TFI. Część I. 1) Czym jest dywersyfkacja Jest to technka zarządzana ryzykem nwestycyjnym, która zakłada osadane

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO INWESTYCJE RZECZOWE NA RYNKU NIERUCHOMO CI JAKO CZYNNIK ZMNIEJSZAJ CY RYZYKO PORTFELA INWESTYCYJNEGO

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO INWESTYCJE RZECZOWE NA RYNKU NIERUCHOMO CI JAKO CZYNNIK ZMNIEJSZAJ CY RYZYKO PORTFELA INWESTYCYJNEGO ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 URSZULA GIERAŁTOWSKA EWA PUTEK-SZEL G Unwersytet Szczec sk INWESTYCJE RZECZOWE NA RYNKU NIERUCHOMO CI

Bardziej szczegółowo

Statystyka. Zmienne losowe

Statystyka. Zmienne losowe Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta

Bardziej szczegółowo

Nota 1. Polityka rachunkowości

Nota 1. Polityka rachunkowości Nota 1. Poltyka rachunkowośc Ops przyjętych zasad rachunkowośc a) Zasady ujawnana prezentacj nformacj w sprawozdanu fnansowym Sprawozdane fnansowe za okres od 01 styczna 2009 roku do 31 marca 2009 roku

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4 Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (

Bardziej szczegółowo

Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja

Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja Jacek Batóg Unwersytet Szczecńsk Badane optymalnego pozomu kaptału zatrudnena w polskch przedsęborstwach - ocena klasyfkacja Prowadząc dzałalność gospodarczą przedsęborstwa kerują sę jedną z dwóch zasad

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 8 Polityka makroekonomiczna w gospodarce otwartej. Model Mundella-Fleminga

Makroekonomia Gospodarki Otwartej Wykład 8 Polityka makroekonomiczna w gospodarce otwartej. Model Mundella-Fleminga Makroekonoma Gospodark Otwartej Wykład 8 Poltyka makroekonomczna w gospodarce otwartej. Model Mundella-Flemnga Leszek Wncencak Wydzał Nauk Ekonomcznych UW 2/29 Plan wykładu: Założena analzy Zaps modelu

Bardziej szczegółowo

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności Jacek Batóg Unwersytet Szczecńsk Propozycja modyfkacj klasycznego podejśca do analzy gospodarnośc Przedsęborstwa dysponujące dentycznym zasobam czynnków produkcj oraz dzałające w dentycznych warunkach

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia

EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnienia EKONOMETRIA Wykład 4: Model ekonometryczny - dodatkowe zagadnena dr Dorota Cołek Katedra Ekonometr Wydzał Zarządzana UG http://wzr.pl/dorota-colek/ dorota.colek@ug.edu.pl 1 Wpływ skalowana danych na MNK

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH Domnk Krężołek Unwersytet Ekonomczny w Katowcach MIARY ZALEŻNOŚCI ANALIZA AYYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU MEALI NIEŻELAZNYCH Wprowadzene zereg czasowe obserwowane na rynkach kaptałowych

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

WYKORZYSTANIE SYMULACJI STOCHASTYCZNEJ DO BADANIA WRAŻLIWOŚCI SKŁADU OPTYMALNYCH PORTFELI AKCJI

WYKORZYSTANIE SYMULACJI STOCHASTYCZNEJ DO BADANIA WRAŻLIWOŚCI SKŁADU OPTYMALNYCH PORTFELI AKCJI ZESZYTY AUKOWE UIWERSYTETU SZCZECIŃSKIEGO R 768 FIASE, RYKI FIASOWE, UBEZPIECZEIA R 63 2013 IWOA KOARZEWSKA Unwersytet Łódzk WYKORZYSTAIE SYMULACJI STOCHASTYCZEJ DO BADAIA WRAŻLIWOŚCI SKŁADU OPTYMALYCH

Bardziej szczegółowo

STATYSTYKA REGIONALNA

STATYSTYKA REGIONALNA ЕЗЮМЕ В,. Т (,,.),. В, 2010. щ,. В -,. STATYSTYKA REGIONALNA Paweł DYKAS Zróżncowane rozwoju powatów w woj. małopolskm W artykule podjęto próbę analzy rozwoju ekonomcznego powatów w woj. małopolskm, wykorzystując

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

Prace magisterskie 1. Założenia pracy 2. Budowa portfela

Prace magisterskie 1. Założenia pracy 2. Budowa portfela 1. Założenia pracy 1 Założeniem niniejszej pracy jest stworzenie portfela inwestycyjnego przy pomocy modelu W.Sharpe a spełniającego następujące warunki: - wybór akcji 8 spółek + 2 papiery dłużne, - inwestycja

Bardziej szczegółowo

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak

Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej

Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz

Bardziej szczegółowo

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X

( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

Metody predykcji analiza regresji

Metody predykcji analiza regresji Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..

Bardziej szczegółowo

Nowe ujęcie ryzyka na rynku kapitałowym

Nowe ujęcie ryzyka na rynku kapitałowym ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO nr 80 Fnanse, Rynk Fnansowe, Ubezpeczena nr 65 (014) s. 745 753 Nowe ujęce ryzyka na rynku kaptałowym Jerzy Tymńsk * Streszczene: Artykuł przedstawa nowe ujęce

Bardziej szczegółowo

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)

Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli) Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu

Bardziej szczegółowo

3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM

3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM 3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM Oczekiwana stopa zwrotu portfela dwóch akcji: E(r p ) = w 1 E(R 1 ) + w

Bardziej szczegółowo

7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH

7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne Magdalena OSIŃSKA Unwersytet Mkołaja Kopernka w Torunu Model oceny ryzyka w dzałalnośc frmy logstycznej - uwag metodyczne WSTĘP Logstyka w cągu ostatnch 2. lat stała sę bardzo rozbudowaną dzedzną dzałalnośc

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Zeszyty Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH Nr 96 Seria: Administracja i Zarz dzanie 2013

Zeszyty Naukowe UNIWERSYTETU PRZYRODNICZO-HUMANISTYCZNEGO w SIEDLCACH Nr 96 Seria: Administracja i Zarz dzanie 2013 Zeszyty aukowe UIWERSYTETU PRZYRODICZO-HUMAISTYCZEGO w SIEDLCACH r 96 Sera: Admnstracja Zarzdzane 013 mgr Marta Kruk Poltechnka Warszawska Ocena ryzyka nwestowana w walory wybranych spóek brany budowlanej

Bardziej szczegółowo

Teoria portfelowa H. Markowitza

Teoria portfelowa H. Markowitza Aleksandra Szymura szymura.aleksandra@yahoo.com Teoria portfelowa H. Markowitza Za datę powstania teorii portfelowej uznaje się rok 95. Wtedy to H. Markowitz opublikował artykuł zawierający szczegółowe

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

Zastosowanie metod grupowania hierarchicznego w strategiach portfelowych

Zastosowanie metod grupowania hierarchicznego w strategiach portfelowych dr Knga Kądzołka Wyższa Szkoła Bznesu w Dąbrowe Górnczej Zastosowane metod grupowana herarchcznego w strategach portfelowych Streszczene: Artykuł porusza zagadnene wykorzystana metod grupowana herarchcznego

Bardziej szczegółowo

Test wskaźnika C/Z (P/E)

Test wskaźnika C/Z (P/E) % Test wskaźnika C/Z (P/E) W poprzednim materiale przedstawiliśmy Państwu teoretyczny zarys informacji dotyczący wskaźnika Cena/Zysk. W tym artykule zwrócimy uwagę na praktyczne zastosowania tego wskaźnika,

Bardziej szczegółowo

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI

WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI WPROWADZENIE DO ANALIZY KORELACJI I REGRESJI dr Janusz Wątroba, StatSoft Polska Sp. z o.o. Prezentowany artykuł pośwęcony jest wybranym zagadnenom analzy korelacj regresj. Po przedstawenu najważnejszych

Bardziej szczegółowo

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych

Bardziej szczegółowo

Zastosowania badań operacyjnych Zarządzanie projektami, decyzje finansowe, logistyka

Zastosowania badań operacyjnych Zarządzanie projektami, decyzje finansowe, logistyka PRACE NAUKOWE Unwersytetu Ekonomcznego we Wrocławu RESEARCH PAPERS of Wrocław Unversty of Economcs 238 Zastosowana badań operacyjnych Zarządzane projektam, decyzje fnansowe, logstyka Redaktor naukowy Ewa

Bardziej szczegółowo

Natalia Nehrebecka Stanisław Cichocki. Wykład 10

Natalia Nehrebecka Stanisław Cichocki. Wykład 10 Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane

Bardziej szczegółowo