Statystyka. Metody analizy korelacji i regresji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Statystyka. Metody analizy korelacji i regresji"

Transkrypt

1 Sttstk Metod lz korelcj regresj

2 Bd stop keruku zleżośc różch zjwsk gd steje przpuszczee o stee węz przczowej łączącej te zjwsk jest jedm z czelch zdń kżdej dscpl ukowej Alz współzleżośc może dotczć zrówo cech merzlch, jk cech jkoścowch Zwązek korelcj chrkterzuje sę tm, że kokretm wrtoścom jedej zmeej odpowdją ścśle określoe wrtośc średe drugej zmeej Zwązk mędz zmem mją chrkter low lub elow, co moż stwerdzć, gd formcje o dwóch zmech X Y zostą esoe w postc puktów wkres korelcj Obserwując wkrese korelcjm rozrzut tzw puktów emprczch (, ) moż rozróżć, cz wstępuje korelcj dodt, cz też ujem (względe jej brk)

3 Korelcj dodt wstępuje wted, gd wzrostow (spdkow) wrtośc jedej zmeej towrzsz wzrost (spdek) wrtośc średch drugej zmeej Z korelcją ujemą mm do cze wted, gd wzrostow (spdkow) wrtośc jedej zmeej towrzsz spdek (wzrost) wrtośc średch drugej zmeej Zupeł brk korelcj wstępuje wówczs, gd wzrostow (spdkow) wrtośc jedej zmeej odpowdją przecęte zerowe wzrost (spdk) drugej zmeej Im słow, zm jedej zmeej e wwołują zm drugej zmeej Bde zwązków korelcjch jest uzsdoe tlko w przpdkch, gd mędz bdm zmem steje węź przczow

4 Stosując lzę regresj otrzmujem formcję, jkej przecętej wrtośc zmeej zleżej leż sę spodzewć, gd wrtość zmeej ezleżej wzrośe lub obż sę o jedostkę Ztem lz regresj przedstw mechzm dzł bdch zjwsk, zś lz korelcj dje obrz sł zwązku mędz tm zjwskm Zwkle też bd korelcje poprzedzją lzę regresj

5 Isteje prost sposób pozwljąc oceć słę rodzj zleżośc wstępującej mędz dwom cechm sttstczm X Y Zkłdjąc, że dspoujem relzcjm zmeej X -(,,, ) orz Y - (,,, ), moż wzczć wrtość oce współczk korelcj lowej posługując sę wzorem: r ( )( ) ( ) ( )

6 gdze: Wzór te moż zpsć róweż w postc: cov( X, Y ) r, ( X, Y ) cov Kowrcję dwóch zmech X Y moż otrzmć tkże w stępując sposób: cov czl kowrcj zmech X, Y jest różcą mędz średą loczów zmech loczem ch średch s s ( X, Y ) ( )( ),

7 Współczk korelcj lowej przber wrtośc z przedzłu [-,] Gd r - lub r, wówczs medz zmem X Y zchodz zleżość fukcj (rozrzut puktów emprczch ukłd sę wkrese korelcjm l prostej) Gd r 0, bde cech są eskorelowe, czl e wstępuje medz m żd węź Może sę zdrzć, że r 0 róweż wted, gd mędz zmem X Y zchodz zleżość fukcj krzwolow (p przpdek zleżośc tpu ) Wówczs przpdek tk możem zuwżć wcześej sporządzom wkrese korelcjm

8 W prktce bdń sttstczch wrtośc współczk korelcj lowej ezwkle rzdko osągją -, 0 lub Gd r >0,9, mów sę o brdzo slej zleżośc łączącej cech X Y Gd r <0,, stwerdz sę ogół, że brk jest zwązku mędz bdm cechm Jeśl zś r <0,, 0,9>, to w zleżośc od lczb elemetów prób, woskuje sę o umrkowej, względe zczącej zleżośc łączącej obe zmee э

9 Współczk korelcj rg Sperm, zw czej współczkem korelcj kolejoścowej, stosow jest w dwóch grupch zgdeń: ) gd obe cech są merzle lecz zborowość jest mło lcz, b) gd obe, względe jed z cech m chrkter jkoścow jest możlwość ustle w kolejośc poszczególch obektów lz względem tęże tch cech

10 Współczk korelcj kolejoścowej oblczm według wzoru: r S d ( ), gdze d ozczją różce mędz rgm odpowdjącch sobe wrtośc cech cech (,,, ) Oblcze rozpoczm zwkle od uporządkow wjścowch formcj według rosącch (lub mlejącch) wrtów jedej z cech Uporządkowm wrtoścom zmech djem stępe umer kolejch lczb turlch Czość t zw sę rgowem Rgowe może sę odbwć od jwększej do jmejszej wrtośc lub odwrote (sposób rgow mus bć jedkow dl obdwu zmech) 6

11 W przpdku, gd wstępują jedkowe wrtośc relzcj zmech, przporządkowujem m średą rtmetczą oblczoą z ch kolejch umerów Mów sę wówczs o wstępowu tzw węzłów Jedkowe rg wrtośc bdch zmech (lub ogół jedkowe) śwdczą o steu dodtej korelcj mędz zmem Ntomst przecwstw umercj sugeruje stee korelcj ujemej Współczk korelcj rg przjmuje wrtośc z przedzłu [-, ], jego terpretcj jest detcz jk współczk korelcj Perso

12 W bdch sttstczch ejedokrote zchodz koeczość ustl skojrzeń (socjcj, kotgecj) mędz dwem cechm X Y, z którch obe (lub przjmej jed) mją chrkter jkoścow W tkm przpdku budujem tblce welodzele o określoej lczbe wersz kolum, w którch zmeszczm lczebośc poszczególch wrtów cech ( e ch wrtośc) Lczb kolum wersz w tkch tblcch, jk róweż specfkcj ktegor cech zleżą od deczj bdcz

13 Njprostszą tblcą welodzelą jest tblc, tj o dwóch werszch dwóch kolumch Schemt tkej tblc przedstw sę stępująco: X + - Y + - Rzem c b d +b c+d Rzem +c b+d Użte w tej tbel smbole ozczją: - lczb jedostek posdjącch cechę X cechę Y, b- lczb jedostek posdjącch cechę X, e posdjącch cech Y, c- lczb jedostek posdjącch cechę Y, e posdjącch cech X, d- lczb jedostek e posdjącch żdej z bdch cech

14 Współczk te służ do bd sł zwązku dwóch cech jkoścowch, z którch kżd m dw wrt Wrż o zleżość φ od χ Zleżość tę moż określć stępująco: lub, χ ϕ χ χ ϕ lub ϕ Jk wk z powższego wzoru, w celu oblcze współczk φ ezbęd jest zjomość sttstk χ Dl tblc o wmrch steje sposób bezpośredego oblcz współczk φ: ϕ d bc ( + b)( + c)( b + d )( c + d ) Użte smbole są zgode z wstępującm w ogólm schemce tblc czteropolowej

15 Współczk określo wcześejszm wzorem może, teoretcze, przjmowć wrtośc z przedzłu od - do + W przpdku ezleżośc zmech φ0 Współczk φ osąg wrtość - lub + tlko w przpdku, gd d0 lub bc0 W ch przpdkch współczk e osąg wrtośc krńcowch ±, wet prz brdzo slm zwązku cech Nleż zwrócć uwgę, że zk współczk φ w przecweństwe do merków korelcj cech loścowch e formuje o keruku zleżośc, gdż zleż od sposobu uporządkow wrtów cech w tblc czteropolowej Dltego terpretcję ścsłośc zwązku zchodzącego mędz bdm zmem jkoścowm leż operć wrtośc bsolutej współczk φ

16 Współczk te przber wrtośc z przedzłu [0, ] Zleżość rozptrwch cech jest tm slejsz m V jest blższe jedośc Współczk V Crmer jest zdefow stępująco: V χ m ( r, k ) m( r, k ), gdze r jest lczbą wersz, k lczbą kolum Jk wk z wzoru, współczk Crmer jest oprt lbo χ, lbo φ ϕ

17 Współczk te róż sę od omwch wcześej merków tm, że może bć stosow prz tblcch welodzelch dowolej welkośc (jmejsz lczb pól wos 4) dowolej form (prostokątch lub kwdrtowch) Wrtość współczk C Perso oblczm ze wzoru: gdze: ϕ ϕ χ χ + + C r s j j j j χ

18 Teoretcze współczk C może przjmowć wrtośc z przedzłu lczbowego od 0 (cech są wówczs ezleże) do (gd lczb pól w tblc wzrst do eskończoośc) Kres gór współczk C zleż od lczb wersz kolum w tblc welodzelej Im wersz kolum jest węcej, tm wrtość C jest wższ Dltego też otrzmą z oblczeń wrtość współczk C leż rozptrwć w stosuku do jego wrtośc mksmlej dl dej tblc welodzelej W przpdku tblc kwdrtowej: Dl tblc prostokątch: C m C m k + k k, k r r

19 Współzleżość medz zmem może wstępowć w dwóch odmch: fukcjej (determstczej) stochstczej W śwece zjwsk społeczo-ekoomczch przrodczch mm jczęścej do cze ze współzleżoścą tpu stochstczego (probblstczego) Do pomru sł tej współzleżośc wkorzstujem współczk korelcj Ntomst rzędzem pozwljącm bdć mechzm powązń mędz różm zjwskm (co do którch steje przpuszczee o zwązku przczowm) są fukcje regresj Fukcje te moż podzelć lowe elowe Njprostszm jczęścej wkorzstwm rzędzem bd współzleżośc wstępującch medz dwom zjwskm jest fukcj low z jedą zmeą ezleżą

20 Fukcj regresj Y względem zmeej X przber postć: α + α + ξ,,, 0 Fukcję regresj X względem zmeej Y moż przedstwć stępująco: β + β + ε,,,, 0 gdze: lczb obserwcj (lczebość prób), α 0, α, β 0, β - prmetr rówń regresj, ξ, ε -skłdk losowe obu rówń

21 Metod jmejszch kwdrtów poleg tkm oszcowu prmetrów α 0, α fukcj f ( ) α 0 + α + ξ, b dl dch z prób wrtośc (, ),,,,, wrżee S + + ξ, 0 osągęło mmum Wrżee powższe jest fukcją dwóch zmech 0 Zgdee sprowdz sę ztem do zleze mmum fukcj kwdrtowej dwóch zmech Wrukem koeczm ste ekstremum jest zerowe sę pochodch cząstkowch

22 Pochode cząstkowe fukcj względem 0 są stępujące: Przrówując pochode cząstkowe do zer orz dokoując odpowedch lgebrczch przeksztłceń otrzmujem stępując ukłd rówń: ( )( ) ( )( ), S S + +, 0 0

23 Ukłd te m rozwąze: Wrżee to moż przedstwć w prostszej postc, mowce: + +, 0 0 ( )( ) ( ), 0

24 Postępując logcze w przpdku lowej fukcj regresj X względem Y otrzmm stępujące wzor estmtor b 0 b prmetrów β 0 β fukcj regresj: ( )( ) ( ), 0 b b b

25 W celu zleze wspólej mr sł współzleżośc mędz zmem X Y leż oblczć średą dwóch współczków regresj Poewż współczk regresj są welkoścm względm, leż zstosowć średą geometrczą Śred geometrcz ze współczków regresj jest współczkem korelcj lowej: r b Współczk korelcj oblczo z pomocą powższego wzoru przjmuje tk sm zk, jk mją współczk regresj Współczk regresj b oblczoe z kokretch formcj wjścowch mją zwsze jedkowe zk

26 Współczk regresj dl lowch fukcj regresj z jedą zmeą objśjącą moż róweż oblczć metodą pośredą Metod t oper sę odpowedej relcj mędz współczkem korelcj lowej odchlem stdrdowm bdch cech, mowce: orz r b r s s s s

27 Po oszcowu rówń regresj otrzmujem różce mędz rzeczwstm teoretczm wrtoścm, czl tzw reszt Reszt odpowdjąc -tej obserwcj wrż sę węc wzorem ) et t t, u t t ˆt, ( t,,, ) Oce wrcj skłdk losowego wrż sę wzorem se ( ˆ ) su ( ˆ ) k t k t gdze k ozcz lczbę szcowch prmetrów Welkość t określ sę często jko wrcję resztową, jej perwstek kwdrtow mów, o le przecęte odchlją sę poszczególe obserwcje zmeej objśej od ch wrtośc teoretczch oszcowch podstwe rów regresj

28 0

29 W celu oce dopsow fukcj regresj do puktów emprczch jczęścej stosuje sę współczk φ : ϕ ϕ t t t t ( ˆ ) ( ) Współczk determcj R moż otrzmć stępująco: R ϕ Ob współczk przjmują wrtośc z przedzłu [0,] ( ˆ ) ( ),

30 Dzękuję z uwgę

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

Statystyka. Katarzyna Chudy Laskowska

Statystyka. Katarzyna Chudy Laskowska Statstka Katarza Chud Laskowska http://kc.sd.prz.edu.pl/ Aalza korelacj umożlwa stwerdzee wstępowaa zależośc oraz oceę jej atężea ZALEŻNOŚCI pomędz CECHAMI: CECHY: ILOŚCIOWA ILOŚCIOWA CECHY: JAKOŚCIOWA

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

BADANIE DRGAŃ RELAKSACYJNYCH

BADANIE DRGAŃ RELAKSACYJNYCH BADANIE DRGAŃ RELAKSACYJNYCH Ops ukłdu pomrowego Ukłd pomrow skłd sę z podstwowch częśc: dego geertor drgń relkscjch, zslcz geertor, geertor odese (drgń hrmoczch), oscloskopu. Pokz rsuku schemt deow geertor

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI,

Bardziej szczegółowo

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n

Całkowanie numeryczne Zadanie: obliczyć przybliżenie całki (1) używając wartości funkcji f(x) w punktach równoodległych. Przyjmujemy (2) (3) (4) x n lkowe_um- łkowe umercze Zde: olczć przlżee cłk ( ) d () użwjąc wrtośc ukcj () w puktc rówoodległc. Przjmujem (), gdze,,, () () tąd / (5) Metod prostokątów d / (6) gdze / / (7) -- :9: /6 lkowe_um- td. td.

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak

Metody numeryczne. Wykład nr 5: Aproksymacja i interpolacja. dr Piotr Fronczak Metod umerze Wkłd r 5: Aproksmj terpolj dr Potr Frozk Aproksmj terpolj Aproksmj rówem lowm Błąd dopsow E - Fukj dwóh zmeh Fukj E m mmum dl tkh wrtoś, dl którh pohode ząstkowe względem zerują sę: E E Jest

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr.........

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr......... WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI prowdząc(y)... grup... podgrup... zespół... seestr... roku kdeckego... studet(k)... SPRAWOZDANIE Z PRACY LABORATORYJNEJ r......... pory wykoo

Bardziej szczegółowo

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech

KORELACJA KORELACJA I REGRESJA. X, Y - cechy badane równocześnie. Dane statystyczne zapisujemy w szeregu statystycznym dwóch cech KORELACJA I REGRESJA. KORELACJA X, Y - cech badae rówocześe. Dae statstcze zapsujem w szeregu statstczm dwóch cech...... lub w tablc korelacjej. X Y... l.... l.... l................... k k k... kl k..j......l

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański atala ehreecka Darusz Szmańsk Wkład . MK przpadek welu zmech. Własośc hperpłaszczz regresj 3. Doroć ć dopasowaa rówaa regresj. Współczk determacj R Dekompozcjawaracj zmeejzależejzależej Współczk determacj

Bardziej szczegółowo

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIETRZU METODĄ FALI STOJĄCEJ

WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIETRZU METODĄ FALI STOJĄCEJ Drg fle WYZNACZANIE PRĘDKOŚCI DŹWIĘKU W POWIETRZU METODĄ FALI STOJĄCEJ. Ops teoretcz do ćwcze zmeszczo jest stroe www.wtc.wt.ed.pl w dzle DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops kłd pomrowego Drg

Bardziej szczegółowo

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

MODEL SHARP A - MIARY WRAŻLIWOŚCI

MODEL SHARP A - MIARY WRAŻLIWOŚCI MODEL SHARP A - MIARY WRAŻLIWOŚCI Współzależość cech Rozważam jedostk zborowośc badae ze względu a dwe, lub węcej zmech W przpadku obserwacj opartch a dwóch zmech możem wkreślć dagram korelacj. Każda obserwacja

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

ANALIZA NIEPEWNOŚCI POMIAROWYCH W PIGUŁCE

ANALIZA NIEPEWNOŚCI POMIAROWYCH W PIGUŁCE ANALIZA NIEPEWNOŚCI POMIAROWYCH W PIGUŁCE Prc w lortorum poleg wkowu pomrów welkośc fzczch. Pomr te mogą ć wkoe tlko z pewm stopem dokłdośc. To ogrczee wk z: - edoskołośc przrządów użtch podczs pomru -

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów

Bardziej szczegółowo

Opracowanie wyników pomiarów

Opracowanie wyników pomiarów Opracowae wków pomarów Praca w laboratorum fzczm polega a wkoau pomarów, ch terpretacj wcagęcem wosków. Ab dojść do właścwch wosków aleŝ szczególą uwagę zwrócć a poprawość wkoaa pomarów mmalzacj błędów

Bardziej szczegółowo

Linie regresji II-go rodzaju

Linie regresji II-go rodzaju Lam regresj II-go rodzaju zmeej () względem () azwam zadae krzwe g(;,, ) oraz h(;,, ) gd spełają oe odpowedo waruk: E E Le regresj II-go rodzaju ( ( )) ( ) ( ) ( ) ( ) g ;,,... g ;,,... f, dd m,,... (

Bardziej szczegółowo

MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,.

MACIERZE I DZIAŁANIA NA MACIERZACH. Niech ustalone będzie ciało i dwie liczby naturalne,. CIERZE I ZIŁNI N CIERZCH Nech usloe będze cło dwe lczby urle, cerzą o wyrzch z cł wymrch zywmy kżdą fukcję cerz ką zpsujemy w posc belk ) cerz zpsujemy róweż wele ych sposobów, w zleżośc od ego jką jej

Bardziej szczegółowo

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji

Wykład 7: Pochodna funkcji zastosowania do badania przebiegu zmienności funkcji Wkłd 7: Pochodn funkcji zstosowni do bdni przebiegu zmienności funkcji dr Mriusz Grządziel semestr zimow, rok kdemicki 2013/2014 Funkcj logistczn Rozwżm funkcję logistczną = f 0 (t) = 1+5e 0,5t f(t) 0

Bardziej szczegółowo

ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH

ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH ANALIZA ZALEŻNOŚCI DWÓCH ZMIENNYCH ILOŚCIOWYCH Na ogół oprócz obserwacj jedej zmeej zberam róweż formacje towarzszące, które mogą meć zaczee w aalze teresującej as welkośc. Iformacje te mogą bć p. wkorzstae

Bardziej szczegółowo

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka

Teoria i praktyka. Wyższa Szkoła Turystyki i Ekologii. Fizyka. WSTiE Sucha Beskidzka Fizyka Nepewośc pomarowe. Teora praktka. Prowadząc: Dr ż. Adrzej Skoczeń Wższa Szkoła Turstk Ekolog Wdzał Iformatk, rok I Fzka 014 03 30 WSTE Sucha Beskdzka Fzka 1 Iformacje teoretcze zameszczoe a slajdach tej

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej

Bardziej szczegółowo

Regresja liniowa. Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2,

Regresja liniowa. Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2, Regrej low. Złóżm, że mm pęć puktów dośwdczlch dch w tbel: Tbel.,5 4 3 6 3 4 8 4 5 6 Jeśl wkreślm te pukt, otrzmm Ruek.. Ruek. Wdć, że chocż pukt ą eco porozrzuce kutek, powedzm, błędów pomrowch, to jedk

Bardziej szczegółowo

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta

Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2, Rysunek 11.

Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2, Rysunek 11. Regrej low. Złóżm, że mm pęć puktów dośwdczlch dch w tbel: Tbel.,5 4 3 6 3 4 8 4 5 6 Jeśl wkreślm te pukt, otrzmm Ruek.. 7 6 5 4 3 4 6 8 Ruek. Wdć, że chocż pukt ą eco porozrzuce kutek, powedzm, błędów

Bardziej szczegółowo

instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego

instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego 5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Wybrane rozkłady prawdopodobieństwa użyteczne w statystyce

Wybrane rozkłady prawdopodobieństwa użyteczne w statystyce ttstk Wkłd 5 Ad Ćel A3-A4 3 cel@gh.ed.pl Wre rozkłd prwdopodoeństw żtecze w sttstce Rozkłd ch-kwdrt o stopch swood - to rozkłd s kwdrtów ezleżch zech losowch o stdrzow rozkłdze orl tz......d. rozkłd o

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i statystyka W 10: Analizy zależności pomiędzy zmiennymi losowymi (danymi empirycznymi)

Rachunek Prawdopodobieństwa i statystyka W 10: Analizy zależności pomiędzy zmiennymi losowymi (danymi empirycznymi) Rachuek Prawdopodoeństwa statstka W 0: Aalz zależośc pomędz zmem losowm dam emprczm) Dr Aa ADRIAN Paw B5, pok 407 adra@tempus.metal.agh.edu.pl Odkrwae aalza zależośc pomędz zmem loścowmlczowm) Przedmotem

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

POMIAR SIŁY ELEKTROMOTORYCZNEJ OGNIWA I CHARAKTERYSTYKI JEGO PRACY

POMIAR SIŁY ELEKTROMOTORYCZNEJ OGNIWA I CHARAKTERYSTYKI JEGO PRACY ĆWICZENIE 5 POMIA SIŁY ELEKTOMOTOYCZNEJ OGNIWA I CHAAKTEYSTYKI JEGO PACY Elektrczość Mgetzm. Ops teoretcz do ćcze zmeszczo jest stroe.tc.t.ed.pl dzle DYDAKTYKA FIZYKA ĆWICZENIA LABOATOYJNE.. Ops kłd pomroego

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy

a) b) Rys. 6.1. Schemat ideowo-konstrukcyjny układu do przykładu 6.1 a) i jego schemat blokowy 04 6. Ztoownie metod hemtów lokowh do nliz włśiwośi ukłdów utomtki Shemt lokow ukłdu utomtki jet formą zpiu mtemtznego modelu dnego ukłdu, n podtwie której, wkorztują zd przedtwione rozdzile 3.7, możn

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = =

Sposoby wyznaczenia błędu bezwzględnego. Pomiar bezpośredni. Pomiar pośredni. f x. f x. f x. f x. x n = = Pomr jego dokłdość. Kżdy pomr dje m wyk z pewą ylko dokłdoścą, węc obcążoy je epewoścą pomrową (błędem pomrowym). Pomry fzycze dzelmy : bezpośrede pośrede. Pomrm bezpośredm zywmy ke, kórych wrość lczbową

Bardziej szczegółowo

Strona: 1 1. CEL ĆWICZENIA

Strona: 1 1. CEL ĆWICZENIA Katedra Podstaw Sstemów Techczch - Podstaw metrolog - Ćwczee 4. Wzaczae charakterstk regulacjej slka prądu stałego Stroa:. CEL ĆWICZENIA Celem ćwczea jest pozae zasad dzałaa udow slka prądu stałego, zadae

Bardziej szczegółowo

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej

Instytut Automatyki i Informatyki Stosowanej Politechniki Warszawskiej Isttt Atomt Iformt Stosowe Poltech Wrszwse Algortm predce w wers ltcze z efetwm mechzmem względ ogrczeń wść Potr Mrs Pl prezetc. Wstęp. Algortm reglc predce 3. Uwzględe ogrczeń łoŝoch sgł sterąc 4. Uwzględe

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego

Bardziej szczegółowo

Wykład 9. Podejmowanie decyzji w warunkach niepewności

Wykład 9. Podejmowanie decyzji w warunkach niepewności Wkłd 9. Podejowie deczji w wrukch ieewości E L l E E F E F l S 0 0 ; R D D F F D i F() - wrtość zieej losowej - zbiór ciągł f - fukcj gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: d f E L l d

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA

SYSTEMY ROZMYTO-NEURONOWE REALIZUJĄCE RÓŻNE SPOSOBY ROZMYTEGO WNIOSKOWANIA POLIECHIK CZĘSOCHOWSK KEDR IŻYIERII KOMPUEROWEJ PRC DOKORSK SYSEMY ROZMYO-EUROOWE RELIZUJĄCE RÓŻE SPOSOY ROZMYEGO WIOSKOWI Roert owc Promotor: dr h. ż. Dut Rutows rof. dzw. P.Cz. Częstochow 999 eszm chcłm

Bardziej szczegółowo

DOBÓR DODATKOWYCH REZYSTORÓW I BOCZNIKÓW DO GALWANOMETRU

DOBÓR DODATKOWYCH REZYSTORÓW I BOCZNIKÓW DO GALWANOMETRU ĆWICZENIE 4 DOBÓR DODATKOWYCH REZYSTORÓW I BOCZNIKÓW DO GALWANOMETRU Ops ukłdów pomrowch Poewż ćwczee skłd sę z dwóch częśc, woec tego w trkce jego wkow leż zmotowć dw róże ukłd pomrowe. W ou ukłdch wkorzstwe

Bardziej szczegółowo

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot. WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),

Bardziej szczegółowo

Przykład 2.5. Figura z dwiema osiami symetrii

Przykład 2.5. Figura z dwiema osiami symetrii Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku?

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja. Aproksymacja Interpolacja wielomianowa Przykłady. Jaki jest dopuszczalny błąd wyniku? METODY NUMERYCZNE Wkłd. dr h.ż. Ktrz Zkrzewsk, prof.agh Met.Numer. wkłd Pl Aproksmc Iterpolc welomow Przkłd Met.Numer. wkłd Aproksmc Metod umercze zmuą sę rozwązwem zdń mtemtczch z pomocą dzłń rtmetczch.

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:

Bardziej szczegółowo

Równania i nierówności kwadratowe z jedną niewiadomą

Równania i nierówności kwadratowe z jedną niewiadomą 50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej

Bardziej szczegółowo

Metody numeryczne procedury

Metody numeryczne procedury Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

Analiza ZALEśNOŚCI pomiędzy CECHAMI (Analiza KORELACJI i REGRESJI)

Analiza ZALEśNOŚCI pomiędzy CECHAMI (Analiza KORELACJI i REGRESJI) D. Mszczńska, M.Mszczńsk, Materał do wkładu 7 ze Statstk (wersja poprawoa), WSEH, Skerewce 009/0 [] Aalza ZALEśNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje

Bardziej szczegółowo

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe. Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

. Każde wejście i wyjście przyjmuje tylko jedną z dwóch wartości: 0 lub 1. Ciąg sygnałów wejściowych x. i wyjścia y

. Każde wejście i wyjście przyjmuje tylko jedną z dwóch wartości: 0 lub 1. Ciąg sygnałów wejściowych x. i wyjścia y UKŁADY PRZEŁĄCZAJĄCE Podstwowe pojęc Alger Boole' Anlz orz ops włsnośc ukłdów przełączjącch jest przeprowdzn prz użcu lger Boole' Wrtośc rgumentów orz funkcj nleżą do dwurgumentowego zoru {, }, n którm

Bardziej szczegółowo

Statystyka powtórzenie (II semestr) Rafał M. Frąk

Statystyka powtórzenie (II semestr) Rafał M. Frąk Statstka powtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rodzaje mar statstczch mar położea - wzaczają przecęta wartość cech statstczej mar zróżcowaa (lub zmeośc, rozproszea, dspersj) -

Bardziej szczegółowo

Statystyka powtórzenie (II semestr) Rafał M. Frąk

Statystyka powtórzenie (II semestr) Rafał M. Frąk Statstka pwtórzee (II semestr) Rafał M. Frąk TEORIA, OZNACZENIA, WZORY Rdzae mar statstczch mar płżea - wzaczaą przecęta wartść cech statstcze mar zróżcwaa (lub zmeśc, rzprszea, dspers) - wzaczaą słę zróżcwaa

Bardziej szczegółowo

R A P O R T. Wykonał: dr hab. inż. Piotr Banasik prof. nzw.agh dr inż. Marcin Ligas dr inż. Jacek Kudrys dr inż. Bogdan Skorupa

R A P O R T. Wykonał: dr hab. inż. Piotr Banasik prof. nzw.agh dr inż. Marcin Ligas dr inż. Jacek Kudrys dr inż. Bogdan Skorupa R A P O R T Oprcowe prmetrów trsformcj współrzędch z ukłdu 1965 z Ukłdu Loklego Krkowskego do ukłdu 000 dl potrzeb zsobu grfczego obszrze powtu krkowskego Wkoł: dr hb. ż. Potr sk prof. zw.agh dr ż. Mrc

Bardziej szczegółowo

Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US

Regresja linowa metoda najmniejszych kwadratów. Tadeusz M. Molenda Instytut Fizyki US Regresja lowa metoda ajmejszch kwadratów Tadeusz M. Moleda Isttut Fzk US Regresja lowa (też: metoda ajmejszch kwadratów, metoda wrówawcza, metoda Gaussa) Zagadea stota metod postulat Gaussa współczk prostej

Bardziej szczegółowo

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia.

Przykład 6.2. Płaski stan naprężenia. Płaski stan odkształcenia. Przkłd 6.. Płski stn nprężeni. Płski stn odksztłeni. ZADANIE. Dl dnego płskiego stnu nprężeni [MP] znleźć skłdowe stnu nprężeni w ukłdzie osi oróonh względem osi o kąt α0 orz nprężeni i kierunki główne.

Bardziej szczegółowo

Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka

Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka lgebr mcerzow e te (rót prowzorycz powtór (uwg: tutj jest ezupełe osewet otcj tj. mcerze czsem są pogruboe czsem ursywe (tlcs) proszę sę e przejmowć t po prostu wyszło) PEWNE WZNE OPERCJE MCIERZOWE ozcz

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7

ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7 Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw

Bardziej szczegółowo

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 3. Katarzyna Lubnauer Statystyka Opsowa 014 część 3 Katarzya Lubauer Lteratura: 1. Statystyka w Zarządzau Admr D. Aczel. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucja Kowalsk. 4. Statystyka opsowa, Meczysław

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Mędzarodowa Norma Oce Nepewośc Pomaru (Gude to Epresso of Ucertat Measuremets - Mędzarodowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st./gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewodk.

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności

Wiek statku a prawdopodobieństwo wystąpienia wypadku na morzu analiza współzależności BOGALECKA Magda 1 Wek statku a prawdopodobeństwo wstąpea wpadku a morzu aalza współzależośc WSTĘP Obserwowa od blsko weku tesw rozwój trasportu morskego, oprócz lądowego powetrzego, jest kosekwecją wzmożoej

Bardziej szczegółowo

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył.

Matematyka II. Wykład 11. Całka podwójna. Zamiana na całkę iterowaną. Obliczanie pól obszarów i objętości brył. Wkład. Całka podwója. Zamaa a całkę terowaą. Oblczae pól obszarów objętośc brł.. Całka podwója w prostokące. Jak pamętam, całka ozaczoa z cągłej fukcj jedej zmeej wprowadzoa bła w celu oblczaa pola powerzch

Bardziej szczegółowo

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej. 5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

PROGRAMOWANIE LINIOWE.

PROGRAMOWANIE LINIOWE. Wykłd 6 Progrowe lowe. Zstosow ekoocze. PROGRAMOWANIE LINIOWE. ZASTOSOWANIA EKONOMICZNE. CENY DUALNE. ANALIZA WRAŻLIWOŚCI.. RACHUNEK EKONOMICZNY. ZASADY RACJONALNEGO GOSPODAROWANIA. Rchuek ekooczy - porówe

Bardziej szczegółowo

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji

ma rozkład normalny z wartością oczekiwaną EX = EY = 1, EZ = 0 i macierzą kowariancji Zadae. Zmea losowa (, Y, Z) ma rozkład ormaly z wartoścą oczekwaą E = EY =, EZ = 0 macerzą kowaracj. Oblczyć Var(( Y ) Z). (A) 5 (B) 7 (C) 6 Zadae. Zmee losowe,, K,,K P ( = ) = P( = ) =. Nech S =. Oblcz

Bardziej szczegółowo

Prawo propagacji niepewności. 1

Prawo propagacji niepewności. 1 Prwo propgc nepewnośc. Prwo propgc nepewnośc. W przpdk pomrów metodą pośredną wrtość welkośc stl sę n podstwe wrtośc nnch welkośc zmerzonch bezpośredno. przkłd obętość V 0 prostopdłoścn o krwędzch D 0

Bardziej szczegółowo

Wykład Podejmowanie decyzji w warunkach niepewności

Wykład Podejmowanie decyzji w warunkach niepewności Wkłd Podejowie deczji w wrukch ieewości Rozwż rzkłd: M sieć I koli które leż zoderizowć. Istieje J writów oderizcji i kżd z ich o koszcie c ij jeśli i-t koli jest oderizow j-t sosób (i = I j = J). Urobek

Bardziej szczegółowo

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)

Bardziej szczegółowo