INFORMATYKA W CHEMII Dr Piotr Szczepański

Wielkość: px
Rozpocząć pokaz od strony:

Download "INFORMATYKA W CHEMII Dr Piotr Szczepański"

Transkrypt

1 INFORMATYKA W CHEMII Dr Potr Szczepńk Ktedr Chem Fzczej Fzkochem Polmeró

2 ANALIZA REGRESJI REGRESJA LINIOWA. REGRESJA LINIOWA - metod jmejzch kdrtó. REGRESJA WAŻONA 3. ANALIZA RESZT 4. WSPÓŁCZYNNIK KORELACJI, BŁĄD STANDARDOWY, ZAKRES STOSOWANIA, ODCHYLENIA STANDARDOWE DLA WSPÓŁCZYNNIKÓW REGRESJI, 5. ODCHYLENIE STANDARDOWE WARTOŚCI PROGNOZOWANEJ

3 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH W ukch dośdczlch dopoe róń mtemtczch do kó pomró potc lczb jet potępoem rutom. CEL:. Uogólee zboru dch z pośredctem odpoedej fukcj mtemtczej z klkom prmetrm doberm lub oblczm poób umercz.. Dopoe teoretczego modelu kjącego z odpoedej edz zgode z zdm modelo temó celu prdze określoej hpotez. Wzczoe róe korztć moż do: cłko p. oblcz pol pod krzą łączącą pukt dośdczle, b terpolcj, tj. przed rtośc, które e bł zmerzoe, które mezczą ę zkree zmech ezleżch użtch do zcze prmetró ró, c różczko, p. oblcz chleń tczch do krzej celem oblcze chloch zbkośc rekcj, fzkochemczch elkośc czątkoch, tp., d klbrcj prtur chromtogrfu, refrktometru, pektrofotometru, tp..

4 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PROSTA FUNKCJA LINIOWA Metod jmejzch kdrtó poleg mmlzou um kdrtó odchleń pomędz oberoą oblczą rtoścą zmeej zleżej. Wrtość mmlzo : ˆ - lczb puktó pr - podlegjącch dopou do protej, - oberoe rtośc zmeej, - rtość zmeej zleżej oblczoej podte dopoego ró ŷ ˆ f f

5 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PROSTA FUNKCJA LINIOWA Poo odcek pomędz puktem dośdczlm rtoścą oblczoą ró jet odchleu -tego puktu od l regrej. jet umą kdrtó tch odchleń, tj. umą odchleń oblczoą dl ztkch puktó z bdego zboru. Wkreślo krz położo jet zględem puktó tk, że rtość jet jmejz. ˆ

6 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Dl fukcj loej: PROSTA FUNKCJA LINIOWA ˆ f + jet fukcją dóch półczkó regrej Wkre zględem przjmuje potć poerzch o przekroju prbol z mmum dl jedej tlko pr

7 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH CEL: oblczee rtośc odpodjącch m,. oblczee czątkoch pochodch zględem,. przróe odpoedch róń do zer, 3. roząze ukłdu róń zględem. + PROSTA FUNKCJA LINIOWA

8 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH + PROSTA FUNKCJA LINIOWA

9 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PRZYKŁAD ˆ f * Sum

10 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PROSTA FUNKCJA LINIOWA ˆ f

11 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH WAŻONA REGRESJA LINIOWA Rzeczte de dośdczle - rtośc obrczoe ą różm błędem. Wjścoe róe przjmuje potć: f żąc półczk g tttcz Zleże od dośdcze chrktertczch cech bdego zetu dch lczboe rtośc g mogą bć zcze róż poób ze ą gm bolutm odchlee tdrdoe dl kżdego z

12 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Wpółczk żoej regrej loej: Oce dopo fukcj loej do dch dośdczlch: Stdrdoe odchle dl półczkó regrej oblczć moż ze zoró: M M M WAŻONA REGRESJA LINIOWA średe tdrdoe odchlee od protej regrej Reztoe odchlee tdrdoe

13 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Poeż lczb puktó dośdczlch po bć ztąpo umą g ztkch puktó, g redefoć moż zorem: / b / / PRZYKŁAD

14 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PRZYKŁAD / C A ' ' ' '.E E E-8.48E-.E E-6..E-6 5.E-.E E E E- 3.E E E E- 4.E E-6.6.4E-6.4E- 5.E E E-5 4.5E-9 um E-9 6 Sum/ r r.46.e-5 Regrej lo żo: Regrej lo: A 33.3 C +.443E-4 A C +.43E-3

15 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PRZYKŁAD..8 Wk ekpermetle Regrej żo Regrej lo Dl A. C mol/dm 3 C mol/dm 3 Aborbcj.6 Błąd zględ 6.%.4..E+.E-5 4.E-5 6.E-5 C [mol/dm 3 ]

16 Stdrdoe odchle półczkó regrej ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Stdrdoe odchle dl półczkó regrej: M Stdrdoe odchle dl półczkó regrej żoej: M M ˆ f +

17 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PRZYKŁAD c.d. tdrdoe odchle półczkó regrej.9 +. ˆ ŷ - ŷ Sum ±.3.9±.

18 Mrą zgodośc dopo fukcj regrej dch dośdczlch jet półczk korelcj loej Pero r. ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Przjmuje rtośc grcch od - do +. dokoł lo zleżość: r - lub + b brk loej zleżośc: r dąż do / r Wpółczk korelcj półczk determcj

19 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Wpółczk korelcj półczk determcj Kdrt półczk korelcj r lub r % określ udzł efektó kjącch z loego chrkteru zleżośc od. r % cłkotej zmeośc jś model regrej loej

20 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Ecel Nrzędz-> Alz dch -> Regrej

21 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PRZYKŁAD c.d. - oblcze Ecelu PODSUMOWANIE - WYJŚCIE Stttk regrej Welokrotość R kdrt Dopo R Błąd tdrdo.6535 Obercje 5 r ˆ f + ANALIZA WARIANCJI df SS MS F Itotość F Regrej E-5 Reztko Rzem 4.3 Wpółczk Błąd tdrdo t Stt Wrtość-p Dole 95% Góre 95% Dole 95.% Góre 95.% Przecęce Zme X E P.u. ± t α,- P.u. ± t α,-.9 ±. +. ±.33 r 99.7%.d...9 ± ±. r 99.7%.d..

22 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH Odchlee tdrdoe rtośc progozoej.9 ±. +. ±.33 pukto progoz pukto progoz Dl dej rtośc oblcz ę ±. Dl dej rtośc oblcz ę ±.3

23 ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH PODSUMOWANIE: Mrą zgodośc dopo fukcj regrej dch dośdczlch jet półczk korelcj loej r. Wpółczk determcj r określ jk ułmek lub % ogólej zmeośc odpoedz jet jś przez model. ˆ r

24 ˆ Stdrdoe odchle dl półczkó regrej: PODSUMOWANIE: ANALIZA REGRESJI DOPASOWANIE FITOWANIE KRZYWYCH

25

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW

DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe

Bardziej szczegółowo

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)

Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa) Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

11. Aproksymacja metodą najmniejszych kwadratów

11. Aproksymacja metodą najmniejszych kwadratów . Aproksmcj metodą jmejszch kwdrtów W ukch przrodczch wkoujem często ekspermet polegjące pomrch pr welkośc, które, jk przpuszczm, są ze sobą powąze jkąś zleżoścą fukcją =f(, p. wdłużee spręż w zleżośc

Bardziej szczegółowo

Regresja liniowa. Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2,

Regresja liniowa. Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2, Regrej low. Złóżm, że mm pęć puktów dośwdczlch dch w tbel: Tbel.,5 4 3 6 3 4 8 4 5 6 Jeśl wkreślm te pukt, otrzmm Ruek.. Ruek. Wdć, że chocż pukt ą eco porozrzuce kutek, powedzm, błędów pomrowch, to jedk

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Prognoza sprawozdania finansowego Bilans

Prognoza sprawozdania finansowego Bilans Prognoza sprawozdania go Bilans 31.12.24 31.12.25 31.12.26 Wartości niematerialne i prawne Rzeczowe aktywa trwałe Długoterminowe Zapasy Należności Inwestycje 594 3474 3528 954 52119 54 12 759 693 2259

Bardziej szczegółowo

www.anilrana13014.weebly.com www.k8449.weebly.com t t t t t t t t t t t t t t t t t ç iv P P P P P P P P P P P q r s t r 1 r 1 2 r 34 5 I 2 6 r 34 5 I 78 910 ❶ r s ❷ ❸ 78 910 P P P P P s r r r r r r r

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ

BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.

Bardziej szczegółowo

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji)

Przedziały ufności i testy parametrów. Przedziały ufności dla średniej odpowiedzi. Interwały prognoz (dla przyszłych obserwacji) Wkład 1: Prosta regresja liniowa Statstczn model regresji liniowej Dane dla prostej regresji liniowej Przedział ufności i test parametrów Przedział ufności dla średniej odpowiedzi Interwał prognoz (dla

Bardziej szczegółowo

Wcześniej zajmowaliśmy się przypadkiem, w którym zależność między wielkościami mierzonymi dało się przedstawić przy pomocy funkcji: = 3

Wcześniej zajmowaliśmy się przypadkiem, w którym zależność między wielkościami mierzonymi dało się przedstawić przy pomocy funkcji: = 3 Jdomro zgd mmlzcj Jdomro zgd mmlzcj. Wczśj zjmolśm sę przpdkm, którm zlżość mędz lkoścm mrzom dło sę przdstć prz pomoc fukcj: + ) ( Dopso modlu do kó pomró okzło sę bć problmm lom, prodzącm do ukłdu trzch

Bardziej szczegółowo

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;

Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny

Bardziej szczegółowo

Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2, Rysunek 11.

Załóżmy, że mamy pięć punktów doświadczalnych danych w tabeli: Tabela 11.1 i x i y i 1 2 2, Rysunek 11. Regrej low. Złóżm, że mm pęć puktów dośwdczlch dch w tbel: Tbel.,5 4 3 6 3 4 8 4 5 6 Jeśl wkreślm te pukt, otrzmm Ruek.. 7 6 5 4 3 4 6 8 Ruek. Wdć, że chocż pukt ą eco porozrzuce kutek, powedzm, błędów

Bardziej szczegółowo

Wykład 6. Klasyczny model regresji liniowej

Wykład 6. Klasyczny model regresji liniowej Wkład 6 Klacz modl rgrj lowj Rgrja I rodzaju pokazuj jak zmają ę warukow wartośc oczkwa zmj zalżj w zalżośc od wartośc zmj zalżj. E X m Obraz gomtrcz tj fukcj to krzwa rgrj I rodzaju czl zbór puktów płazczz,

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę

Bardziej szczegółowo

POMIAR SIŁY ELEKTROMOTORYCZNEJ OGNIWA I CHARAKTERYSTYKI JEGO PRACY

POMIAR SIŁY ELEKTROMOTORYCZNEJ OGNIWA I CHARAKTERYSTYKI JEGO PRACY ĆWICZENIE 5 POMIA SIŁY ELEKTOMOTOYCZNEJ OGNIWA I CHAAKTEYSTYKI JEGO PACY Elektrczość Mgetzm. Ops teoretcz do ćcze zmeszczo jest stroe.tc.t.ed.pl dzle DYDAKTYKA FIZYKA ĆWICZENIA LABOATOYJNE.. Ops kłd pomroego

Bardziej szczegółowo

1. Weryfikacja hipotez dotyczących wariancji test F. 2. Wykorzystanie statystyki F do badania istotności regresji

1. Weryfikacja hipotez dotyczących wariancji test F. 2. Wykorzystanie statystyki F do badania istotności regresji PODSTAWY STATYSTYKI 1. Teor prwdopodobeńtw element kombntork. Zmenne loowe ch rozkłd 3. Populcje prób dnch, etmcj prmetrów 4. Tetowne hpotez 5. Tet prmetrczne (n przkłdze tetu t) 6. Tet neprmetrczne (n

Bardziej szczegółowo

Ź Ź ź Ś Ą Ź ć Ś

Ź Ź ź Ś Ą Ź ć Ś ć ź ć ć ć ć Ć ć Ę ć ć ć Ś ć Ć ć ć ć Ź Ź ź Ś Ą Ź ć Ś ć Ź Ę Ź ć ć Ą Ą Ą ć Ć Ą ć Ź Ś ź ć Ź ć Ź Ś Ź Ź Ą ć Ą Ź ć Ć Ź Ę Ą Ą Ś ć Ć ć ć Ś Ń Ą Ń Ś Ś Ę Ź Ą Ą Ą Ś ć Ź Ź Ś Ś ź ŚŚ Ć Ś Ś Ą Ą ć ć Ź ź Ź ć Ź Ź ź Ź ć Ć

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

χ (MNK) prowadziła do układu m równań liniowych ze względu

χ (MNK) prowadziła do układu m równań liniowych ze względu Dopso dooj fukcj do dch pomroch Dopso dooj fukcj do dch pomroch. Do tj por strśm sę dopsoć do kó pomró fukcj o ogój postc: m f, k zrjąc m zch prmtró...k. Zkłdśm prz tm, ż sm fukcj f k zrją tch prmtró.

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

MATEMATYKA. Sporządził: Andrzej Wölk

MATEMATYKA. Sporządził: Andrzej Wölk MATEMATYKA Sporządzł: Adrzej ölk . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto

Nieliniowe. Liniowe. Nieliniowe. Liniowe. względem parametrów. Linearyzowane. sensu stricto Ekonometria jak dorać funkcję? Przykłady użyte w materiałach opracowano w większości na azie danych ze skryptu B.Guzik, W.Jurek Podstawowe metody ekonometrii (wyd. AE Poznań 3) W doorze postaci funkcji

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych

Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych Wkład 13: (prota) regreja lnowa Model tattczn Format danch Przedzał ufnośc tet totnośc dla parametrów modelu Przpomnene: wkład zadana kuru bł zaczerpnęte z podręcznków: Stattka dla tudentów kerunków techncznch

Bardziej szczegółowo

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna),

Zależność. przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna Korelacja brak korelacji korelacja krzywoliniowa korelacja dodatnia korelacja ujemna Szereg korelacyjny numer

Bardziej szczegółowo

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31

Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31 Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wkład wstęp. Teora prawdopodobeństwa elemet kombatork. Zmee losowe ch rozkład 3. Populacje prób dach, estmacja parametrów 4. Testowae hpotez statstczch 5. Test parametrcze (a

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot.

R, R, R n itd. przestrzenie wektorowe, których elementami są wektory określone przez długość, kierunek i zwrot. WYKŁAD. PRZESTRZENIE AFINICZNE, PROSTA. PŁASZCZYZNA. E PRZESTRZENIE AFINICZNE y P(,, c) x z E, E, E d. - rzesrzee ukoe, kórych elemem są uky ose rzy omocy sółrzędych, j. ukłdó lcz rzeczysych osc (, ),

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = + REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr.........

WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI. SPRAWOZDANIE Z PRACY LABORATORYJNEJ nr......... WOJSKOWA AKADEMIA TECHNICZNA ĆWICZENIA LABORATORYJNE Z FIZYKI prowdząc(y)... grup... podgrup... zespół... seestr... roku kdeckego... studet(k)... SPRAWOZDANIE Z PRACY LABORATORYJNEJ r......... pory wykoo

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego

instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego 5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe

Algebra liniowa z geometrią analityczną. WYKŁAD 11. PRZEKSZTAŁCENIE LINIOWE WARTOŚCI I WEKTORY WŁASNE Przekształcenie liniowe lgbr liio gomtrią litcą / WYKŁD. PRZEKSZTŁCENIE LINIOWE WRTOŚCI I WEKTORY WŁSNE Prkstłci liio Diicj Prporądkoi ktorom R ktoró k R, : jst prkstłcim liiom td i tlko td gd: k k k k c c c c c Postć prkstłci

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 4

Stanisław Cichocki. Natalia Nehrebecka. Wykład 4 Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników

Bardziej szczegółowo

Badanie zależności cech

Badanie zależności cech PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i element kombinatorki. Zmienne losowe i ich rozkład 3. Populacje i prób danch, estmacja parametrów 4. Testowanie hipotez 5. Test parametrczne (na przkładzie

Bardziej szczegółowo

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka

Statystyka opisowa. Wykład V. Regresja liniowa wieloraka Statystyka opisowa. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Prosta regresji cechy Y względem cech X 1,..., X k. 2 3 Wyznaczamy zależność cechy Y od cech X 1, X 2,..., X k postaci Y = α 0 +

Bardziej szczegółowo

Ą ś ź ś ć ś ź ź ś ź

Ą ś ź ś ć ś ź ź ś ź ź ź Ź ś Ź ś ś Ą ś ź ś ć ś ź ź ś ź ś ś śćś ś ś ś ś ś Ę ś ź ś ś ś Ą ś Ę ś ś ś ź śćś ś ś ś ś ś ś Ź Ś Ń ć ś ś ść ś ś ś Ź ś ść ś ś ś Ź ś ś śćś Ś śćś ść ś ś śćś śćś ś ść ś śś śćś ś śćś śćś ść ść ź Ń ść ś Ę ś

Bardziej szczegółowo

= n = = i i. Sprawdzenie istotności współczynnika korelacji ρ dla populacji na podstawie współczynnika r

= n = = i i. Sprawdzenie istotności współczynnika korelacji ρ dla populacji na podstawie współczynnika r STATYSTKA I ANALIZA DANYCH LAB V I VI. Pla laboatoum V VI Koelacja współczk koelacj Peasoa testowae stotośc współczka koelacj Regesja lowa egesja posta, ocea dopasowaa, testowae stotośc współczków egesj

Bardziej szczegółowo

Ż Ź Ź ź Ż Ż Ź Ą Ą Ż ź Ś Ż Ż Ś Ź Ś Ą

Ż Ź Ź ź Ż Ż Ź Ą Ą Ż ź Ś Ż Ż Ś Ź Ś Ą Ś Ą Ó Ś Ś Ą Ś Ó Ż ć Ś Ż Ę ć Ż ź Ż Ź Ź ź Ż Ż Ź Ą Ą Ż ź Ś Ż Ż Ś Ź Ś Ą Ą Ż Ź Ś Ą Ń Ś Ą Ż ć Ż Ż Ż ć Ż Ż Ś Ź Ź Ż Ą Ń ź ź Ł Ę ć ć ć Ń ź ć Ż ź Ż źó ć Ż Ż Ó Ń Ż Ó Ź Ó Ż Ź Ż Ż Ż Ż Ę Ż Ż ć ć Ż ć Ó Ż Ż Ż Ą Ź Ż Ż

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9

X Y 4,0 3,3 8,0 6,8 12,0 11,0 16,0 15,2 20,0 18,9 Zadanie W celu sprawdzenia, czy pipeta jest obarczona błędem systematycznym stałym lub zmiennym wykonano szereg pomiarów przy różnych ustawieniach pipety. Wyznacz równanie regresji liniowej, które pozwoli

Bardziej szczegółowo

Nadokreślony Układ Równań

Nadokreślony Układ Równań Mchł Pzos Istytut echolog Iforcyych Iżyer Ląoe Wyzł Iżyer Ląoe Poltech Kros Noreśloy Uł Róń Z oreśloy ułe loych róń lgebrczych y o czye sytuc, gy lczb loo ezleżych róń est ęsz ż yr przestrze (lczb zeych).

Bardziej szczegółowo

Johann Wolfgang Goethe Def.

Johann Wolfgang Goethe Def. "Maemac ą ja Facuz: coolwe m ę powe od azu pzeładają o a wój wła jęz wówcza aje ę o czmś zupełe m." Joha Wola Goehe Weźm : m m Jeżel zdeujem ucje pomoccze j : j dla j = m o = m dze = Czl wacz pzeaalzowad

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów

r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:

Bardziej szczegółowo

Ń Ą Ń Ń Ń

Ń Ą Ń Ń Ń ŁĄ Ń Ł ć ć ć Ę Ę Ą Ą Ę Ń Ą Ń Ń Ń Ń ć Ą Ź ć Ź ć Ź ć ź ź Ł Ą Ę ć ć Ę Ć Ć Ą ć Ć Ć Ł Ć Ź Ć Ą Ą Ą Ą ĄĄ Ć Ą Ą Ą ć Ć Ł Ć Ę Ć Ć Ę Ę Ć Ć Ę Ą Ć Ć Ń Ń Ć Ę Ć Ł Ć Ł Ą Ę Ź Ć Ł Ę Ł Ł Ł Ę Ę Ł Ę Ł Ć Ć Ą Ę Ł Ą Ć Ą Ź Ą Ę

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych

Ćwiczenia nr 3 Finanse II Robert Ślepaczuk. Teoria portfela papierów wartościowych Ćczea r 3 Fae II obert Ślepaczuk Teora portfela paperó artoścoych Teora portfela paperó artoścoych jet jedym z ajażejzych dzałó ooczeych faó. Dotyczy oa etycj faoych, a przede zytkm etycj dokoyaych a ryku

Bardziej szczegółowo

ĄĄ

ĄĄ Ń Ę Ą Ą ĄĄ Ś ĘĘ Ę Ę Ę Ś Ń Ń Ę Ę Ę Ń Ę Ą ź Ę Ś Ą ź ź Ę Ę Ń Ę Ę ź ź ź Ę Ń Ę Ą Ę ź ź Ń Ó Ó Ś Ę Ń Ń ź Ę Ą Ł ź Ą ź Ą Ę ź Ń Ą ź ź ź Ń ź ź ź ź Ą ź Ą Ę Ą ź Ą Ą Ś ź Ą Ę Ę Ę Ę Ę Ę ź Ń Ń ź Ę ź Ę Ń Ł Ł Ń Ś ź Ń Ń Ę

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Ą Ń Ś Ę ź Ś Ś ź ź Ś Ś ź Ł Ś Ś Ś Ł ĘĘ Ś Ś Ś ć Ś Ś Ś Ś Ł Ó Ś Ł ć Ś Ść Ś Ś Ś Ń ć Ś Ł Ś Ź Ą ć ć Ł ź Ś Ą Ś Ł Ą Ś Ś Ą Ś Ś ź Ś ć Ł ć ć Ł Ł ć Ź ć ć Ś ć ź Ź ć Ś ć ć ć Ś Ą Ś Ś Ś ć Ś Ść Ś ć Ł ć Ś ć Ś Ś Ń ć ć Ł Ś

Bardziej szczegółowo

Ł Ł Ś Ś ź Ć ź ź ź Ń Ł Ż Ś ź Ę Ż Ń Ę ź ź ź Ę ź Ł Ę ź Ę Ę Ę ź ź Ś ź ź Ł Ł Ź Ę Ł Ś ź Ę Ę Ę ń ź Ą ó Ę ĘĘ ź Ę ź Ą Ł Ę Ł Ą ź Ę ó Ź Ś ź Ń Ę Ę ĘĘ Ą Ś Ę Ł Ę Ć Ź ź Ź Ę Ę Ź ź Ź Ź Ź Ł Ż Ł Ę ź Ż Ź ź Ź Ź Ź Ź Ą Ż ŚĆ

Bardziej szczegółowo

Ź Ę Ę Ś Ś Ś ć Ę ć Ś ć Ź Ż Ś ć Ż Ź Ż Ą Ż Ę Ś Ź Ę Ź Ż Ó Ś ć ć Ś Ż Ć ź Ś Ń Ź ć Ó ź Ś Ń ź Ń Ź Ź ź Ż Ź Ź Ź Ź Ż Ź ć Ż Ę ź Ę ź ć Ń ć ć ć ć Ź Ę Ą ć Ę ć Ń ć ć Ź Ż ć Ó Ó Ó Ż ć Ó Ż Ę Ą Ź Ó Ń Ł ź ź Ń ć ć Ż ć Ś Ą

Bardziej szczegółowo

Ł Ł ń ń Ą ń ń Ś ń Ź ń ń ń Ż ń Ł ń Ś ń ń ń Ą Ą Ł Ż ń ń Ś ń Ź ń ń ć Ź ń ć Ś ć ć ń Ź ń Ą Ł Ł Ę ĘĘ Ż Ź ć Ł ń Ś Ą Ł Ł Ł Ą Ę Ę ń Ń ń Ź ń ć Ż ń Ż Ś ń Ń ń Ń Ź Ą ć Ł ń ć ć Ź Ą Ą Ą Ź Ą Ł Ą Ś ń ń Ś Ś Ą Ć ŚĆ Ł ć Ż

Bardziej szczegółowo