Wykład Podejmowanie decyzji w warunkach niepewności

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład Podejmowanie decyzji w warunkach niepewności"

Transkrypt

1 Wkłd Podejowie deczji w wrukch ieewości

2

3 Rozwż rzkłd: M sieć I koli które leż zoderizowć. Istieje J writów oderizcji i kżd z ich o koszcie c ij jeśli i-t koli jest oderizow j-t sosób (i = I j = J). Urobek kżdej z koli wosi u ij - jeśli i-t koli jest oderizow j-t sosób. Zieczszczei urobku w kżdej z koli woszą z ij - jeśli i-t koli jest oderizow j-t sosób. Nleż dobrć writ oderizcji kolejch koli tk b łącze urobek ie sdł oiżej u zieczszczei urobku sełił wgi rkowe czli bł iejsze iż z łącz koszt oderizcji bł iil.

4 ij ij 0 - zie deczj F c - i t koli oderizow j t sosób - w rzeciw rzdku I i j I i j J j J j J z J ij ij c ij u ij ij ij u z i i I ij I

5 c u z i I j J F J j J j ij ij ij c c F z ij ij I i j ij J I i j u z i ij J i ij ij u ij I I D - wielkości ieewe (losowe) S R ; l 0 l L 0 M F()

6 E c F c E c I J i j c ij ij E u I J i j u ij ij u E z J j z ij ij z i I J j ij i I

7 M E L l E E F E F l S 0 0 ; R D D F F D i F()

8 - wrtość zieej losowej - zbiór ciągł f - fukcj gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: M d f E L l d f E E d f F F E F l l S 0 0 ; R D D

9 - wrtość zieej losowej K - zbiór dskret K k P k k - gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: M E L l E E F F E F K k k k K k k k l l S K k k k 0 0 ; R D D

10 Proble srzedwc gzet. Srzedwc gzet zwi gzet w czkch o 40 sztuk w czce. Ce jedej gzet w hurcie kosztuje 0.80 zł srzedje ją o.0 zł. Pot gzet jest wielkością losową. Srzedż w słb dzień gzet w rzecięt dzień gzet w dobr dzień 50 gzet. Prwdoodobieństwo że jest 3 00 słb dzień tj.: rzecięt - P dobr P 0. 6 P Zie deczj liczb czek którą owiie zówić srzedwc. = 3 4?

11 Fukcj celu: F if if 40 Wrtość fukcji celu dl = 3 i 4 = 50 = 00 3 = 50 = 0.6 = = 0.34 = = = =

12 F F F F F EF F EF EF 3 EF 3 K k k k EF = 50 = 00 3 = 50 F() = 0.6 = = 0.34 = 7.7 = = =

13 Modfikcj fukcji celu ostroż srzedwc - tłui zski wolbrzi strt F 0 F F 0 if F if F 0 0 = 50 = 00 3 = 50 F() = 0.6 = = 0.34 = = = =

14 Modfikcj fukcji celu srzedwc rzkt - wolbrzi zski tłui strt F F 0 0 F if F if F 0 0 = 50 = 00 3 = 50 F() = 0.6 = = 0.34 = = = =

15 Gr z turą

16 Rolik roztruje ożliwość urw 5. rodzjów zbóż. Wielkość loów kżdego zboż zleż od wruków ogodowch. Pod względe wilgotości rok oże bć such orl lub deszczow. Przewidwe lo w zleżości od wruków ogodowch rzedstwi tbel. Rodzj urw Wruki ogodowe susze orle deszcze

17 Reguł i. lizując koleje wiersze cierz zjduje kslą korzść którą oże uzskć dl kolejch stów tur. Wbier tę deczję dl której ksl korzść jest jiejsz. W rzdku iejedozczości rekoeduje wszstkie deczje dl którch owższ wruek jest sełio. Rodzj urw Wruki ogodowe susze orle deszcze i

18 Reguł WLD ( i). lizując koleje wiersze cierz zjduje iilą korzść którą oże uzskć dl kolejch stów tur. Wbier tę deczję dl której iil korzść jest jwiększ. W rzdku iejedozczości rekoeduje wszstkie deczje dl którch owższ wruek jest sełio. Rodzj urw Wruki ogodowe susze orle deszcze i

19 Reguł. lizując koleje wiersze cierz zjduje kslą korzść którą oże uzskć dl kolejch stów tur. Wbier tę deczję dl której ksl korzść jest jwiększ. W rzdku iejedozczości rekoeduje wszstkie deczje dl którch owższ wruek jest sełio. Rodzj urw Wruki ogodowe susze orle deszcze

20 i - iil korzść dl i tego wiersz Reguł Hurwicz. lizując koleje wiersze cierz zjduje iilą i kslą korzść tj..: wrtości i orz i tkże wrtość fukcji H i () dl ustloego. Wbier tę deczję dl której wrtość fukcji H i () jest jwiększ. W rzdku iejedozczości rekoeduje wszstkie deczje dl którch owższ wruek jest sełio. Rodzj urw H i Wruki ogodowe susze orle deszcze i H() = i 0 i i - ksl korzść dl i tego wiersz

21 5 i H i 0 i H i 0 H i i i5 H i 0 H 5 H H H 8 7 =075 0 H 4 6

22 Reguł Llce. lizując koleje wiersze cierz zjduje oczekiwą korzść rzjując że koleje st tur są rówie rwdoodobe. Wbier tę deczję dl której oczekiw korzść jest jwiększ. W rzdku iejedozczości rekoeduje wszstkie deczje dl którch owższ wruek jest sełio. Rodzj urw Wruki ogodowe susze orle deszcze Oczekiw korzść / / / / /3

23 Gr dwuosobow o suie zerowej

24 Gr dwuosobow o suie zerowej Mcierz włt dl grcz : Mcierz włt dl grcz : M M M M N N N N NM Grcz kslizuje zski M M M M N N N N NM Grcz iilizuje strt Zwczjowo odje się cierz włt dl grcz

25 Dwj kddci i ubiegją się o dt oselski w okręgu wborcz. Mją odjąć deczję o rowdzeiu kii wborczej w ostti weeked rzed wbori. Kżd z ich oże sędzić o jed diu w iejscowości M lub M. Rozwżją oi (iezleżie od siebie) trz ożliwe strtegie ostęowi: sędzić o jed diu iejscowości M i M sędzić obdw di w M 3 3 sędzić obdw di w M. Jeżeli kddt wbierze strtegię kddt odowiedio strtegie lub 3 to kddt oże się sodziewć rzrostu głosów o % % lub 4%. Jeżeli kddt wbierze strtegię kddt odowiedio strtegie lub 3 to kddt oże się sodziewć rzrostu głosów o % 0% lub 5%. Jeżeli kddt wbierze strtegię 3 kddt odowiedio strtegie lub 3 to kddt oże się sodziewć rzrostu głosów o 0% % lub -%.

26 Gr dwuosobow o suie zerowej Mcierz włt dl grcz : Mcierz włt dl grcz : Grcz uzskuje korzści koszte grcz i odwrót stąd su cierz włt grcz i jest cierzą zerową.

27 Towe odejście do rozwiązwi gier o Wzczeie uktu siodłowego o Usuięcie strtegii zdoiowch o Wzczeie strtegii ieszej dl: N= i M= N> i M>

28 Gr dwuosobow o suie zerowej i Pukt siodłow: = N M i M i N M M M M i N M N N N N NM i N M

29 Gr dwuosobow o suie zerowej i i N M N M = i i N M Pukt siodłow: = i N M

30 Strtegi zdoiow i doiując Grcz dsouje strtegii: N Strtegi jest zdoiow rzez strtegię (doiującą) jeżeli M Grcz dsouje strtegii: M Strtegi jest zdoiow rzez strtegię (doiującą) jeżeli N

31 Usuwie strtegii zdoiowch Krok. 3 4 Strtegi doiując Strtegi zdoiow Krok Strtegi zdoiow - Strtegi doiując

32 Usuwie strtegii zdoiowch Krok 3. Strtegi doiując 0 Strtegi zdoiow Krok 4. - Strtegi zdoiow Wik gr - Strtegi doiując

33 Gr dwuosobow o suie zerowej Strtegie iesze: i N M i N M M M M M M N N N N N NM

34 N = M = Rówi dl grcz / / 0 / /

35 N = M = 0 Rówi dl grcz / / / /

36 Gr dwuosobow o suie zerowej Pukt siodłow: i N M i N M 3 i i N M i N M

37 Usuwie strtegii zdoiowch Strtegi doiując Strtegi zdoiow - Strtegi zdoiow - Strtegi doiując Poiewż strtegie 3 orz 3 są zdoiowe 3 = 3 =0. Pozostje wzczć : orz

38 3 3 5 N = M = Rówi dl grcz / 5 3 / 3 / 5 3 / =/ 5 / 8 / 4 =

39 3 3 5 N = M = Rówi dl grcz / 5 / / 5 / =/3 5 / 6 3 / 6 =

40 Gr dwuosobow o suie zerowej Strtegie iesze N> M>: M M M M M N N N N N NM W t rzdku rozwiązie gr srowdz się do rozwiązi zdi rogrowi liiowego

41 N M N N N 0 / Zdie dl grcz / N M N N N 0 / Niech: N

42 Zdie dl grcz N M N N N 0 / Grcz kslizuje zsk Zte leż iilizowć wrżeie i i N N N M N N 0 Prz ogriczeich: Ostteczie zdie dl grcz N i

43 M N M M M 0 / Zdie dl grcz / M N M M M 0 / Niech: M

44 Zdie dl grcz M N M M M 0 / Grcz iilizuje strt Zte leż kslizowć wrżeie M M M N M M 0 Prz ogriczeich: Ostteczie zdie dl grcz M

45 Gr dwuosobow o suie zerowej Pukt siodłow: i N M i N M 3 i i N M i N M

46 Zdie dl grcz Zdie dl grcz i Prz ogriczeich: Prz ogriczeich:

47 47

Wykład 9. Podejmowanie decyzji w warunkach niepewności

Wykład 9. Podejmowanie decyzji w warunkach niepewności Wkłd 9. Podejowie deczji w wrukch ieewości E L l E E F E F l S 0 0 ; R D D F F D i F() - wrtość zieej losowej - zbiór ciągł f - fukcj gęstości rozkłdu rwdoodobieństw zieej losowej Wówczs: d f E L l d

Bardziej szczegółowo

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY

1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY . Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest

Bardziej szczegółowo

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych

Granica cigu punktów. ), jest zbieny do punktu P 0 = ( x0. n n. ) n. Zadania. Przykłady funkcji dwu zmiennych Gric cigu puktów Ztem Cig puktów P P ; jest zie do puktu P ; gd P P [ ] Oliczm gric cigu l Poiew l l wic cig l jest zie i jego gric jest pukt π π [ ] Oliczm gric cigu si π π π π Poiew si si wic cig si

Bardziej szczegółowo

7. Szeregi funkcyjne

7. Szeregi funkcyjne 7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych

Bardziej szczegółowo

Wykład 5. Ryzyko działania systemów. Źródła i rodzaje ryzyka, niepewność i ocena ryzyka.

Wykład 5. Ryzyko działania systemów. Źródła i rodzaje ryzyka, niepewność i ocena ryzyka. Wykłd 5. Ryzyko dziłni systeów. Źródł i rodzje ryzyk nieewność i ocen ryzyk. Źródł ryzyk Ocen ryzyk Zrządznie ryzykie Sttystyczn ocen ryzyk Gry w odejowniu decyzji o Gr z nturą o Dwuosobow gr o suie zerowej

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 2. (poziom rozszerzony) Rozwiązania zadań MATEMATYKA Przed próbą mturą Sprwdzi (poziom rozszerzoy) Rozwiązi zdń Zdie ( pkt) P Uczeń oblicz potęgi o wykłdikc wymieryc i stosuje prw dziłń potęgc o wykłdikc wymieryc 5 ( ) 7 5 Odpowiedź: C Zdie (

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7

RÓWNANIA RÓŻNICZKOWE WYKŁAD 7 RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r.

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13 III etap zawodów (wojewódzki) 12 stycznia 2013 r. KONKURS MTEMTYCZNY dl ucziów gimzjów w roku szkolym 0/ III etp zwodów (wojewódzki) styczi 0 r. Propozycj puktowi rozwiązń zdń Uwg Łączie uczeń może zdobyć 0 puktów. Luretmi zostją uczesticy etpu wojewódzkiego,

Bardziej szczegółowo

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP

Programowanie z więzami (CLP) CLP CLP CLP. ECL i PS e CLP Progrmowie z więzmi (CLP) mjąc w PROLOGu: p(x) :- X < 0. p(x) :- X > 0. i pytjąc :- p(x). dostiemy Abort chcelibyśmy..9 CLP rozrzeszeie progrmowi w logice o kocepcję spełii ogriczeń rozwiązie = logik +

Bardziej szczegółowo

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać

Metoda szeregów potęgowych dla równań różniczkowych zwyczajnych liniowych. Równanie różniczkowe zwyczajne liniowe drugiego rzędu ma postać met_szer_potegowyh-.doowyh Metod szeregów potęgowyh dl rówń różizkowyh zwyzjyh liiowyh Rówie różizkowe zwyzje liiowe drugiego rzędu m postć d u d f du d gu h ( Złóżmy, że rozwiązie rówi ( może yć przedstwioe

Bardziej szczegółowo

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera

WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera /9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego.

Wybrane zagadnienia. Wykład 2a. Metoda simpleks rozwiązywania zadań programowania liniowego. Wybre zgdiei bdń opercyjych Wykłd Metod simpleks rozwiązywi zdń progrmowi liiowego Prowdzący: dr iiż.. Zbiigiiew TARAPATA De kotktowe: e-mil: WWW: Zbigiew.Trpt@wt.edu.pl http://trpt.stref.pl tel. : 83-94-3,

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji

i interpretowanie reprezentacji wykorzystanie i tworzenie reprezentacji wykorzystanie wykorzystanie i tworzenie reprezentacji KLUCZ ODPOWIEDZI I ZASADY PUNKTOWANIA PRÓBNEGO EGZAMINU MATURALNEGO Z MATEMATYKI POZIOM PODSTAWOWY Nr zdi Odpowiedzi Pukty Bde umiejętości Obszr stdrdu. B 0 pluje i wykouje obliczei liczbch rzeczywistych,

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE

Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem

Bardziej szczegółowo

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski

Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Scenariusz lekcji matematyki w klasie II LO

Scenariusz lekcji matematyki w klasie II LO Autor: Jerzy Wilk Sceriusz lekcji mtemtyki w klsie II LO oprcowy w oprciu o podręczik i zbiór zdń z mtemtyki utorów M. Bryński, N. Dróbk, K. Szymński Ksztłceie w zkresie rozszerzoym Czs trwi: jed godzi

Bardziej szczegółowo

Wyznacznik macierzy. - wyznacznik macierzy A

Wyznacznik macierzy. - wyznacznik macierzy A Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka matematyczna.

Rachunek prawdopodobieństwa i statystyka matematyczna. Rchunek rwdoodobieństw i sttystyk mtemtyczn. Zd 8. {(, : i } Zleżność tą możn rzedstwić w ostci nstęującej interretcji grficznej: Arkdiusz Kwosk Rfł Kukliński Informtyk sem.4 gr. Srwdźmy, czy odne zmienne

Bardziej szczegółowo

Ciągi liczbowe podstawowe definicje i własności

Ciągi liczbowe podstawowe definicje i własności Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA

Algebra macierzowa. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. ELEMENTARNA TEORIA MACIERZOWA kdei Morsk w Gdyi Ktedr utotyki Okrętowej Teori sterowi lgebr cierzow Mirosłw Toer. ELEMENTRN TEORI MCIERZOW W owoczesej teorii sterowi brdzo często istieje potrzeb zstosowi otcji cierzowej uprszczjącej

Bardziej szczegółowo

Macierze w MS Excel 2007

Macierze w MS Excel 2007 Mcierze w MS Ecel 7 Progrm MS Ecel umożliwi wykoywie opercji mcierzch. Służą do tego fukcje: do możei mcierzy MIERZ.ILOZYN do odwrci mcierzy MIERZ.ODW do trspoowi mcierzy TRNSPONUJ do oliczi wyzczik mcierzy

Bardziej szczegółowo

Podejmowanie decyzji w warunkach niepełnej informacji. Tadeusz Trzaskalik

Podejmowanie decyzji w warunkach niepełnej informacji. Tadeusz Trzaskalik Podejmowanie deczji w warunkach niepełnej informacji Tadeusz Trzaskalik 5.. Wprowadzenie Słowa kluczowe Niepełna informacja Stan natur Macierz wpłat Podejmowanie deczji w warunkach rzka Podejmowanie deczji

Bardziej szczegółowo

Collegium Novum Akademia Maturalna

Collegium Novum Akademia Maturalna Collegium Novum Akdemi Mturl wwwcollegium-ovumpl 0- -89-66 Mtemtyk (GP dt: 00008 sobot Collegium Novum Akdemi Mturl Temt 5: CIĄGI Prowdzący: Grzegorz Płg Termi: 0007 godzi 9:00-:0 8 Zdie Które wyrzy ciągu

Bardziej szczegółowo

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że

CAŁKA NIEOZNACZONA f - funkcja określona w przedziale E. Funkcją pierwotną funkcji f w przedziale E nazywamy funkcję F taką, że AŁKA NIEOZNAZONA f - fukj określo w rzedzile E. Fukją ierwotą fukji f w rzedzile E zywy fukję F tką, że F N. fukją ierwotą fukji f = + R jest fukj F = + o F +, Zuwży, że fukje F = + + 5 i F = + też są

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod rozwiązi ( PITAGORAS ): Sporządzeie rysuku w ukłdzie współrzędych: p C A y 0

Bardziej szczegółowo

Układy równań liniowych Macierze rzadkie

Układy równań liniowych Macierze rzadkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Ukłdy rówń liiowych Mcierze rzdkie 5 mrzec 009 SciLb w obliczeich umeryczych - część Sljd Pl zjęć. Zdie rozwiązi ukłdu rówń liiowych.. Ćwiczeie -

Bardziej szczegółowo

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są

- macierz o n wierszach i k kolumnach. Macierz jest diagonalna jeśli jest kwadratowa i po za główną przekątną (diagonala) są Powtórzeie z Algebry 1. Mcierz A k 1 11 1 1k 1 k k - mcierz o wierszch i k kolumch Mcierz est kwdrtow eśli m tyle smo wierszy co kolum ( = k). Mcierz est digol eśli est kwdrtow i po z główą przekątą (digol)

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM ROZSZERZONY Przykłdowy zestw zdń r z mtemtyki Odpowiedzi i schemt puktowi poziom rozszerzoy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zdi Nr czyości Etpy rozwiązi zdi Liczb puktów Uwgi I metod

Bardziej szczegółowo

n 3 dla n = 1,2,3,... Podać oszacowania

n 3 dla n = 1,2,3,... Podać oszacowania Zestw r : Ciągi liczbowe włsości i gric.. Niech dl =.... Sprwdzić cz jest ciągiem mootoiczm rtmetczm... Sprwdzić cz stępując ciąg jest ciągiem geometrczm. Wpisć pierwszch pięć wrzów ciągu stępie dl ciągu

Bardziej szczegółowo

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz

Rachunek prawdopodobieństwa MAP1151 Wydział Elektroniki, rok akad. 2011/12, sem. letni Wykładowca: dr hab. A. Jurlewicz Rchuek prwdopodobieństw MA5 Wydził Elektroiki, rok kd. 20/2, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 7: Zmiee losowe dwuwymirowe. Rozkłdy łącze, brzegowe. Niezleżość zmieych losowych. Momety. Współczyik

Bardziej szczegółowo

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.

Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb. Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:

Bardziej szczegółowo

[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ

[ ] I UKŁAD RÓWNAŃ Definicja 1 Układ m równań liniowych z n niewiadomymi x 1, x 2,., x n : II ROZW. UKŁADU RÓWNAŃ PRZY POMOCY MACIERZY ODWROTNEJ I UKŁAD RÓNAŃ Defiicj Ukłd rówń liiowych z iewidoyi,,., : Defiicj Postć cierzow ukłdu rówń: A, lu krócej A, gdzie: A,,. Mcierz A zywy cierzą ukłdu rówń, wektor zywy wektore wyrzów wolych (koluą wyrzów

Bardziej szczegółowo

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna.

Rys. 1. Interpolacja funkcji (a) liniowa, (b) kwadratowa, (c) kubiczna. terpolcj.doc Iterpolcj fukcj. Sformułowe problemu: Rs.. Iterpolcj fukcj low, b kwdrtow, c kubcz. De są rgumet,,,. orz odpowdjące m wrtośc fukcj = f, = f,, = f. Postć fukcj = f jest e z lub z. Poszukw jest

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania

Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x

Bardziej szczegółowo

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia

dr Michał Konopczyński Ekonomia matematyczna ćwiczenia dr Mchł Koopczńsk Ekoom mtemtcz ćwcze. Ltertur obowązkow Eml Pek red. Podstw ekoom mtemtczej. Mterł do ćwczeń MD r 5 AE Pozń.. Ltertur uzupełjąc Eml Pek Ekoom mtemtcz AE Pozń. Alph C. Chg Podstw ekoom

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer.

METODY NUMERYCZNE. Wykład 6. Rozwiązywanie układów równań liniowych. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Met.Numer. ETODY NUERYCZNE Wykłd 6. Rozwiązywie ukłdów rówń liiowych dr hb. iż. Ktrzy Zkrzewsk, prof. AGH et.numer. wykłd 6 Pl etody dokłde etod elimicji Guss etod Guss-Seidl Rozkłd LU et.numer. wykłd 6 Ukłd rówń

Bardziej szczegółowo

3, leŝącym poniŝej punktu P. Wartości funkcji f są

3, leŝącym poniŝej punktu P. Wartości funkcji f są Odpowiedzi i schemty oceii Arkusz Zdi zmkięte Numer zdi Poprw odpowiedź Wskzówki do rozwiązi D ( 0 x )( x + b) x 0 + b 0 x xb x + ( 0 b) x + b 0 x + ( 0 b) x + b 0 0x + 0 0 WyrŜei po obu stroch rówości

Bardziej szczegółowo

2010 W. W. Norton & Company, Inc. Podaż firmy

2010 W. W. Norton & Company, Inc. Podaż firmy 2010 W. W. Norton & Coman, Inc. Podaż firm Podaż Firm Podaż firm zależ od technologii otoczenia rnkowego celów firm zachowania konkurencji 2010 W. W. Norton & Coman, Inc. 2 Podaż Firm Ograniczenie techniczne

Bardziej szczegółowo

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury.

Główka pracuje - zadania wymagające myślenia... czyli TOP TRENDY nowej matury. Główk prcuje - zdi wymgjące myślei czyli TOP TRENDY owej mtury W tej pordzie 0 trudiejszych zdń Wiele z ich to zdi, których temt zczy się od wykż, udowodij, czyli iezbyt lubiych przez mturzystów Zdie Widomo,

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH pitgors.d.pl I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: licz turle N : N 0,,,,,,..., N,,,,,... licz cłkowite C : C...,,,, 0,,,,... Kżdą liczę wierą oż przedstwić z poocą ułk dziesiętego

Bardziej szczegółowo

Wybrane rozkłady prawdopodobieństwa użyteczne w statystyce

Wybrane rozkłady prawdopodobieństwa użyteczne w statystyce Wyre rozkłdy prwdopodoieństw żytecze w sttystyce Rozkłd chi-kwdrt o stopich swoody - to rozkłd sy kwdrtów iezleżych zieych losowych o stdryzowy rozkłdzie orly N tz iid N = i i rozkłd y o kcji gęstości

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

ZADANIA ZAMKNIĘTE. A. o 25% B. o 50% C. o 44% D. o 56% A. B. C. 7 D..

ZADANIA ZAMKNIĘTE. A. o 25% B. o 50% C. o 44% D. o 56% A. B. C. 7 D.. ZADANIA ZAMKNIĘTE W zadaniach 1 25 wybierz jedną poprawną odpowiedź. Zadanie 1. (1 pkt.) Ce ę pralki o iżo o o %, a po dwó h iesią a h ową e ę o iżo o jesz ze o %. W w iku o u o iżek e a pralki z iejsz

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zsd idukcji mtemtyczej. Dowody idukcyje. W rozdzile sformułowliśmy dl liczb turlych zsdę miimum. Bezpośredią kosekwecją tej zsdy jest brdzo wże twierdzeie, które umożliwi i ułtwi wiele dowodów twierdzeń

Bardziej szczegółowo

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic

MATLAB PODSTAWY. [ ] tworzenie tablic, argumenty wyjściowe funkcji, łączenie tablic MTLB PODSTWY ZNKI SPECJLNE symbol przypisi [ ] tworzeie tblic, rgumety wyjściowe fukcji, łączeie tblic { } ideksy struktur i tblic komórkowych ( ) wisy do określi kolejości dziłń, do ujmowi ideksów tblic,

Bardziej szczegółowo

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.

5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej. 5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż

Bardziej szczegółowo

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b...

3. RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Układ m równań liniowych z n niewiadomymi zapisujemy w postaci. b... RACHUNEK MACIERZOWY UKŁADY RÓWNAŃ LINIOWYCH Ukłd rówń liiowch iewidoi isuje w ostci Z ukłde () wiąe są ciere A X B które w: A cierą wsółcików X koluą iewidoch B koluą wrów wolch Wkorstując owżse ocei ukłd

Bardziej szczegółowo

nazywamy n -tym wyrazem ciągu ( f n

nazywamy n -tym wyrazem ciągu ( f n Rk II Temt 7 SZEREGI FUNKCYJNE SZEREG POTĘGOWY SZEREG TAYLORA Ciąg ukcyjy Szeregi ukcyje Zbieżść jedstj Szereg ptęgwy Prmień zbieżści szeregu ptęgweg Szereg Tylr Ciąg ukcyjy Niech U zcz iepusty pdzbiór

Bardziej szczegółowo

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb.

Wykład 12: Sumowanie niezależnych zmiennych losowych i jego związek ze splotem gęstości i transformatami Laplace a i Fouriera. Prawo wielkich liczb. Rchuek prwdopodobieństw MA064 Wydził Elektroiki, rok kd. 2008/09, sem. leti Wykłdowc: dr hb. A. Jurlewicz Wykłd 2: Sumowie iezleżych zmieych losowych i jego związek ze splotem gęstości i trsformtmi Lplce

Bardziej szczegółowo

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco:

Wyznacznikiem macierzy kwadratowej A stopnia n nazywamy liczbę det A określoną następująco: Def.8. Wyzncznikiem mcierzy kwdrtowej stopni n nzywmy liczbę det określoną nstępująco:.det.det dl n n det det n det n, gdzie i j ozncz mcierz, którą otrzymujemy z mcierzy przez skreślenie i- tego wiersz

Bardziej szczegółowo

instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego

instrukcja do ćwiczenia 5.1 Badanie wyboczenia pręta ściskanego 5.Bde wocze pręt śckego UT-H Rdom Ittut Mechk Stoowej Eergetk Lortorum Wtrzmłośc Mterłów trukcj do ćwcze 5. Bde wocze pręt śckego I ) C E L Ć W I C Z E N I A Celem ćwcze jet dośwdczle wzczee metodą Southwell

Bardziej szczegółowo

Wykład 3. Typowe opisy obiektów

Wykład 3. Typowe opisy obiektów Wkłd 3. Tpowe opi obiektów Ste prodkcji pir Prkłd te łożoego prodkcj pir 3 Proce wejście wjście kłócei ierle kłócei ieierle 4 F F ; F where: wejście wjście kłócei pretr U Y Z Prpdek ciągł: Wektor t: t

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, utomty i oliczeni Wykłd 5: Wricje n temt utomtów skończonych Słwomir Lsot Uniwersytet Wrszwski 25 mrc 2015 Pln Automty dwukierunkowe (Niedeterministyczny) utomt dwukierunkowy A = (A,,, Q, I, F,

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ ĆWICZENIE 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Opis kł pomirowego A) Wyzzie ogiskowej sozewki skpijąej z pomir oległośi przemiot i obrz o sozewki Szzególie proste, rówoześie

Bardziej szczegółowo

ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2).

ZADANIA NA POCZA n(n + 1) = 1 3n(n + 1)(n + 2). ZADANIA NA POCZA TEK Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4 = 4 3 3 Udowodić, że dl kżdej liczby turlej zchodzi wzór: 3 3 4

Bardziej szczegółowo

Metody numeryczne. Wykład nr 3. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 3. dr hab. Piotr Fronczak Metody erycze Wykłd r dr h. Piotr Froczk Pojęci podstwowe Rozwiązywie kłdów gericzych rówń iiowych. Ukłd gericzych rówń iiowych Ukłd iiowy rówń z iewidoyi postci + + = + + = + + = Postć cierzow A = . Mcierz

Bardziej szczegółowo

5.3.1. Zmiana układów odniesienia

5.3.1. Zmiana układów odniesienia 531 Zmi ukłdów odieiei Z kżdą brłą twą możem wiąć ukłd wółrędch oiując ruch tej brł w retrei Dltego w dlm ciągu w kiemtce brł będiem ię jmowć główie wjemm ruchem ukłdów wółrędch Zjąc ruch ukłdu wółrędch

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych (1)

Rozwiązywanie układów równań liniowych (1) etody Numerycze i Progrmowie Stro z Wykłd. Rozwiązywie ukłdów rówń liiowych () etody dokłde rozwiązywi ukłdów rówń liiowych etody dokłde pozwlą uzyskie rozwiązi w skończoe liczbie kroków obliczeiowych.

Bardziej szczegółowo

EAIiIB- Informatyka - Wykład 1- dr Adam Ćmiel zbiór liczb wymiernych

EAIiIB- Informatyka - Wykład 1- dr Adam Ćmiel zbiór liczb wymiernych EAIiIB- Iortyk - Wykłd - dr Ad Ćiel ciel@.gh.edu.pl dr Ad Ćiel (A3-A4 p.3, tel. 3-7, ciel@gh.edu.pl ; http://hoe.gh.edu.pl/~ciel/) Podręcziki Gewert M, Skoczyls Z. Aliz tetycz i. Deiicje twierdzei i wzory,

Bardziej szczegółowo

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I

Matematyka finansowa 10.03.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część I Mtemtyk finnsow.03.2014 r. Komisj Egzmincyjn dl Akturiuszy LXVI Egzmin dl Akturiuszy z mrc 2014 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 0 minut 1 Mtemtyk

Bardziej szczegółowo

. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia):

. Dla każdego etapu t znamy funkcję transformacji stanu (funkcja przejścia): D Miszczńska, M Miszczński, KBO UŁ, Eleme programowaia damiczego Eleme PROGRAMOWANIA DYNAMICZNEGO (PD) Rozważam -eapow proces deczj: eap eap 2 eap - eap sa począkow 2 deczja x x x 2 x Sa procesu a począek

Bardziej szczegółowo

Temat ćwiczenia: Optyczne podstawy fotografii.

Temat ćwiczenia: Optyczne podstawy fotografii. Uiwerstet Rolicz w Krakowie Wdział Iżierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczeia: Otcze odstaw otograii. Podział układów otczch Pojęcie układów otczch Podział układów

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Koputerowe wspogie decyzi 008/009 Liiowe zgdiei decyzye Nottki do tetu Metody poszukiwi rozwiązń edokryterilych probleów decyzyych etody dl zgdień liiowego progrowi tetyczego Liiowe zgdiei decyzye część

Bardziej szczegółowo

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

Zadania i rozwiązania prac domowych z Analizy Matematycznej 1.2 z grupy pana Ryszarda Kopieckiego, semestr letni 2011/2012.

Zadania i rozwiązania prac domowych z Analizy Matematycznej 1.2 z grupy pana Ryszarda Kopieckiego, semestr letni 2011/2012. Zdi i rozwiązi prc domowych z Alizy Mtemtyczej. z grupy p Ryszrd Kopieckiego, semestr leti / Ntli Skowsk . seri UWAGA: wykresów oczywiście rysowć ie trzeb. Co więcej, wykres ie jest dowodem żdego stwierdzei.

Bardziej szczegółowo

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa

GENEZA WYZNACZNIKA. Układ równań liniowych z dwiema niewiadomymi. Rozwiązania układu metodą eliminacji Gaussa / WYKŁD. Wyzzik mierzy: defiij idukyj i permutyj. Włsośi wyzzików, rozwiięie Lple', wzór Srrus. Mierz odwrot i sposoy jej wyzzi. GENEZ WYZNCZNIK Ukłd rówń liiowyh z dwiem iewidomymi, y x y x Rozwiązi ukłdu

Bardziej szczegółowo

A. Zaborski, Rozciąganie proste. Rozciąganie

A. Zaborski, Rozciąganie proste. Rozciąganie . Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin

Bardziej szczegółowo

ELEMENTY TEORII GIER

ELEMENTY TEORII GIER ELEMENTY TEORII GIER Śwt s otcząc pełe est koflktów rwlzc. Moż weć lcze przkłd stuc deczch, ędz : wo, kpe poltcze, kpe reklowe rketgowe rwlzuącch ze sobą fr wele ch, w którch do cze z koflkte ędz ch uczestk.

Bardziej szczegółowo

Ciągi i szeregi liczbowe

Ciągi i szeregi liczbowe Ciągi i szeregi liczbowe Defiicj. Jeżeli kżdej liczbie turlej przyporządkow zostł jkś liczb rzeczywist, to mówimy, że zostł określoy ciąg liczbowy (ieskończoy). Formlie ozcz to, że ciąg liczbowy jest fukcją

Bardziej szczegółowo

( t) dt. ( t) = ( t)

( t) dt. ( t) = ( t) TRANSFORMATA APACE A ROZWIĄZWANIE RÓWNAŃ RÓŻNICZKOWCH Zi Rchuk Oprorow Problm: Rozwiązć moą oprorową rówi różiczkow prz wrukch począkowch T x x. b.,5 c... Rozwiązi: Soując przkzłci plc z uwzglęiim wruków

Bardziej szczegółowo

REPREZENTACJA SYGNAŁÓW

REPREZENTACJA SYGNAŁÓW REPREZENTACJA SYGNAŁÓW Spi reści:. Bzy ygłów.. Procedur oroormlizcyj. 3. Wielomiy, fukcje Hr i Wlh, fukcje gięe, rygoomerycze. 4. Sygły dwurgumeowe... -. -...5..5.3 Reprezecj ygłmi elemerymi.5 N = 8 =.9

Bardziej szczegółowo

#$%&"!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$

#$%&!' ()*+$,% -$)%.)/ 01! *0,,2* %2, 40,-7 $$$ M NM O *+ 62-3B6 8 -C 6-B7 6 * *+5 2 B9 A: 6:!"#$% '!"#$%' ()* +,-. $/0(1()*$ +,!' + -.+ -/ (* +,!' + - / +,!'0!" $(1 234.56789: $(1 ;. *; ' +,!' 1 $% )# ?@ABCDE!6 9: $(1 FGH IJ!" $/0(1 IJKL

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach

PODSTAWY ALGEBRY MACIERZY. Operacje na macierzach PODSTWY LGEBRY MCIERZY WIERSZ i, KOLUMN (j) Mcierz m,n, gdzie m to ilość wierszy, n ilość kolumn i,j element mcierzy z itego wiersz, jtej kolumny Opercje n mcierzch Równość mcierzy m,n = B m,n. def i,j

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 4 Rozwiązywanie równań nieliniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykład 4 Rozwiązywanie równań nieliniowych. Karol Tarnowski A-1 p. Aaliza umerycza Kurs INP002009W Wykład 4 Rozwiązywaie rówań ieliiowych Karol Tarowski karol.tarowski@pwr.wroc.pl A-1 p.223 Pla wykładu Metoda bisekcji Algorytm Aaliza błędu Metoda Newtoa Algorytm Aaliza

Bardziej szczegółowo

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE

SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE Publikcj współfisow ze środków Uii Europejskiej w rmch Europejskiego Fuduszu Społeczego SKRYPT DO ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU AKADEMII MORSKIEJ W SZCZECINIE dr iż Ryszrd Krupiński

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM klasa 2F 1. FUNKCJA LINIOWA

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM klasa 2F 1. FUNKCJA LINIOWA WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM kls 2F 1. FUNKCJA LINIOWA Uczeń otrzymuje oceę dopuszczjącą, jeśli: rozpozje fukcję liiową podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

MATURA PRÓBNA 2 KLASA I LO

MATURA PRÓBNA 2 KLASA I LO IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE

Bardziej szczegółowo

Matematyka finansowa 25.01.2003 r.

Matematyka finansowa 25.01.2003 r. Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),

Bardziej szczegółowo

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile Kl. II poziom rozszerzony

Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile Kl. II poziom rozszerzony Wymgi poszczególe ocey z mtemtyki w Zespole Szkół im. St. Stszic w Pile Kl. II poziom rozszerzoy 1. WIELOMIANY podje przykłdy wielomiów, określ ich stopień i podje wrtości ich współczyików zpisuje wielomi

Bardziej szczegółowo

Bank Spółdzielczy w Raciążu

Bank Spółdzielczy w Raciążu Złączik r 1 d Itrukcji śidczi uług zkri rdzi rchukó bkch, di krt d rchukó rz uług bkści lktriczj dl klitó ittucjlch Bku Sółdzilcz Rciążu Bk Sółdzilcz Rciążu część 1 Wik trci rchuku /zię dch *) tl głók

Bardziej szczegółowo

1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania

1 Kryterium stabilności. 2 Stabilność liniowych układów sterowania Kryterium stbilości Stbilość liiowych ukłdów sterowi Ukłd zmkięty liiowy i stcjory opisy rówiem () jest stbily, jeŝeli dl skończoej wrtości zkłócei przy dowolych wrtościch początkowych jego odpowiedź ustlo

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

Wyk lad 1 Podstawowe wiadomości o macierzach

Wyk lad 1 Podstawowe wiadomości o macierzach Wyk ld 1 Podstwowe widomości o mcierzch Oznczeni: N {1 2 3 } - zbiór liczb nturlnych N 0 {0 1 2 } R - ci lo liczb rzeczywistych n i 1 + 2 + + n i1 1 Określenie mcierzy Niech m i n bed dowolnymi liczbmi

Bardziej szczegółowo

Zagadnienie Sturma-Liouville a. Definicja : Zagadnieniem Sturma-Liouville a nazywamy równanie różniczkowe postaci

Zagadnienie Sturma-Liouville a. Definicja : Zagadnieniem Sturma-Liouville a nazywamy równanie różniczkowe postaci Zgdieie Sturm-Liouville Defiicj : Zgdieiem Sturm-Liouville zywmy rówie różiczkowe postci p x y x + q x + λ r x y x = 0, x,, λ R gdzie p x, p x, q x, r x są ciągłe, orz x, p x 0 r(x) 0 z wrukmi rzegowymi.

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,

Bardziej szczegółowo