Analiza dokładności i niezawodności synchronizacji czasowej zabezpieczeń w energetyce za pomocą systemów satelitarnych GPS, Galileo i Glonass
|
|
- Bronisława Kowalik
- 8 lat temu
- Przeglądów:
Transkrypt
1 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Anliz dokłdności i niezwodności snchronizcji czsowej zbezpieczeń w energetce z pomocą sstemów stelitrnch GPS, Glileo i Glonss Kierownik prc: dr inż. Aleksnder Lisowiec Współutorz: A. Lisowiec, A. Gcek, K. Mkowiecki, L. Książek, P. Wlzło, Z. Kołodziejczk, B. Dobrowieck, T. Kozłowski, M. Pikiel, J. Wójcik W. Sokół, P. Angielczk, A. Rmrz, K. Skibiński
2 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Cel główn prc: oprcownie koncepcji snchronizcji czsowej urządzeń EAZ, z wkorzstniem sstemów globlnej nwigcji stelitrnej, dedkownch dl sieci Smrt Grid Cele szczegółowe: przeprowdzenie nliz dokłdności i niezwodności snchronizcji czsowej wkorzstującej sstem globlnej nwigcji stelitrnej GPS, Glileo i Glonss, oprcowni procedur snchronizcji czsowej wbrnego urządzeni zbezpieczjącego z wkorzstniem sgnłu ppsgps, oprcownie procedur oznczni zncznikiem czsowm wrtości pomirowch
3 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Anliz dokłdności i niezwodności snchronizcji czsowej wkorzstującej sstem globlnej nwigcji stelitrnej GPS, Glileo i Glonss Znik sgnłu GPS.spowodown zjwiskmi tmosfercznmi jk burze cz silne opd śniegu,.chrkterem terenu (odbiornik umieszczon w terenie górzstm lub w terenie o wsokiej zbudowie), 3.uszkodzeniem nten lub kbl ntenowego (ew. rzdziej smego odbiornik) Zkłócnie sgnłu GPS.niezmierzone przez ndjniki prcujące n zbliżonch lub tch smch częstotliwościch co częstotliwości nośne sgnłu GPS; znne są przpdki zkłócni sgnłów GPS przez ndjniki telewizjne VHF/UHF orz przez rdiolinie prcujące w łączności wojskowej,.zmierzone - brdzo łtwo jest skonstruowć urządzenie zkłócjące sgnł GPS z powodu brdzo młego poziomu sgnłu GPS. Zstępownie sgnłu GPS sgnłem silniejszm o tkiej smej strukturze le niosącm fłszwe dne (ng. spoofing). Spoofing jest dziłniem brdzo niebezpiecznm z punktu widzeni bezpieczeństw sstemu energetcznego, gdż powoduje podstwienie fłszwego zncznik czsu pod zncznik prwdziw co może prowdzić do błędnej interpretcji stnu sstemu energetcznego.
4 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Oprcownie metod snchronizcji czsowej wbrnego urządzeni zbezpieczjącego z wkorzstniem sgnłu ppsgps TRASMISJA Z PRZETW. APIĘCIOWYCH I PRĄDOWYCH Z IYCH CZUJIKÓW TORY WEJŚCIOWE WZMOCIEIE FILTRACJA WSTĘPA PRZETWORIK A/C GEERATOR SYCHR. GPS PRZETWARZAIE DAYCH ZABEZPIECZEIA AALIZA JAKOŚCI EERGII DIAGOSTYKA REJESTRACJA ZAKŁÓCEŃ WYZACZAIE FAZORÓW DLA CZĘST. PODSTAWOWEJ ORAZ HARMOICZYCH pps ODBIORIK GPS Schemt blokow urządzeni EAZ przeznczonego do prc w siecich Smrt Grid wposżonego w funkcję wznczni snchrofzorów
5 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Oprcownie lgortmu snchronizcji częstotliwości genertor kwrcowego z czsem UTC DOGRZEWAIE GEERATORA OCVCO WSTĘPE DOSTRAJAIE GEERATORA OCVCO PRZERWAIE OD WEJŚCIA pps TIMERA T PODZIAŁ f OCVCO PRZEZ 565 PRZERWAIE OD WEJŚCIA OCVCO TIMERA PODZIAŁ f OCVCO PRZEZ 65 T pps DOSTRAJAIE OCVCO W CELU ZACHOWAIA RÓŻICY FAZ pps i 6 khz RÓWEJ 56,5 µs T FAZA PRACY W TRYBIE PODTRZYMYWAYM Algortm dostrjni genertor kwrcowego
6 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Oprcownie lgortmu wznczni wrtości fzorów z próbek sgnłów npięć i prądów fzowch w urządzeniu EAZ Wzncznie fzor dl fli hrmonicznej (t) = A sin(t + φ) przeprowdz się n podstwie skończonego ciągu jej próbek: nt Asinnt, n (5) W wniku otrzmujem fzor Y w jednm z dwóch ukłdów współrzędnch: Biegunowm: Y j Ae (6) Krtezjńskim Y Acos jasin (7)
7 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Stosując podstwienie: sin b sincosb cos sinb Przeksztłcm (t) = A sin(t + φ) do postci: t Asint cos Acos tsin stępnie, podstwijąc orz Acos, Asin, sin t cos t, sprowdzm powższe równnie do postci regresji liniowej: t 0 t 0 0 t t
8 Insttut Tele- i Rdiotechniczn WARSZAWA STATUT 03 Rozwiąznie ukłdu powższch równń stnowi pr estmt i : t t t sin cos A A podstwie powższego ukłdu równń, wznczm osttecznie estmtę mplitud  orz estmtę fz fzor Y: A rctn â â
9 STATUT 03 Insttut Tele- i Rdiotechniczn WARSZAWA Podsumownie W rmch prc zrelizowno wszstkie zmierzone cele.. Przeprowdzono nlizę dokłdności i niezwodności snchronizcji czsowej wkorzstującej sstem globlnej nwigcji stelitrnej GPS, Glileo i Glonss. Wznczono prmetr genertor kwrcowego niezbędne do zpewnieni dokłdności snchronizcji prz zniku sgnłu GPS przez okres jednej dob. Genertor tki o smbolu OCXO0 jest produkown przez ITR.. Oprcowno procedur snchronizcji czsowej wbrnego urządzeni zbezpieczjącego z wkorzstniem sgnłu ppsgps, w szczególności oprcowno moduł wtwrzjąc sgnł snchronizując wkorzstując mikrokontroler STM3F407. Model modułu wkonno wkorzstując ukłd uruchomieniow STM3F4Discover produkcji firm STMicroelectronics. Bdni modułu wkzł, że jest możliwe osiągnięcie złożonej dokłdności sgnłu snchronizującego pomir w trbie prc snchronizownej prz obecności sgnłu GPS jk również w trbie prc podtrzmwnej przez okres dob w wpdku zniku sgnłu GPS. 3. Oprcowno procedur oznczni zncznikiem czsowm wrtości pomirowch wznczonch w postci fzorów. W szczególności oprcowno lgortm wznczni fzorów z próbek sgnłów npięć i prądów orz oprcowno sposób trnsmisji dnch snchrofzorowch. W rmch prc zostł zgłoszon refert n konferencję nd Interntionl Smposium on POWER ELECTROICS, ELECTRICAL DRIVES, AUTOMATIO AD MOTIO. W rmch konferencji jest przewidzin sesj SMART GRID ISSUES.
Modelowanie 3 D na podstawie fotografii amatorskich
Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne
A. Zaborski, Rozciąganie proste. Rozciąganie
. Zborski, Rozciągnie proste Rozciągnie rzkłd Zprojektowć pręt i tk, b przemieszczenie węzł nie przekroczło dopuszczlnej wrtości mm. Dne: R = 50 M, E = 0 G. 5 m m 4 m 80 k Rozwiąznie: równni sttki: sin
Adam Korzeniewski p Katedra Systemów Multimedialnych
Adm Korzeniewski dmkorz@sound.eti.pg.gd.pl p. 73 - Ktedr Sstemów ultimedilnch Filtr FIR jest sstemem o trnsmitncji z z Y z z H z z X relizującm lgortm opisn nstępującm równniem różnicowm n n n n n gdzie
2. Tensometria mechaniczna
. Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki
Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,
Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Analiza matematyczna i algebra liniowa
Anliz mtemtyczn i lgebr liniow Mteriły pomocnicze dl studentów do wykłdów Mcierze liczbowe i wyznczniki. Ukłdy równń liniowych. Mcierze. Wyznczniki. Mcierz odwrotn. Równni mcierzowe. Rząd mcierzy. Ukłdy
ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH
Szybkobieżne Pojzdy Gąsienicowe (14) nr 1, 2001 Andrzej WILK Henryk MADEJ Bogusłw ŁAZARZ ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Streszczenie:
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
± - małe odchylenie od osi. ± - duże odchylenie od osi
TYGONOMETRYCZNE Przjmujm, ż znn są dfinicj i podstwow włsności funkcji trgonomtrcznch. Zprzntujm poniżj kilk prktcznch sposobów szbkigo, prktczngo obliczni wrtości funkcji trgonomtrcznch, rozwiązwni równń
Część 2 7. METODA MIESZANA 1 7. METODA MIESZANA
Część 2 7. METODA MIESZANA 7. 7. METODA MIESZANA Metod mieszn poleg n jednoczesnym wykorzystniu metody sił i metody przemieszczeń przy rozwiązywniu ukłdów sttycznie niewyznczlnych. Nwiązuje on do twierdzeni
ANALIZA WARTOŚCI NAPIĘĆ WYJŚCIOWYCH TRANSFORMATORÓW SN/nn W ZALEŻNOŚCI OD CHARAKTERU I WARTOŚCI OBCIĄŻENIA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE IC JOURNALS No 78 Electricl Engineering 4 Ryszrd NAWROWSKI* Zbigniew STEIN* ri ZIELIŃSKA* ANALIZA WARTOŚCI NAPIĘĆ WYJŚCIOWYCH TRANSFORATORÓW SN/nn W ZALEŻNOŚCI OD
METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO
MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 32, s. 151-156, Gliwice 2006 METODYKA OCENY WŁAŚCIWOŚCI SYSTEMU IDENTYFIKACJI PARAMETRYCZNEJ OBIEKTU BALISTYCZNEGO JÓZEF GACEK LESZEK BARANOWSKI Instytut Elektromechniki,
Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych
Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ
ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A
Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Klucz odpowiedzi do zdń zmkniętch orz schemt ocenini sierpień 0 Poziom Podstwow Klucz punktowni zdń zmkniętch Nr zdni 4 5 6 7 8 9 0 4 5 6 7 8 9 0 4 5 Odpowiedź D A B D C B B C C B A C D D C B C A D D C
Instytut Mechatroniki i Systemów Informatycznych. Podstawy pomiaru i analizy sygnałów wibroakustycznych wykorzystywanych w diagnostyce
ĆWICZEIE 1 Podstwy pomiru i nlizy sygnłów wibrokustycznych wykorzystywnych w dignostyce Cel ćwiczeni Poznnie podstwowych, mierzlnych wrtości procesów wibrokustycznych wykorzystywnych w dignostyce, metod
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Różniczkowanie i całkowanie numeryczne
Modelownie i obliczeni techniczne Metody numeryczne w modelowniu: Różniczkownie i cłkownie numeryczne Pochodn unkcji Pochodn unkcji w punkcie jest deiniown jko grnic ilorzu różnicowego (jeżeli istnieje):
KONKURS MATEMATYCZNY STOŻEK 2007/ Na rozwiązanie 10 zadań masz 90 minut. 2. Dokładnie czytaj treści zadań i udzielaj odpowiedzi.
KONKURS MATEMATYCZNY STOŻEK 007/008 1. N rozwiąznie 10 zdń msz 90 minut.. Dokłdnie cztj treści zdń i udzielj odpowiedzi.. W rozwiąznich zdń przedstwij swój tok rozumowni.. Rozwiązni zpisuj długopisem,
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I rok kdemicki 01/013 Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew
ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etapy rozwiązania zadania , 3 5, 7
Próbn egzmin mturln z mtemtki Numer zdni ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY Etp rozwiązni zdni Liczb punktów Podnie wrtości b: b = Sporządzenie wkresu funkcji g Uwgi dl egzmintorów 4 Krzw
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby
KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH
KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli
Wyznacznik macierzy. - wyznacznik macierzy A
Wzncznik mcierz Uwg Wzncznik definiujem tlko dl mcierz kwdrtowch:,,,,,, =,,,,,, n n n n nn n,,, det = n,,, n n nn - mcierz - wzncznik mcierz Wzncznik mcierz to wzncznik n wektorów, które stnowią kolumn
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
1. Określ monotoniczność podanych funkcji, miejsce zerowe oraz punkt przecięcia się jej wykresu z osią OY
. Określ ootoiczość podch fukcji, iejsce zerowe orz pukt przecięci się jej wkresu z osią OY ) 8 ) 8 c) Określjąc ootoiczość fukcji liiowej = + korzst z stępującej włsości: Jeżeli > to fukcj liiow jest
Wykład 6 Dyfrakcja Fresnela i Fraunhofera
Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie
Metody Lagrange a i Hamiltona w Mechanice
Metody Lgrnge i Hmilton w Mechnice Mriusz Przybycień Wydził Fizyki i Informtyki Stosownej Akdemi Górniczo-Hutnicz Wykłd 3 M. Przybycień (WFiIS AGH) Metody Lgrnge i Hmilton... Wykłd 3 1 / 15 Przestrzeń
KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC
KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule
MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań
MTMTYK Przed próbną mturą. Sprwdzin. (poziom podstwow) Rozwiązni zdń Zdnie. ( pkt) 0,() < P.. Uczeń przedstwi liczb rzeczwiste w różnch postcich. Odpowiedź:., czli < Zdnie. ( pkt) P.. Uczeń rozwiązuje
Rozwiązania maj 2017r. Zadania zamknięte
Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:
WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość
e) Kwadrat dowolnej liczby b) Idź na dwór! całkowitej jest liczbą naturalna. c) Lubisz szpinak? f) 12 jest liczbą pierwszą. d) 3 2 =10.
Zdnie. Cz poniższe wrżeni są zdnimi logicznmi: ) wczorj pdł deszcz. e) Kwdrt dowolnej liczb b) Idź n dwór! cłkowitej jest liczbą nturln. c) Lubisz szpink? f) jest liczbą pierwszą. d) =0. Zdni. Podj zprzeczeni
ZADANIA ZAMKNIĘTE. Zadanie 1 (1p). Ile wynosi 0,5% kwoty 120 mln zł? A. 6 mln zł B. 6 tys. zł C. 600 tys. zł D. 60 tys. zł
TRZECI SEMESTR LICEUM OGÓLNOKSZTAŁCĄCEGO DLA DOROSŁYCH PRACA KONTROLNA Z MATEMATYKI ROZSZERZONEJ O TEMACIE: Liczby rzeczywiste i wyrżeni lgebriczne Niniejsz prc kontroln skłd się z zdń zmkniętych ( zdń)
LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&
LISTA: Projektownie ukłdów drugiego rzędu Przygotownie: 1. Jkie włsności m równnie -ego rzędu & &+ b + c u jeśli: ) c>; b) c; c) c< Określ położenie biegunów, stbilność, oscylcje Zdni 1: Wyzncz bieguny.
Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL
Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA
Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony
Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży
2. Funktory TTL cz.2
2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)
Aprioryczna ocena niezawodności segmentowych łożysk wzdłużnych podpartych zespołami sprężyn śrubowych
AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZCA W KRAKOWIE mgr inż. Piotr GRĄDKOWSKI Apriorczn ocen niezwodności segmentowch łożsk wzdłużnch podprtch zespołmi sprężn śruowch Rozprw doktorsk 4 listopd
Całkowanie. dx d) x 3 x+ 4 x. + x4 big)dx g) e x 4 3 x +a x b x. dx k) 2x ; x 0. 2x 2 ; x 1. (x 2 +3) 6 j) 6x 2. x 3 +3 dx k) xe x2 dx l) 6 1 x dx
Wydził Mtemtyki Stosownej Zestw zdń nr 5 Akdemi Górniczo-Hutnicz w Krkowie WFiIS, informtyk stosown, I rok Elżbiet Admus 3 listopd 6r. Cłk nieoznczon Cłkownie. Podstwowe metody cłkowni Zdnie. Oblicz cłki:
CAŁKOWANIE NUMERYCZNE
Wprowdzenie Kwdrtury węzły równoodległe Kwdrtury Guss Wzory sumcyjne Trnsport, studi niestcjonrne I stopni, semestr I Instytut L-5, Wydził Inżynierii Lądowej, Politechnik Krkowsk Ew Pbisek Adm Wostko Wprowdzenie
f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)
Cłk oznczon Cłkę oznczoną będziemy zpisywli jko f(x)dx (.) z fnkcji f(x), któr jest ogrniczon w przedzile domkniętym [, b]. Jk obliczyć cłkę oznczoną? Obliczmy njpierw cłkę nieoznczoną z fnkcji f(x), co
Przykład 2.5. Figura z dwiema osiami symetrii
Przkłd 5 Figur z dwiem osimi smetrii Polecenie: Wznczć główne centrlne moment bezwłdności orz kierunki główne dl poniższej figur korzstjąc z metod nlitcznej i grficznej (konstrukcj koł Mohr) 5 5 5 5 Dl
WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:
YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą
Wektory [ ] Oczywiście wektor w przestrzeni trójwymiarowej wektor będzie miał trzy współrzędne. B (x B. , y B. α A (x A, y A ) to jest wektor
Wektor N fizce w szkole średniej spotkcie się z dwom tpmi wielkości fizcznch. Jedne z nich, np. ms, tempertur, łdunek elektrczn są opiswne przez jedną liczę; te nzwm wielkościmi sklrnmi, w skrócie - sklrmi.
4. RACHUNEK WEKTOROWY
4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
LISTA ZADAŃ Z MECHANIKI OGÓLNEJ
. RCHUNEK WEKTOROWY LIST ZDŃ Z MECHNIKI OGÓLNEJ Zd. 1 Dne są wektor: = i + 3j + 5k ; b = i j + k. Oblicz sumę wektorów e = + b orz kosinus kątów, jkie tworz wektor e z osimi ukłdu ( kosinus kierunkowe
Ć W I C Z E N I E N R E-14
INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.
Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1
Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem
PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,
Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie
Karta oceny merytorycznej wniosku o dofinansowanie projektu konkursowego PO KL 1
Złącznik nr 3 Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL Krt oceny merytorycznej wniosku o dofinnsownie projektu konkursowego PO KL 1 NR WNIOSKU KSI: POKL.05.02.01 00../..
Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw
AMME 1 1th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zstosownie nlizy widmowej sygnłu ultrdwikowego do okreleni gruboci cienkich wrstw A. Kruk Wydził Metlurgii i Inynierii Mteriłowej, Akdemi Górniczo-Hutnicz
POROZUMIENIE. zawarte w dniu 16 maja 2014 r. w Warszawie, zwane dalej Porozumieniem, pomiędzy:
POROZUMIENIE w sprwie przeprowdzeni pilotżu systemu komunikcji dl osób niedosłyszących (pętle indukcyjne przenośne) w jednostkch obsługujących użytkowników publicznie dostępnych usług telefonicznych orz
Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)
Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu
Przetworniki Elektromaszynowe st. n. st. sem. V (zima) 2018/2019
Kolokwium główne Wrint A Przetworniki lektromszynowe st. n. st. sem. V (zim 018/019 Trnsormtor Trnsormtor trójzowy m nstępujące dne znmionowe: S 00 kva 50 Hz HV / LV 15 ±x5% / 0,4 kv poł. Dyn Pondto widomo,
Rozwiązywanie zadań z dynamicznego ruchu płaskiego część I 9
ozwiązywnie zdń z dyniczneo ruchu płskieo część I 9 Wprowdzenie ozwiązywnie zdń w oprciu o dyniczne równni ruchu (D pole n uwolnieniu z więzów kżdeo z cił w sposób znny ze sttyki. Wrunki równowi są zbliżone
Matematyka stosowana i metody numeryczne
Ew Pbisek Adm Wostko Piotr Pluciński Mtemtyk stosown i metody numeryczne Konspekt z wykłdu 0 Cłkownie numeryczne Wzory cłkowni numerycznego pozwlją n obliczenie przybliżonej wrtości cłki: I(f) = f(x) dx
STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI
INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,
Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa
Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1
Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH
Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.
STYLE. TWORZENIE SPISÓW TREŚCI
STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub
Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.
1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od
Integralność konstrukcji
1 Integrlność konstrukcji Wykłd Nr 5 PROJEKTOWANIE W CELU UNIKNIĘCIA ZMĘCZENIOWEGO Wydził Inżynierii Mechnicznej i Robotyki Ktedr Wytrzymłości, Zmęczeni Mteriłów i Konstrukcji http://zwmik.imir.gh.edu.pl/dydktyk/imir/index.htm
LABORATORIUM PODSTAW ELEKTRONIKI CZWÓRNIKI BIERNE
ZESPÓŁ LABOATOIÓW TELEMATYKI TANSPOT ZAKŁAD TELEKOMNIKACJI W TANSPOCIE WYDZIAŁ TANSPOT POLITECHNIKI WASZAWSKIEJ LABOATOIM PODSTAW ELEKTONIKI INSTKCJA DO ĆWICZENIA N CZWÓNIKI BIENE DO ŻYTK WEWNĘTZNEGO WASZAWA
EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 Zadania dla grupy elektronicznej na zawody II stopnia
EOELEKTA Ogólnopolsk Olimpid Wiedzy Elektrycznej i Elektronicznej ok szkolny 204/205 Zdni dl grupy elektronicznej n zwody stopni Zdnie Dl diody półprzewodnikowej, której przeieg chrkterystyki prądowo-npięciowej
Materiały diagnostyczne z matematyki poziom podstawowy
Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:
Opis i analiza metod pomiaru prędkości kątowej. Prądnice tachometryczne.
Opis i nliz metod pomiru prędkości kątowej. Prądnice tcometryczne. Prądnice tcometryczne są to młe prądnice elektryczne, któryc npięcie wyjściowe zwier informcję o prędkości obrotowej, w niektóryc przypdkc
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
f(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego
- projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć
POMIARY RZECZYWISTYCH WARTOŚCI SKUTECZNEJ POWIERZCHNI ODBICIA BIERNYCH REFLEKTORÓW RADAROWYCH NA PRZYKŁADZIE REFLEKTORA CYCLOPS 1
PRACE WYDZIAŁU NAWIGACYJNEGO nr 22 AKADEMII MORSKIEJ W GDYNI 2008 ANDRZEJ SZKLARSKI Akdemi Morsk w Gdyni Ktedr Nwigcji POMIARY RZECZYWISTYCH WARTOŚCI SKUTECZNEJ POWIERZCHNI ODBICIA BIERNYCH REFLEKTORÓW
Rozdzielnice niskiego napięcia
Rozdzielnice niskiego npięci 6 / Inne produkty niskiego npięci 6. / blice pomiru energii elektrycznej Sktlogowne w oprcowniu rozwiązni tblic pomirowych służyć mogą budowie nowych ukłdów pomirowo-rozliczeniowych
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. I poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile. LICZBY RZECZYWISTE Kl. I poziom podstwowy podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE Ib ZAKRES PODSTAWOWY
. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje liczbę do odpowiedniego zbioru liczb stosuje cechy podzielności
ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH
Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh
Wymagania edukacyjne z matematyki
Wymgni edukcyjne z mtemtyki LICEUM OGÓLNOKSZTAŁCĄCE Kls II Poniżej przedstwiony zostł podził wymgń edukcyjnych n poszczególne oceny. Wiedz i umiejętności konieczne do opnowni (K) to zgdnieni, które są
Rolainformatykiwnaukach ekonomicznychispoųecznych
Rolinformtkiwnukch ekonomicznchispoųecznch Innowcjeiimplikcjeinterdscplinrne redkcj ZBIGNIEWE.ZIELIFSKI TOM Recenzjnukow prof.zw.drhb.tdeuszgrbiŷski Wdwnictwo WǏszejSzkoųHndlowej Kielce009 PublikcjwdrukownzostųzgodniezmteriųemdostrczonmprzezAutorów.
Projektowanie układów sterowana. dr inż. Anna Czemplik (C-3/317a) Katedra Automatyki, Mechatroniki i Systemów Sterowania
Projekownie kłdów serown dr inż. Ann zeplik -/7 edr Aoyki, Mechroniki i Syseów Serowni hp://www.k.pwr.ed.pl/ Wyszkiwrk zjęci, konslcje hp://nn.czeplik.sff.iir.pwr.wroc.pl -> rsy -> Projekownie kłdów serowni
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Instytut Mtemtyki Politechniki Poznńskiej Cłki oznczone. Definicj cłki oznczonej Niech dn będzie funkcj f ciągł w przedzile [, b]. Przedził [, b] podziey n n podprzedziłów punktmi = x < x
WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ
Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
IDENTIFICATION OF THE GAS DYNAMIC PROCESSES IN A SUPERCHARGING PULSATING SYSTEM A SHIP IC ENGINE
Journl of KONES Internl Combustion Engines 2002 No. 1 2 ISSN 1231 4005 IDENTIFICATION OF THE GAS DYNAMIC PROCESSES IN A SUPERCHARGING PULSATING SYSTEM A SHIP IC ENGINE Zbigniew KORCZEWSKI Instytut Technicznej
Wyrównanie sieci niwelacyjnej
1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
Pakiet aplikacyjny. Specjalista ds. rozliczeń i administracji [Pomorze] ADM/2011/01
Pkiet plikcyjny Stnowisko: Nr referencyjny: Specjlist ds. rozliczeń i dministrcji [Pomorze] ADM/2011/01 Niniejszy pkiet zwier informcje, które musisz posidć zgłszjąc swoją kndydturę. Zwier on: List do
Ćwiczenie 9. BADANIE UKŁADÓW ZASILANIA I STEROWANIA STANOWISKO I. Badanie modelu linii zasilającej prądu przemiennego
ortorium elektrotechniki Ćwiczenie 9. BADAIE UKŁADÓ ZASIAIA I STEOAIA STAOISKO I. Bdnie modelu linii zsiljącej prądu przemiennego Ukłd zowy (ez połączeń wrintowych) 30 V~ A A A 3 3 3 A 3 A 6 V 9 0 I A
Sterowanie wirnikiem łożyskowanym magnetycznie w obróbce powierzchni n-falowych
Pomiry Automtyk Rootyk /5 Sterownie wirnikiem łożyskownym mgnetycznie w oróce powierzchni n-flowych Zdzisłw Gosiewski Arkdiusz Mystkowski * Przedstwiono wyniki dń n-flowego ruchu nieorcjącego się wirnik
Metodologia szacowania wartości docelowych dla wskaźników wybranych do realizacji w zakresie EFS w Regionalnym Programie Operacyjnym Województwa
Metodologi szcowni wrtości docelowych dl wskźników wybrnych do relizcji w zkresie EFS w Regionlnym Progrmie percyjnym Województw Kujwsko-Pomorskiego 2014-2020 Toruń, listopd 2014 1 Spis treści I. CZĘŚĆ
WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach
Mtemtyk I WYKŁD. ypy mcierzy, dziłni n mcierzch, mcierz ukłdu równń. Podstwowe widomości o mcierzch Ogóln postć ukłdu m równń liniowych lgebricznych z n niewidomymi x x n xn b x x n xn b, niewidome: x,
Temat lekcji Zakres treści Osiągnięcia ucznia
ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:
Trapez. w trapezie przynamniej jedna para boków jest równoległa δ γ a, b podstawy trapezu. c h d c, d - ramiona trapezu α β h wysokość trapezu
9. 5. WŁASNOŚCI MIAROWE CZWOROKĄTÓW Trpez w trpezie przynmniej jen pr oków jest równoległ δ γ, postwy trpezu c h c, - rmion trpezu α β h wysokość trpezu + 80 α δ β + γ 80 x `Ocinek łączący śroki rmion
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
Metoda superpozycji: Sesja poprawkowa. Wykład 1
Elektrotehnik wykłd Metod superpozyji: E i 8V, E i V Sesj poprwkow Wykłd Zdni Wykłd e d e d E U U E e d 0.77..087 0.7 0.9 0.9.7... Grup : d pkt, d pkt, dst 8 pkt Termin 0. Symole stosowne n shemth. Zsdy
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
Równania i nierówności kwadratowe z jedną niewiadomą
50 REPETYTORIUM 31 Równni i nierówności kwdrtowe z jedną niewidomą Równnie wielominowe to równość dwóch wyrżeń lgebricznych Kżd liczb, któr po podstwieniu w miejscu niewidomej w równniu o jednej niewidomej
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętych i schemt ocenini zdń otwrtych Klucz odpowiedzi do zdń zmkniętych 4 5 6 7 8 9 0 4 5 6 7 8 9 0 D D D Schemt ocenini zdń otwrtych Zdnie (pkt) Rozwiąż nierówność x + x+ 0