ELIMINACJA DRGAŃ MASZYN dynamiczny eliminator drgań mechanicznych
|
|
- Marta Zych
- 8 lat temu
- Przeglądów:
Transkrypt
1 LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zarządzania Załad Wibroaustyi i Bio-Dynaii Systów Ćwiczni nr Cl ćwicznia: ELIMINACJA DRGAŃ MASZYN dynaiczny liinator drgań chanicznych Minializacja drgań aszyny wirniowj (silnia ltryczngo) poprzz zastosowani dynaiczngo liinatora drgań; "strojni" uładu drgającgo o jdny stopniu swobody (liinatora) na żądaną częstotliwość. Poznani podstaw torii liinacji drgań. Poznani własności uładu drgającgo o dwóch stopniach swobody. Wyposażni stanowisa:. Modl aszyny wirniowj: silni ltryczny posadowiony na wibroizolatorach (sprężyny) z dołączonyi liinatorai drgań.. Przyrządy i aparatura: suwiara, lapa strobosopowa, pizoltryczny prztworni przyspiszń drgań, irni drgań, nanowoltoirz sltywny (woltoirz z filtrai środowo-przpustowyi). Litratura:. Dn Hartog: Drgania chaniczn, PWN, Warszawa 97; Rozdz... Nitłuiony dynaiczny liinator drgań; Rozdz... Tłuiony dynaiczny liinator drgań.. C. Cpl: Drgania chaniczn. Wprowadzni, srypt PP Nr 6 98; Rozdz Rducja drgań, wibroizolacja; Rozdz Eliinacja i izolacja drgań.. Z. Osińsi: Tłuini drgań chanicznych, PWN, Warszawa 979; Rozdz. 6. Sztuczn tłuini drgań. Zagadninia ontroln:. Czynna i birna liinacja drgań.. Klasyfiacja birnych liinatorów drgań.. Istota działania dynaiczngo liinatora drgań. 4. Dynaiczny liinator drgań jao liinator rzonansowy. Optyalna liinacja drgań. 5. Orślić różnic pojęciow iędzy wibroizolacją i liinacją drgań. 6. Wpływ tłuinia na drgania swobodn uładu o jdny stopniu swobody..
2 . METODY OBNIŻANIA ODDZIAŁYWAŃ DYNAMICZNYCH PODSTAWY TEORETYCZNE Praca aszyn i urządzń, oprócz ralizowania właściwych i procsów tchnologicznych, jst źródł obciążń dynaicznych. Ja wiadoo z chanii, nizrównoważon, często zinn w czasi, siły są źródł dodatowych procsów w ty przypadu drgań. Są to procsy zbędn a nawt szodliw dla saych aszyn ja i dla ludzi. Stąd tż powstaj potrzba ich inializacji. Idę inializacji drgań chanicznych ożna przdstawić przyjując, ż rozpatrywany obit chaniczny, tórgo drgania inializujy, stanowi dwójni (obit cybrntyczny z jdny wjści i jdny wyjści) ja to poazano na rysunu. wjści wyjści {F(t)} H[{}, {}, {c}] {X(t)} oddziaływania siłow ruch uładu - drgania Rys.. Ogólny odl gnracji drgań Stąd tż ożna stwirdzić, ż drgania rozpatrywango uładu chaniczngo zalżą od: zwnętrznych oddziaływań siłowych {F(t))}, własności chanicznych asowych {}, sprężystych {}, i stratnych {c} obitu H[{}, {}, {c}], co ogólni da się zapisać następująco: { X () t } F { F ( t) },H [{ },{ },{ c} ] = () Stąd tody inializacji drgań ożna podzilić na dwi zasadnicz grupy: todę bzpośrdnią polgającą na szroo rozuianj ziani wyuszń w dzidzini aplitud i częstotliwości ziana {F(t)} w laboratoriu jst ona ilustrowana w ćwiczniu 4, tody pośrdni polgając na ziani własności dynaicznych uładu chaniczngo ziana H[{}, {}, {c}]; oży tu doonać podziału na trzy podstawow grupy: o ziana wartości paratrów dynaicznych uładu bz ziany jgo strutury; w laboratoriu baday wyznaczani zastępczych paratrów dynaicznych prostj bli z asą supioną ćwiczni, o wibroizolacja polgająca za wprowadzniu ziany strutury uładu - przrwani strutury przz wprowadzni dodatowgo uładu chaniczngo poiędzy obit a podłoż w laboratoriu prowadziy badania własności wibroizolacyjnych atriałów ćwiczni, o liinacja drgań polgająca na dołączniu do badango obitu dodatowgo uładu chaniczngo ta toda inializacji drgań jst przdiot badań w ty ćwiczniu.
3 . DYNAMICZNY ELIMINATOR DRGAŃ Eliinator drgań jst dodatowy uład chaniczny dołączony do uładu, tórgo drgania chcy znijszyć. W zalżności od rodzaju sprzężnia obu poduładów oży wyróżnić rodzaj liinatorów drgań (prost odl fizyczn poazano na rysunu ): sztywn połączni ziana asy uładu chroniongo, połączni sprężysto dyssypatywn - liinator dynaiczny, połączni dyssypatywn liinator wisotyczny Nwtona, połączni cirn liinator cirny Lanchastr a, połącznia rótotrwał - zdrznia liinator udrzniowy. K x y M a) dodatow dołożni asy C F(t) = F sin(ω t) b) liinator dynaiczny c c c) liinator wisotyczny f t d) liinator cirny R d ) liinator zdrzniowy () () b) liinator dynaiczny - siła wzajngo oddziaływania M ( ) ( ) c) liinator wisotyczny - siła wzajngo oddziaływania FM = c( x& y& ), d) liinator cirny - siła wzajngo oddziaływania F = f sign( x& y& ), Rys.. Modl liinatorów drgań; a) dodatow dołożni asy y t = x t, F = c x& y& + x y, F M ) liinator zdrzniowy - siła wzajngo oddziaływania M = ( + R) ( x& y& ) x& y& [ δ ( x y d ) + δ ( x y d )], M + M + gdzi d jst luz w uładzi a δ(z) jst psudofuncją Dirac a t
4 Rozpatrzy dynaię uładu chroniongo {M, K, C}, tórgo przyczyną ruchu jst siła haroniczna F sin(ω t) z liinator dynaiczny {,, c } przdstawiongo schatyczni na rysunu. K x y M C c F(t) = F sin(ω t) Rys.. Schat uładu chroniongo z dynaiczny liinator drgań Równania ruchu uładu przdstawiają zalżności (): Mx & + Cx& + && x c Kx + c( x& y& ) + ( x y) = F sin( ( x& y& ) ( x y) = Rozwiązani uładu równań () oży zapisać w postaci: x = Asin( ωt α ), y = B sin( ω t β ), ) ωt, gdzi aplitudy A i B oraz przsunięcia fazow α i β od paratrów dynaicznych uładu i paratrów wyusznia: A = A( M,K,C,,,c,F, ω), B = B( M,K,C,,,c,F, ω), α = α( M,K,C,,,c,F, ω), β = β ( M,K,C,,,c,F, ω) Przyładowo przbigi aplitud drgań: uładu chroniongo bz liinatora A, uładu chroniongo z liinator A oraz liinatora drgań B dla wybranych paratrów uładu i wyusznia poazano a rysunu 4. () () bzwyiarowa aplituda drgań Z A A B optiu bzwyiarowa częstość wyusznia δ F Z = F = Z Mg =, ξ = C Rys. 4 Przbig aplitud drgań analizowango uładu KM =., μ = M =., ε = ( Mg K ), Z = { A,A,B}, δ = ω ω, ω = K M K =., γ = c C =.5 4
5 Dla ałych tłuiń w uładzi = C aplitudy drgań A, A i B ożna zapisać: A c = F A = F B = F ( K Mω ) ( K ( K + + co graficzni, dla przdstawiono na rysunu 5. bzwyiarowa aplituda drgań Z A B A optiu ( Mω )( Mω )( ω ) ω ) ω ).5.5 bzwyiarowa częstość wyusznia δ (4) Rys. 5 Przbig aplitud drgań analizowango uładu dla ałych tłuiń F = F Mg =, C = c, μ = M =., ε = K., = Z postaci rozwiązań (4), zilustrowanych na rysunu 5, wynia, ż w przypadu gdy: ε ω = δ = (5) μ aplituda drgań A asy chronionj M będzi iała wartość zrową (rzywa czrwona). Warto przy ty zauważyć, ż aplituda drgań asy a wtdy wartość: F B = (6) Warun (5) jst waruni dynaicznj liinacji drgań za poocą dołączongo dodatowgo uładu chaniczngo liinatora dynaiczngo. Zalżność (6) poazuj, ż w warunach liinacji drgań uład dołączony ni znajduj się w stani drgań rzonansowych. Porównując przbigi aplitud drgań asy M z liinator przdstawion na rysunach 4 i 5 łatwo zauważyć, ż dla tłuiń różnych od zra, C i c aplituda A osiąga iniu dla ω. Stąd przy założniu, ż asa liinatora drgań jst stała i powinna być znaczni nijsza od asy uładu główngo. M, oży wyznaczyć optyalną sztywność liinatora. Tłuini liinatora dobiray zgodni z zasadą podaną w []. 5
6 . STANOWISKO BADAWCZE Stanowiso badawcz słada się z dwóch części: badango obitu silni ltryczny z dwoa niwyważonyi statyczni tarczai (), tórgo drgania liinujy za poocą liinatorów dynaicznych, sładających się z dwóch jdnostronni utwirdzonych bl z dodatowyi asai (), uładu poiarowgo przdstawiongo i opisango na rysunu Rys. 6. Schat stanowisa badawczgo; obit, tórgo drgania liinujy, dynaiczn liinatory drgań, pizoltryczny prztworni drgań, 4 wzacniacz poiarowy, 5 filtr środowoprzpustowy, 6 oscylosop, 7 strobosop. 4. PRZEBIEG ĆWICZENIA: A) Narysować schat bloowy stanowisa badawczgo oż być on różny od przdstawiongo wyżj sprawdzić. B) Wyznaczyć częstotliwość obrotów aszyny (silnia ltryczngo): z tabliczi znaionowj na silniu odczytać liczbę obrotów i tratując tą wartość jao przybliżoną doonać strobosop poiaru liczby obrotów aszyny, poiar liczby obrotów sprawdzić odpowidni ustawini częstotliwości środowj filtra środowo-przpustowgo. C) Obliczyć, orzystając z odli liinatora drgań poazango na rysunu 7, długość tortyczną lntów sprężystych liinatora i dobrać analityczni jgo paratry do uprzdnio zirzonj częstotliwości obrotów aszyny. D) Doonać poiaru przyspiszń drgań orpusu aszyny bz as liinatorów: bz filtracji i z zastosowaną filtracją środowo przpustową sygnału drgań (f śr = f obr ). Wynii poiarów zapisać w tablicy poiarowj poz.. 6
7 D) Po założniu as liinatorów, dla inialnj długości (zabloować asy na lntach sprężystych liinatorów) doonać poiaru przyspiszń drgań orpusu aszyny bz filtracji i z zastosowaną filtracją środowo przpustową sygnału drgań. W tablicy poiarowj poz.. a) f = π b) EI =, x f = π x c) A A - A h A x b EI =, f =, = +.ρsx + ρs x π ( l - x ) = Rys. 7. Modl dynaiczngo liinatora drgań; a) odl dysrtny, b) prosty odl ciągły, c) uład rzczywisty F) Przprowadzić poiary drgań dla oljnych długości lntów sprężystych liinatorów, rozpoczynając od 5, do pirwszgo wzrostu wartości przyspisznia poz. w tablicy poiarowj. G) Orślić czynną długość liinatora, przy tórj aplituda drgań obudowy silnia jst najnijsza. H) Porównać wyznaczoną spryntalni czynną długość bli liinatora z wartością wyznaczoną analityczni i zastanowić się nad przyczynai różnic. 5. SPRAWOZDANIE Z PRZEBIEGU ĆWICZENIA: W sprawozdaniu nalży przdstawić: A). Opis przbigu ćwicznia. B). Ocnę pratycznj sutczności liinacji drgań dla zirzonych wilości fizycznych; C). Wyrsy funcji aplitud w zalżności od długości czynnj liinatora z zaznaczni optyalnj długości, oraz obliczonj tortyczni,,i bh 7
8 TABLICA POMIAROWA Opis sytuacji poiarowj Przyspiszni a (bz filtra) Przyspiszni a (z filtr środowoprzpustowy o częstotliwości f śr =... Hz) Jdnosta [/s ] [/s ]. Poiar drgań aszyny bz as liinatorów - stan wyjściowy Uwagi:. Poiar drgań z asai liinatorów dla inialnj długości l = (obsrwacja wpływu dołożnia do uładu dodatowj asy). Ziana długości lntów sprężystych l (co ) a) l = 5 - długość czynna lntów sprężystych. b) c) d) ) - aż do ontu pirwszgo wzrostu aplitudy irzonj wilości. 8
DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH
LABORATORIUM DYNAMIKI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mchaniki Stosowanj Zakład Wibroakustyki i Bio-Dynamiki Systmów Ćwiczni nr 3 Cl ćwicznia: DYNAMICZNA ELIMINACJA DRGAŃ MECHANICZNYCH
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM WIBROAUSTYI MASZYN Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych
Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych
Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i
BADANIA CHARAKTERYSTYK STATYCZNYCH WIBROIZOLATORÓW
ĆWICZEIA LABORATORYJE Z WIBROIZOLACJI: BADAIA CHARAKTERYSTYK STATYCZYCH WIBROIZOLATORÓW 1. WSTĘP Stanowisko laboratoryjne znajduje się w poieszczeniu hali technologicznej w budynku C-6 Politechniki Wrocławskiej.
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
W-24 (Jaroszewicz) 22 slajdy Na podstawie prezentacji prof. J. Rutkowskiego. Cząstka w studni potencjału. przykłady efektu tunelowego
Kyongju, Kora, April 999 W-4 (Jaroszwicz) slajdy Na podstawi przntacji prof. J. Rutowsigo Fizya wantowa 3 Cząsta w studni potncjału sończona studnia potncjału barira potncjału barira potncjału o sończonj
WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.
ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE ateriały uzupełniające do ćwiczeń Wydział Saochodów i Maszyn Roboczych studia inżyniersie prowadzący: gr inż. Sebastian Korcza część 6 ułady dysretne o wielu stopniach swobody Poniższe
DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH
Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Przejścia międzypasmowe
Pzjścia iędzypasow Funcja diltyczna Pzjścia iędzypasow związan są z polayzacją cuy ltonowj wwnątz dzni atoowyc - są odpowidzialn za część funcji diltycznj ε Wóćy do foalizu funcji diltycznj: ε las N (
INSTRUKCJA DO ĆWICZENIA NR 5
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 5 PRZEDMIOT TEMAT OPRACOWAŁ MODELOWANIE UKŁADÓW MECHANICZNYCH Badania analityczne układu mechanicznego
6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły
6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü
PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.
MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz
Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia
Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie
Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2
Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach
Ruch harmoniczny wózek na linii powietrznej
COACH 11 Ruch haroniczny wózek na linii powietrznej Progra: Coach 6 Projekt: na ZMN060C CMA Coach Projects\PTSN Coach 6\ Drgania haroniczne Ćwiczenia: ruch haroniczny.ca, Model.ca, Model1.ca Teaty: 1.
Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań
KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.
Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.
A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna
PROTOKÓŁ POMIAROWY LABORATORIUM OBWODÓW I SYGNAŁÓW ELEKTRYCZNYCH Grupa Podgrupa Numer ćwiczenia
PROTOKÓŁ POMAROWY LABORATORM OBWODÓW SYGNAŁÓW ELEKTRYCNYCH Grupa Podgrupa Numr ćwicznia 4 Nazwisko i imię Data wykonania ćwicznia Prowadzący ćwiczni 3. Podpis 4. Data oddania 5. sprawozdania Tmat CWÓRNK
DRGANIA MECHANICZNE. Poniższe materiały tylko dla studentów uczęszczających na zajęcia. Zakaz rozpowszechniania i powielania bez zgody autora.
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część 3 drgania wymuszone siłą harmoniczną drgania
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnia Gdańsa Wydział Eletrotechnii i Autoatyi Katedra Inżynierii Systeów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Systey ciągłe budowa odeli enoenologicznych z praw zachowania Materiały poocnicze
Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ
Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
gdzie ω jest częstością kołową. Rozwiązaniem powyższego równania różniczkowego II-go stopnia jest wyrażenie (2) lub ( )
RUCH HARMONICZNY I. Ce ćwiczenia: wyznaczenie wartości przyspieszenia zieskiego poiar współczynnika sprężystości sprężyny k, zaznajoienie się z podstawowyi wiekościai w ruchu haroniczny. II. Przyrządy:
STEROWANIE STRUKTUR DYNAMICZNYCH. Zastosowanie sterowania typu Sky-hook w układach redukcji drgań
STEROWANIE STRUKTUR DYNAMICZNYCH Zastosowanie sterowania typu Sy-hoo w uładach reducji drgań gr inż. Łuasz Jastrzębsi Katedra Autoatyzacji Procesów - Aadeia Górniczo-Hutnicza Kraów, 20 LISTOPADA 2013 Plan
Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,
sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża
Laboratorium Mechaniki Technicznej
Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22
Rys. 1. Rozwiązanie zadania rozpoczniemy od wyznaczenia wartość momentów zginających wywołanych działaniem siły 20[kN]. Rys. 2
Dynaika Drgania wyuszone nietłuione - Raa /9 Dynaika Drgania wyuszone nietłuione Raa Wyznaczyć siły kinetyczne działające na raę jak na rysunku, obciążoną zienna haronicznie siłą P o. Przyjąć następujące
PODSTAWY AUTOMATYKI 6. Typowe obiekty i regulatory
Politchnia Warszawsa Instytt Atomatyi i Robotyi Prof. dr hab. inż. Jan Macij Kościlny PODSAWY AUOMAYKI 6. yow obity i rglatory Obit rglacji 2 Dwojai sns: - rocs o orślonych własnościach statycznych i dynamicznych,
Zagadnienie statyki kratownicy płaskiej
Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych
ĆWICZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych RLC przy wymuszeniu sinusoidalnie zmiennym
ĆWIZENIE 5 Badanie stanów nieustalonych w obwodach szeregowych R przy wyuszeniu sinusoidaie zienny. el ćwiczenia Zapoznanie się z rozpływe prądów, rozkłade w stanach nieustalonych w obwodach szeregowych
Szeregowy obwód RC - model matematyczny układu
Akadmia Morska w Gdyni Katdra Automatyki Okrętowj Toria strowania Mirosław Tomra Na przykładzi szrgowgo obwodu lktryczngo składającgo się z dwóch lmntów pasywnych: rzystora R i kondnsatora C przdstawiony
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
5.3. WIBROIZOLACJA MASZYN I URZĄDZEŃ
5.3. WIBROIZOLACJA MASZYN I URZĄDZEŃ Dotychczas zajmowaliśmy się środkami redukcji drgań w ich źródle, poprzez zmianę parametrów siły wymuszającej, zmianę parametrów układu drgającego bądź przez dołączenie
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Zaliczenie wykładu Technika Analogowa Przykładowe pytania (czas zaliczenia minut, liczba pytań 6 8)
Zaliczenie wyładu Technia Analogowa Przyładowe pytania (czas zaliczenia 3 4 minut, liczba pytań 6 8) Postulaty i podstawowe wzory teorii obowdów 1 Sformułuj pierwsze i drugie prawo Kirchhoffa Wyjaśnij
1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy
.7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d
Pomiar parametrów w obwodach magnetycznych Pomiar parametrów w łączach selsynowych
Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych Ciężkich W Laboratoriu Elektrotechniki i Elektroniki Ćwiczenie - protokół oiar paraetrów w obwodach agnetycznych oiar paraetrów w łączach selsynowych
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej
MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/
Wyznaczanie e/m za pomocą podłużnego pola magnetycznego
- 1 - Wyznaczanie e/ za poocą podłużnego pola agnetycznego Zagadnienia: 1. Ruch cząstek naładowanych w polu elektryczny i agnetyczny.. Budowa i zasada działania lapy oscyloskopowej. 3. Wyprowadzenie wzoru
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych
Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych
Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM
Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi
VII. Drgania układów nieliniowych
VII. Drgania układów nieliniowych 1. Drgania anharmoniczne spowodowane symetryczna siła zwrotna 1.1 Różniczkowe równanie ruchu Rozważamy teraz drgania swobodne masy m przytwierdzonej do sprężyny o współczynniku
ZESPÓŁ B-D ELEKTROTECHNIKI
ZESÓŁ B-D ELEKTOTECHNIKI Laboratorium Elktrotchniki i Elktroniki Samochodowj Tmat ćwicznia: Badani rozrusznika Opracowani: dr hab. inż. S. DUE 1. Instrukcja Laboratoryjna 2 omiary wykonan: a) omiar napięcia
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
ANALIZA MOŻLIWOŚCI ZMIANY CZĘSTOTLIWOŚCI DRGAŃ WŁASNYCH KOLUMNY KIEROWNICZEJ
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 33, s. 49-54, Gliwice 7 ANALIZA MOŻLIWOŚCI ZMIANY CZĘSTOTLIWOŚCI DRGAŃ WŁASNYCH KOLUMNY KIEROWNICZEJ PIOTR CZUBAK Katedra Mechanii i Wiroaustyi, AGH e-ail: czua@agh.edu.pl
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
( t) UKŁADY TRÓJFAZOWE
KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni
ĆWICZENIE LABORATORYJNE. TEMAT: Badanie generatorów sinusoidalnych (2h)
ĆWICZENIE LABORATORYJNE TEMAT: Badanie generatorów sinusoidalnych (2h) 1. WPROWADZENIE Przedmiotem ćwiczenia jest zapoznanie się z budową i zasadą działania podstawowych typów generatorów sinusoidalnych.
Drgania układu o wielu stopniach swobody
Drgania układu o wielu stopniach swobody Rozpatrzmy układ składający się z n ciał o masach m i (i =,,..., n, połączonych między sobą i z nieruchomym podłożem za pomocą elementów sprężystych o współczynnikach
Teoria maszyn mechanizmów
Adam Morecki - Jan Oderfel Teoria maszyn mechanizmów Państwowe Wydawnictwo Naukowe SPIS RZECZY Przedmowa 9 Część pierwsza. MECHANIKA MASZYN I MECHANIZMÓW Z CZŁONAMI SZTYWNYMI 13 1. Pojęcia wstępne do teorii
Przykład 1 modelowania jednowymiarowego przepływu ciepła
Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych
Laboratorium MATLA. Ćwiczenie 6 i 7. Mała aplikacja z GUI
Laboratorium MATLA Ćwiczenie 6 i 7 Mała aplikacja z GUI Opracowali: - dr inż. Beata Leśniak-Plewińska dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii Biomedycznej
Zasada prac przygotowanych
1 Ćwiczenie 20 Zasada prac przygotowanych 20.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z praktycznym zastosowaniem zasady prac przygotowanych przy rozpatrywaniu równowagi układu o dwóch stopniach
Laboratorium Podstaw Metrologii
WOCŁAW Wrocław, dnia Laboratorium odstaw Metroogii Ćwiczenie o i ierune studiów... Grupa (dzień tygodnia i godzina rozpoczęcia zajęć) Imię i nazwiso Imię i nazwiso Imię i nazwiso rzetwornii Badanie właściwości
Fizyka 11. Janusz Andrzejewski
Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna
Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)
Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych
Ćwiczenie nr 1: Wahadło fizyczne
Wydział PRACOWNA FZYCZNA WFi AGH mię i nazwiso 1.. Temat: Ro Grupa Zespół Nr ćwiczenia Data wyonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 1: Wahadło fizyczne Cel
Nr 2. Laboratorium Maszyny CNC. Politechnika Poznańska Instytut Technologii Mechanicznej
Politechnia Poznańsa Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 2 Badania symulacyjne napędów obrabiare sterowanych numerycznie Opracował: Dr inż. Wojciech Ptaszyńsi Poznań, 3 stycznia
Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:
Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar parametrów sygnałów napięciowych o ształcie sinusoidalnym, prostoątnym i trójątnym: a) Pomiar wartości sutecznej, średniej
Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7
Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania
PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA
Inżynieria Rolnicza (90)/007 PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA Instytut Inżynierii Rolniczej, Akadeia Rolnicza w Poznaniu Streszczenie. Drgania ciągnika, szczególnie
Twierdzenia o przyrostach
Twirdznia o przyrosach Jżli w sici liniow zwrzy dwa węzły, iędzy kóryi panu napięci, o przyrosy (dodani lub un prądów w gałęziach sici oży obliczyć włączaąc iędzy węzły idaln źródło napięciow o sil lkroooryczn
A4: Filtry aktywne rzędu II i IV
A4: Filtry atywne rzędu II i IV Jace Grela, Radosław Strzała 3 maja 29 1 Wstęp 1.1 Wzory Poniżej zamieszczamy podstawowe wzory i definicje, tórych używaliśmy w obliczeniach: 1. Związe między stałą czasową
Modelowanie wybranych. urządzeń mechatronicznych
Modelowanie wybranych elementów torów pomiarowych urządzeń mechatronicznych Pomiary - element sterowania napędem mechatronicznym Układ napędowy - Zintegrowane czujniki Zewnetrzne sygnały sterujące Sprzężenia
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens
INSYU AUOMAYKI i ROBOYKI WYDZIAŁ MECHARONIKI - laboratorium Ćwiczni PA6 Badani działania rgulatora PID zaimplmntowango w strowniu S7-00 firmy Simns Instrucja laboratoryjna Opracowani : dr inż. Danuta Holjo
Swobodny spadek ciał w ośrodku stawiającym opór
Ryszard Chybici Swobodny spad ciał w ośrodu stawiający opór (Posłuiwani się przz osoby trzci ty artyuł lub jo istotnyi frantai bz widzy autora jst wzbronion) Milc, 005 Swobodny spad ciała ośrodu stawiający
Laboratorium Dynamiki Maszyn
Laboratorium Dynamiki Maszyn Laboratorium nr 5 Temat: Badania eksperymentane drgań wzdłużnych i giętnych układów mechanicznych Ce ćwiczenia:. Zbudować mode o jednym stopniu swobody da zadanego układu mechanicznego.
Równania ruchu konstrukcji głównej z dołączonymi wielokrotnymi, strojonymi tłumikami masowymi
Budownictwo i Archittura 1 (212) 15-118 Równania ruchu onstrucji głównj z dołączonymi wilorotnymi, strojonymi tłumiami masowymi Piotr Wilgos Katdra Mchanii Budowli, Wydział Budownictwa i Archittury, Politchnia
R w =
Laboratorium Eletrotechnii i eletronii LABORATORM 6 Temat ćwiczenia: BADANE ZASLACZY ELEKTRONCZNYCH - pomiary w obwodach prądu stałego Wyznaczanie charaterysty prądowo-napięciowych i charaterysty mocy.
Siła elektromotoryczna
Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana
I. DYNAMIKA PUNKTU MATERIALNEGO
I. DYNAMIKA PUNKTU MATERIALNEGO A. RÓŻNICZKOWE RÓWNANIA RUCHU A1. Bryła o masie m przesuwa się po chropowatej równi z prędkością v M. Podać dynamiczne równania ruchu bryły i rozwiązać je tak, aby wyznaczyć
A. Cel ćwiczenia. B. Część teoretyczna
A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów
ZADANIA DO ĆWICZEŃ Z ELEMENTÓW ELEKTRONICZNYCH temat: Tranzystory bipolarne
ZADANIA DO ĆWICZEŃ Z ELEMENTÓW ELEKTRONICZNYCH tat: Tranzystory bipolarn prowadzący Piotr Płotka, -ail pplotka@ti.p.da.pl, tl. 347-1634, pok. 301 ZADANIE 1. W układzi jak na rysunku wyznaczyć wilkości
PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BADANIE MIKROFAL opracowanie: Marcin Dębski, I. Gorczyńska
PIERWSZA PRACOWNIA FIZYCZNA Ćwiczenie nr 64 BAANIE MIKROFAL opracowanie: Marcin ębski, I. Gorczyńska 1. Przediot zadania: fale elektroagnetyczne. 2. Cel zadania: badanie praw rządzących propagacją fali
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 7 Waga hydrostatyczna, wypór. Cele ćwiczenia jest wyznaczenie gęstości ciał stałych za poocą wagi hydrostatycznej i porównanie tej etody z etodai, w których ierzona
BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO
ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia
Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.
XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa
Zasady oceniania karta pracy
Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.
Wykład 2: Od drgań do fali Katarzyna Weron. WPPT, Matematyka Stosowana
Wykład 2: Od drgań do fali Katarzyna Weron WPPT, Mateatyka Stosowana Drgania układów o dwóch stopniach swobody k κ k Równania Newtona: Dodaj równania: x 1 x 2 (x 1 + x 2 ) = k(x 1 +x 2 ) x 1 = kx 1 κ x
WIBROIZOLACJA DWUSTOPNIOWA NA PRZYKŁADZIE WSTRZĄSARKI
WIBROIZOLACJA DWUSTOPNIOWA NA PRZYKŁADZIE WSTRZĄSARKI Wiesław Fieig Instytut Konstrukji i Eksploataji Maszyn Politehnika Wroławska, ul. Łukasiewiza 7/9, 5-377 Wroław wieslaw.fieig@pwr.wro.pl SUMMARY In
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO
ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani
dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA
NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE
PROTOKÓŁ POMIAROWY - SPRAWOZDANIE LABORATORIM PODSTAW ELEKTROTECHNIKI I ELEKTRONIKI Grupa Podgrupa Numer ćwiczenia 5 Nazwisko i imię Data wykonania. ćwiczenia. Prowadzący ćwiczenie Podpis Ocena sprawozdania
Ćwiczenie 4. Realizacja programowa dwupołożeniowej regulacji temperatury pieca elektrycznego
Ćwiczni 4 Ralizacja programowa dwupołożniowj rgulacji tmpratury pica lktryczngo. Cl ćwicznia Clm ćwicznia jst zaznajomini z podstawami rgulacji obiktów ciągłych na przykładzi strowania dwupołożniowgo komputrowgo
Granica funkcji - Lucjan Kowalski GRANICA FUNKCJI
GRANICA FUNKCJI Granica uncji. - dowolna liczba rzczywista. O, = - ; + - otoczni liczby puntu o prominiu, S, = - ;, + - sąsidztwo liczby puntu o prominiu, Nich uncja będzi orślona w sąsidztwi puntu, g
Ćwiczenie - 7. Filtry
LABOATOIUM ELEKTONIKI Ćwiczenie - 7 Filtry Spis treści 1 el ćwiczenia 1 2 Podstawy teoretyczne 2 2.1 Transmitancja filtru dolnoprzepustowego drugiego rzędu............. 2 2.2 Aktywny filtr dolnoprzepustowy
Fizyka 1- Mechanika. Wykład 3 19.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
Fizyka - Mechanika Wykład 3 9.X.07 Zygunt Szefliński Środowiskowe Laboratoriu Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Stałe przyspieszenie Przyspieszenie charakteryzuje się ziana prędkości
Algorytm wyznaczania krotności diagnostycznej struktury opiniowania diagnostycznego typu PMC 1
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 18, 2003 Algoryt wyznaczania rotności diagnostycznej strutury opiniowania diagnostycznego typu PMC 1 Artur ARCIUCH Załad Systeów Koputerowych, Instytut Teleinforatyi
Mechanika ogólna II Kinematyka i dynamika
Mechanika ogólna II Kineatyka i dynaika kierunek Budownictwo, se. III ateriały poocnicze do ćwiczeń opracowanie: dr inŝ. Piotr Dębski, dr inŝ. Irena Wagner TREŚĆ WYKŁADU Kineatyka: Zakres przediotu. Przestrzeń,
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach