Twierdzenia o przyrostach

Wielkość: px
Rozpocząć pokaz od strony:

Download "Twierdzenia o przyrostach"

Transkrypt

1 Twirdznia o przyrosach Jżli w sici liniow zwrzy dwa węzły, iędzy kóryi panu napięci, o przyrosy (dodani lub un prądów w gałęziach sici oży obliczyć włączaąc iędzy węzły idaln źródło napięciow o sil lkroooryczn równ co do warości u napięciu lcz przciwny kirunku, przy wyłączniu wszyskich źródł pozosałych.

2 Jżli w sici liniow rozwrzy gałęź, w kór płyni prąd, o przyrosy (dodani lub un prądów w gałęziach sici oży obliczyć włączaąc w y iscu idaln źródło prądow o prądzi zwarcia równy co do warości u prądowi lcz przciwny kirunku, przy wyłączniu wszyskich źródł pozosałych.

3 warci i E i E i i ' i ' i 3

4 ozwarci 3 3 i ' i3 i J i i J i i i ' i 4

5 Elny rakancyn wki (indukory Kondnsaory ψ i dψ harakrysyka indukora Prawo Faraday a q u harakrysyka kondnsaora i du di u i u u i 5

6 Szrgow Łączni kondnsaorów u u i i u u u u i z i 6

7 ównolgł Łączni kondnsaorów i i du du i i i i ( du z du 7

8 Szrgow Łączni cwk di u di u M M u u u di di u ( M di z di u M ( di z di 8

9 ównolgł Łączni cwk di di u M di di u M i i i Γ M M u di di u d Γ u d Γ M M ( M ( M di z di 9

10 wki sprzężon k n ϕ i k k k di k n dϕ k dϕ dϕ u n n dϕ dϕ u n n nϕ i n ϕ i

11 di di u M di di u M Współczynnik sprzężnia wki sprzężon k M

12 Transforaor idalny dϕ u n u n p dϕ u n u n n i ni i n i n p

13 3 Przbigi haroniczn ( ϕ cos ( ( ϕ ϕ ϕ ϕ

14 Przbigi haroniczn ϕ 4

15 Przbigi haroniczn Napięci syboliczn ϕ sk Wskaz napięcia ϕ F sk T T F ( 5

16 Przbigi haroniczn, cos ( ϕ cos(ϕ,5, -,5 -, ϕ ϕ cos ( ϕ 6

17 7 pdanca d ( ψ ϕν

18 8 pdanca X Adianca Y B G Y

19 ianc G B X X X X Y G B G G B B X G B 9

20 Dobroć obwodu T, W aks W Q π r W W W cos E E cos E r π π r r r

21 Dobroć obwodu E cos π E sin

22 Dobroć obwodu sin E cos E W W W E E E W ρ π T T E T W sk E π Opór charakrysyczny

23 3 Dobroć obwodu E E Q ρ π ρ π Q π π r r r Q Q

24 Dobroć obwodu równolgłgo Q d ( Opór dynaiczny -liczony przy ałych warościach oporności pasożyniczych!!! 4

25 cwka W alżności nrgyczn P d d ( W kondnsaor P d d ( rzysor P 5

26 , alżności nrgyczn P P Pr,5, Moc,5, -,5 -, zas 6

27 alżności nrgyczn 7

28 alżności nrgyczn P P T cos X ψ ( ( ϕ cosψ cos ϕ -oc czynna ψ Q sinψ X -oc birna 8

29 alżności nrgyczn oc zspolona X ψ P z P Q cosψ sinψ ψ ( ϕ ϕ ϕ ( ϕψ * P s Pz P Q -oc pozorna 9

30 Moc przy przbigach odkszałconych P T l k l k sin sin ( kϕ ( lν sin k k T k l P T l k ( k ϕ sin( l ν T k k sin ( k ϕ sin( k ν k k l k l P k k k cosψ k 3

31 3 Dopasowani z względu na oc czynną X o o o X ( o o o X X E E ( ( X X E P o o o o o

32 Dopasowani z względu na oc czynną P X P o o X o X o 3

33 Obwód rzonansowy - szrgowy Składniki ipdanci X X Mod Pulsaca 33

34 Obwód rzonansowy - szrgowy 9 6 Faza 3 Faza -3 Y γ Pulsaca względna -6-9 Dobroć obwodu Pulsaca Q 34

35 Obwód rzonansowy - szrgowy Y Q Q γ γ Y Q γ γ Moduł Y sqr / Q Q5 Q Q5 Q 4,,5,,5, γ 35

36 36 Obwód rzonansowy - szrgowy X ξ ν ozsroni bzwzględn ozsroni względn ξ ϕ ξ ξ ar cg Y Y ξ ϕ cg ar ξ Y r Y ν ξ Q

37 Obwód rzonansowy - szrgowy,,8 Moduł Faza Moduł Y/Y r,6 Faza ϕ -,4-4 -6, ξ ξ niwrsalna krzywa rzonansowa 37

38 38 Obwody sprzężon Ê MÎ Î Î Î Ê MÎ Î Î Î

39 39 Obwody sprzężon Ê Î MÎ Ê MÎ Î MÎ Ê Î MÎ Ê Î M MÊ Ê Î M MÊ Ê Î

40 4 Obwody sprzężon Źródło ylko po sroni pirwon M M Ê Î M Ê Î M MÊ Î M Ê Î pdanca prznisiona z obwodu wórngo do pirwongo pdanca prznisiona z obwodu pirwongo do wórngo

41 Obwody sprzężon Adianca wzana Y Î Ê M M Y Oznaczay rozsronia bzwzględn: Oznaczay wskaźnik sprzężnia A AY ξ ξ ( ξ ξ ξ Gdzi: X A Y ξ M X 4

42 Jdnakow obwody sprzężon Q Q Q; ξ ξ ξ ; ; y Y Y A ( A ξ 4ξ ϕ ar cg ξ A ξ 4

43 Jdnakow obwody sprzężon,,,9,8,7,6 A,5 A,5 A A A 4 y,5,4,3,,, ξ 43

44 Jdnakow obwody sprzężon Faza - ϕ ξ A,5 A,5 A A A 4 44

( t) UKŁADY TRÓJFAZOWE

( t) UKŁADY TRÓJFAZOWE KŁDY TRÓJFW kładm wilofazowym nazywamy zbiór obwodów lktrycznych (fazowych) w których działają napięcia żródłow sinusoidaln o jdnakowj częstotliwości przsunięt względm sibi w fazi i wytwarzan przważni

Bardziej szczegółowo

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC

θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ

Bardziej szczegółowo

Obwody prądu zmiennego

Obwody prądu zmiennego Obwody prądu zmiennego Prąd stały ( ) ( ) i t u t const const ( ) u( t) i t Prąd zmienny, dowolne funkcje czasu i( t) t t u ( t) t t Natężenie prądu i umowny kierunek prądu Prąd stały Q t Kierunek poruszania

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltchnka Wrocławska nstytut Maszyn, Napędów Pomarów Elktrycznych Matrał lustracyjny do przdmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zlńsk (-9, A0 p.408, tl. 30-3 9) Wrocław 004/5 PĄD ZMENNY Klasyfkacja

Bardziej szczegółowo

Sygnały zmienne w czasie

Sygnały zmienne w czasie Sygnały zmienne w czasie a) b) c) A = A = a A = f(+) d) e) A d = A = A sinω / -A -A ys.. odzaje sygnałów: a)sały, b)zmienny, c)okresowy, d)przemienny, e)sinusoidalny Sygnały zmienne okresowe i ich charakerysyczne

Bardziej szczegółowo

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki

w5 58 Prąd d zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w zmiennych Opór r bierny Podstawy elektrotechniki 58 Prąd d zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów w ziennych Opór r bierny Prąd d zienny Prąd d zienny 3 Prąd d zienny 4 Prąd d zienny 5 Prąd d zienny Przy stałej prędkości kątowej

Bardziej szczegółowo

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny

w7 58 Prąd zmienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów zmiennych Opór bierny 58 Prąd zienny Generator Napięcie skuteczne Moc prądu Dodawanie prądów ziennych Opór bierny Prąd zienny Prąd zienny 3 Prąd zienny 4 Prąd zienny 5 Prąd zienny Przy stałej prędkości kątowej ω const pola

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0.

) I = dq. Obwody RC. I II prawo Kirchhoffa: t = RC (stała czasowa) IR V C. ! E d! l = 0 IR +V C. R dq dt + Q C V 0 = 0. C 1 e dt = V 0. Obwody RC t = 0, V C = 0 V 0 IR 0 V C C I II prawo Kirchhoffa: " po całym obwodzie zamkniętym E d l = 0 IR +V C V 0 = 0 R dq dt + Q C V 0 = 0 V 0 R t = RC (stała czasowa) Czas, po którym prąd spadnie do

Bardziej szczegółowo

Charakterystyki częstotliwościowe elementów pasywnych

Charakterystyki częstotliwościowe elementów pasywnych Charakterystyki częstotliwościowe elementów pasywnych Parametry elementów pasywnych; reaktancji indukcyjnej (XLωL) oraz pojemnościowej (XC1/ωC) zależą od częstotliwości. Ma to istotne znaczenie w wielu

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska Room: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska Room: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska Roo: 05 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 0.00-0.45 Thursday: 0.30-.5 Jednolitość oznaczeń Oznaczenia dla prądu

Bardziej szczegółowo

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Liczba godzin: sem. II *) - wykład 30 godz., ćwiczenia 30 godz. sem. III *) - wykład 30 godz., ćwiczenia 30 godz., ale

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Wykład 2 Wahadło rezonans parametryczny. l+δ

Wykład 2 Wahadło rezonans parametryczny. l+δ Wykład Wahadło rzonans paramryczny θ θ l l+δ C B B Wykład Wahadło - rzonans paramryczny E E E B mg l cos θ θ E kinb m d d l l+δ B B l C I m l E B B kinb' I m B' B' d d d d B l ml d d B ' mgl cos ' B gcos

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych

Induktor i kondensator. Warunki początkowe. oraz ciągłość warunków początkowych Termin AREK73C Induktor i kondensator. Warunki początkowe Przyjmujemy t, u C oraz ciągłość warunków początkowych ( ) u ( ) i ( ) i ( ) C L L Prąd stały i(t) R u(t) u( t) Ri( t) I R RI i(t) L u(t) u() t

Bardziej szczegółowo

Maszyny Synchroniczne

Maszyny Synchroniczne nstytut Mechatroniki i Systemów nformatycznych Maszyny Synchroniczne Zadanie Dla turbogeneratora o następujących danych znamionowych: moc znamionowa P 00 MW, napięcie znamionowe U 15, 75 kv (Y), częstotliwość

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

u(t)=u R (t)+u L (t)+u C (t)

u(t)=u R (t)+u L (t)+u C (t) Szeregowy obwód Źródło napięciowe u( o zmiennej sile elektromotorycznej E(e [u(] Z drugiego prawa Kirchhoffa: u(u (u (u ( ównanie ruchu ładunku elektrycznego: Prąd płynący w obwodzie: di( i t dt u t i

Bardziej szczegółowo

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD

Wydział IMiC Zadania z elektrotechniki i elektroniki AMD 2014 AMD Wydział IMi Zadania z elektrotechniki i elektroniki 2014 A. W obwodzie jak na rysunku oblicz wskazanie woltomierza pracującego w trybie TU MS. Przyjmij diodę, jako element idealny. Dane: = 230 2sin( t),

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energetyczny Podstawy elektrotechniki Pro. dr hab. inż. Juliusz B. Gajewski, pro. zw. PWr Wybrzeże. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 tara kotłownia, pokój 359 el.: 71 320 3201

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1.

Szeregowy obwód RLC. u(t)=u R (t)+u L (t)+u C (t) U L = R U U L C U C DOBROĆ OBWODU. Obwód rezonansowy szeregowy - częstość rezonansowa = 1. Szerego obwód Źródło napięcio o zmiennej sile elektromotorycznej E(e [] drugiego prawa Kirchhoffa: ównanie ruchu ładunku elektrycznego: jeśli Prąd płynący w obwodzie: e jωt u (u (u ( d i t dt u t i t (

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Siła elektromotoryczna

Siła elektromotoryczna Wykład 5 Siła elektromotoryczna Urządzenie, które wykonuje pracę nad nośnikami ładunku ale różnica potencjałów między jego końcami pozostaje stała, nazywa się źródłem siły elektromotorycznej. Energia zamieniana

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

Projekt silnika bezszczotkowego z magnesami trwałymi

Projekt silnika bezszczotkowego z magnesami trwałymi Projekt silnika bezszczotkowego z magnesami trwałymi dr inż. Michał Michna michna@pg.gda.pl 01-10-16 1. Dane znamionowe moc znamionowa P n : 10kW napięcie znamionowe U n : 400V prędkość znamionowa n n

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

LABORATORIUM PODSTAWY ELEKTROTECHNIKI LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk

Bardziej szczegółowo

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.

Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx

Bardziej szczegółowo

2. REZONANS W OBWODACH ELEKTRYCZNYCH

2. REZONANS W OBWODACH ELEKTRYCZNYCH 2. EZONANS W OBWODAH EEKTYZNYH 2.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód elektryczny,

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład 1. 9 marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 9 marca 5 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error

Skale czasu. 1.1 Dokładność czasu T IE - Time Interval Error Skale czasu 1 Dokładność i stabilność zegarów Zegar wytwarza sygnał okresowy (częstotliwościowy), który opisać można prostą funkcją harmoniczną: s(t) = A sin(2πν nom + φ 0 ) (1) ν nom = 9192631770Hz jest

Bardziej szczegółowo

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015

IMIC Zadania zaliczenie wykładu Elektrotechnika i elektronika AMD 2015 IMI Zadania zaliczenie wykładu lektrotechnika i elektronika MD 2015 Dla t < 0 obwód w stanie ustalonym. chwili t = 0 zamknięto wyłącznik. Sformułuj równanie różniczkowe obwodu w dziedzinie czasu, z którego

Bardziej szczegółowo

Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos

Bardziej szczegółowo

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω

cos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć

Bardziej szczegółowo

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X

Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego V 1 X 4 Laboratorium elektrotechniki Ćwiczenie 6. BADANIE TRANSFORMATORÓW STANOWISKO I. Badanie transformatora jednofazowego Wykonanie ćwiczenia Prowadzący ćwiczenie określa obiekt naszych badań jeden z dwu,

Bardziej szczegółowo

CZĘŚĆ II ROZPŁYWY PRĄDÓW SPADKI NAPIĘĆ STRATA NAPIĘCIA STRATY MOCY WSPÓŁCZYNNIK MOCY

CZĘŚĆ II ROZPŁYWY PRĄDÓW SPADKI NAPIĘĆ STRATA NAPIĘCIA STRATY MOCY WSPÓŁCZYNNIK MOCY EEKTROEERGETYKA - ĆWCZEA - CZĘŚĆ ROZPŁYWY PRĄDÓW SPADK APĘĆ STRATA APĘCA STRATY MOCY WSPÓŁCZYK MOCY Prądy odbiorników wyznaczamy przy założeniu, że w węzłach odbiorczych występują napięcia znamionowe.

Bardziej szczegółowo

Podstawy Teorii Obwodów

Podstawy Teorii Obwodów Podstawy Teorii Obwodów 203 Model obwodowy... 2 Klasyfikacjaobwodów.... 3 Założenia.... 4 Opis obwodów...... 5 Topologiaobwodu........ 6 Rodzaje elementówobwodów.... 7 Konwencje oznaczeńelementówobwodów....

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 8 marca 0 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa,. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)

Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)

Bardziej szczegółowo

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4

1) Wyprowadź wzór pozwalający obliczyć rezystancję R AB i konduktancję G AB zastępczą układu. R 1 R 2 R 3 R 6 R 4 1) Wyprowadź wzór pozwalający obliczyć rezystancję B i konduktancję G B zastępczą układu. 1 2 3 6 B 4 2) Wyprowadź wzór pozwalający obliczyć impedancję (Z, Z) i admitancję (Y, Y) obwodu. Narysować wykres

Bardziej szczegółowo

TECHNIKA ANALOGOWA. Lesław Dereń 239 C4 Konsultacje: Środa, godz Czwartek, godz

TECHNIKA ANALOGOWA. Lesław Dereń 239 C4 Konsultacje: Środa, godz Czwartek, godz TECHNIKA ANALOGOWA Lesław Dereń 239 C4 Konsultacje: Środa, godz. 10 11 Czwartek, godz. 12 15 www.zto.ita.pwr.wroc.pl Login: student Hasło: student www.zto.ita.pwr.wroc.pl/~deren Literatura 1. W. Wolski,

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych Materał lustracyjny do przedmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zelńsk (-9, A10 p.408, tel. 30-3 9) Wrocław 005/6 PĄD ZMENNY

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Wydział Mechaniczno-Energeyczny Podsawy elekroechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. zw. PWr Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław Bud. A4 Sara kołownia, pokój 359 Tel.: 7 320 320

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się:

C d u. Po podstawieniu prądu z pierwszego równania do równania drugiego i uporządkowaniu składników lewej strony uzyskuje się: Zadanie. Obliczyć przebieg napięcia na pojemności C w sanie przejściowym przebiegającym przy nasępującej sekwencji działania łączników: ) łączniki Si S są oware dla < 0, ) łącznik S zamyka się w chwili

Bardziej szczegółowo

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY

PRACOWNIA ELEKTRYCZNA I ELEKTRONICZNA. Zespół Szkół Technicznych w Skarżysku-Kamiennej. Sprawozdanie z ćwiczenia nr Temat ćwiczenia: POMIARY MOCY Zespół zkół Technicznych w karżysku-kamiennej prawozdanie z ćwiczenia nr Temat ćwiczenia: OWN ELEKTYZN ELEKTONZN imię i nazwisko OMY MOY rok szkolny klasa grupa data wykonania. el ćwiczenia: oznanie pośredniej

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

7 Dodatek II Ogólna teoria prądu przemiennego

7 Dodatek II Ogólna teoria prądu przemiennego 7 Dodatek II Ogólna teoria prądu przemiennego AC (ang. Alternating Current) oznacza naprzemienne zmiany natężenia prądu i jest symbolizowane przez znak ~. Te zmiany dotyczą zarówno amplitudy jak i kierunku

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

WYKŁAD 4 STAN JAŁOWY I ZWARCIE TRANSFORMATORA

WYKŁAD 4 STAN JAŁOWY I ZWARCIE TRANSFORMATORA WYKŁAD 4 STA JAŁOWY ZWARCE TRASFORMATORA 4.. Moc pozorna transformatora jednofazowego. Rozpatrzmy transformator jednofazowy z rdzeniem płaszczowym pokazany na rys.4.. Przekrój kolumny rdzenia wynosi S

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż

Bardziej szczegółowo

Obwody prądu przemiennego bez liczb zespolonych

Obwody prądu przemiennego bez liczb zespolonych FOTON 94, Jesień 6 45 Obwody prądu przeiennego bez liczb zespolonych Jerzy Ginter Wydział Fizyki Uniwersytetu Warszawskiego Kiedy prowadziłe zajęcia z elektroagnetyzu na Studiu Podyploowy, usiałe oówić

Bardziej szczegółowo

Fale elektromagnetyczne spektrum

Fale elektromagnetyczne spektrum Fale elekroagneyczne spekru w próżni wszyskie fale e- rozchodzą się z prędkością c 3. 8 /s Jaes Clerk Mawell (w połowie XIX w.) wykazał, że świało jes falą elekroagneyczną rozprzesrzeniającą się falą ziennego

Bardziej szczegółowo

f = 2 śr MODULACJE

f = 2 śr MODULACJE 5. MODULACJE 5.1. Wstęp Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej. Przyczyny stosowania modulacji: 1. Umożliwienie wydajnego wypromieniowania

Bardziej szczegółowo

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone

1. Rezonans w obwodach elektrycznych 2. Filtry częstotliwościowe 3. Sprzężenia magnetyczne 4. Sygnały odkształcone Wyład 6 - wersja srócona. ezonans w obwodach elerycznych. Filry częsoliwościowe. Sprzężenia magneyczne 4. Sygnały odszałcone AMD ezonans w obwodach elerycznych Zależności impedancji dwójnia C od pulsacji

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO-SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO-SYMETRYCZNYCH Politechnika Poznańska Wyział Buownictwa i InŜynierii Śroowiska Instytut onstrukcji Buowlanych Zakła echaniki Buowli Stuia Stacjonarne II Stopnia I rok Semestr II / OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOACH

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

OBWODY MAGNETYCZNE SPRZĘśONE

OBWODY MAGNETYCZNE SPRZĘśONE Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym

Bardziej szczegółowo

I. WIADOMOŚCI TEORETYCZNE

I. WIADOMOŚCI TEORETYCZNE omiary mocy w obwodach trójazowych. Cel ćwiczenia oznanie metod pomiaru mocy czynnej i biernej w układach trójazowych symetrycznych i niesymetrycznych za pomocą watomierzy. I. WIADOMOŚCI TEORETYCZNE omiary

Bardziej szczegółowo

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki

Katedra Energetyki. Laboratorium Podstaw Elektrotechniki i Elektroniki 1 Katedra Energetyki Laboratorium Podstaw Elektrotechniki i Elektroniki Temat ćwiczenia: POMIARY PODSTAWOWYCH WIELKOŚCI ELEKTRYCZNYCH W OBWODACH PRĄDU STAŁEGO (obwód 3 oczkowy) 2 1. POMIARY PRĄDÓW I NAPIĘĆ

Bardziej szczegółowo

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

Projekt budowlano-wykonawczy instalacji elektrycznej Zestawienie mocy dla 2 i 3 klatki budynku 11-go Listopada 3.

Projekt budowlano-wykonawczy instalacji elektrycznej Zestawienie mocy dla 2 i 3 klatki budynku 11-go Listopada 3. 4. Obliczenia techniczne. 4.1. Zestawienie mocy dla i 3 klatki budynku 11-go Listopada 3. Punkt odbioru Pi [KW] Qn [KVAr] cos f [ - ] 1. Mieszkania ( 60 x 3 kw ) 180 87,177979 0,9. Potrzeby adnimistracyjne

Bardziej szczegółowo

Egzamin z matematyki dla I roku Biochemii i Biotechnologii

Egzamin z matematyki dla I roku Biochemii i Biotechnologii Egzamin z matematyki dla I roku Biochemii i Biotechnologii 9..04 Zadanie (0 punktów). Rozwiązać układ + 3y z = 3 5y + z = a 5 ay + 3z = 3 dla a = oraz dla a = 4. Zadanie (0 punktów). Wyznaczyć dziedzinę,

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA

1. POJĘCIA PODSTAWOWE ELEKTROTECHNIKI. SYGNAŁY ELEKTRYCZNE I ICH KLASYFIKACJA 1. POJĘCIA PODSAWOWE ELEKROECHNIKI. SYGNAŁY ELEKRYCZNE I ICH KLASYIKACJA 1.1. WPROWADZENIE WIELKOŚĆ (MIERZALNA) - cecha zjawiska, ciała lub substancji, którą można wyrazić jakościowo i wyznaczyć ilościowo.

Bardziej szczegółowo

Przykład ułożenia uzwojeń

Przykład ułożenia uzwojeń Maszyny elektryczne Transformator Przykład ułożenia uzwojeń Transformator idealny - transformator, który spełnia następujące warunki:. Nie występują w nim straty mocy, a mianowicie straty w rdzeniu ( P

Bardziej szczegółowo

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA)

z ćwiczenia nr Temat ćwiczenia: BADANIE RÓWNOLEGŁEGO OBWODU RLC (SYMULACJA) Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PAOWNA EEKTYZNA EEKTONZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE ÓWNOEGŁEGO OBWOD (SYMAJA) rok szkolny klasa grupa data wykonania.

Bardziej szczegółowo

Bezpieczniki NH ar M1UQ02/160A/690V. Pakowanie (szt.) Znamionowe straty mocy (W)

Bezpieczniki NH ar M1UQ02/160A/690V. Pakowanie (szt.) Znamionowe straty mocy (W) Bezpieczniki NH ar Typ: NH Charakterystyka: ar Pr¹d znamionowy: -8A Napiêcie znamionowe: 9V AC Zwarciowa zdolnoœæ wy³¹czania: AC ka Wg normy: IEC 9- Zastosowanie: do ochrony pó³przewodników Uwagi: uchwyty

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 4) Politechnika Wrocławska nstytut Maszyn, Napędów i Pomiarów lektrycznych Materiał ilustracyjny do przedmiotu LKTROTCHNKA Prowadzący: (Cz. 4) Dr inż. Piotr Zieliński (-9, A0 p.408, tel. 30-3 9) Wrocław 003/4

Bardziej szczegółowo

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie.

Prąd d zmienny. prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. Prąd d zmienny prąd zmienny -(ang.:alternating current, AC) prąd elektryczny, którego natężenie zmienia się w czasie. 1 Oś wartości natężenia prądu Oś czasu 2 Definicja natężenia prądu zmiennego i dq =

Bardziej szczegółowo

Masywne neutrina w teorii i praktyce

Masywne neutrina w teorii i praktyce Instytut Fizyki Teoretycznej Uniwersytet Wrocławski Wrocław, 20 czerwca 2008 1 Wstęp 2 3 4 Gdzie znikają neutrina słoneczne (elektronowe)? 4p 4 2He + 2e + + 2ν e 100 miliardów neutrin przez paznokieć kciuka

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

WYKŁAD 2: CAŁKI POTRÓJNE

WYKŁAD 2: CAŁKI POTRÓJNE WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu

Bardziej szczegółowo

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Drgania w obwodzie LC. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Drgania w obwodzie L Autorzy: Zbigniew Kąkol Kamil Kutorasiński 016 Drgania w obwodzie L Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Rozpatrzmy obwód złożony z szeregowo połączonych indukcyjności L (cewki)

Bardziej szczegółowo

Przekształcenie Laplace a i jego zastosowania

Przekształcenie Laplace a i jego zastosowania Przekzałcenie Laplace a i jego zaoowania Funkcje pecjalne i dyrybucje Funkcja koku jednokowego (nazywana również funkcją Heaviide a) ( ) gdy > gdy < ( ) gdy gdy > < ( ) ( ) f a e > < e a ( ) f f ( ) A

Bardziej szczegółowo

13. Optyka Polaryzacja przez odbicie.

13. Optyka Polaryzacja przez odbicie. 13. Optyka 13.8. Polaryzaja przz odbii. x y z Fala lktromagntyzna, to fala poprzzna. Wktory E i są prostopadł do kirunku rozhodznia się fali. W wszystkih punktah wktory E (podobni jak ) są do sibi równolgł.

Bardziej szczegółowo

GAL 80 zadań z liczb zespolonych

GAL 80 zadań z liczb zespolonych GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia

Bardziej szczegółowo

Wyznaczenie parametrów schematu zastępczego transformatora

Wyznaczenie parametrów schematu zastępczego transformatora Wyznaczenie parametrów schematu zastępczego transformatora Wprowadzenie Transformator jest statycznym urządzeniem elektrycznym działającym na zasadzie indukcji elektromagnetycznej. adaniem transformatora

Bardziej szczegółowo

Praca domowa - seria 2

Praca domowa - seria 2 Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =

Bardziej szczegółowo

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego.

I. Cel ćwiczenia: Poznanie budowy i właściwości transformatora jednofazowego. Zespół Szkół Technicznych w Skarżysku-Kamiennej Sprawozdanie PACOWNA ELEKTYCZNA ELEKTONCZNA imię i nazwisko z ćwiczenia nr Temat ćwiczenia: BADANE TANSFOMATOA JEDNOFAZOWEGO rok szkolny klasa grupa data

Bardziej szczegółowo

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday:

Dr inż. Agnieszka Wardzińska pokój: 105 Polanka Advisor hours: Tuesday: Thursday: Dr inż. Agnieszka Wardzińska pokój: 105 Polanka agnieszka.wardzinska@put.poznan.pl cygnus.et.put.poznan.pl/~award Advisor hours: Tuesday: 10.00-10.45 Thursday: 10.30-11.15 Literatura podstawowa: 1. Podstawy

Bardziej szczegółowo

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Nr. studenta:...

Bardziej szczegółowo

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI

Ć wiczenie 2 POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 37 Ć wiczenie POMIARY REZYSTANCJI, INDUKCYJNOŚCI I POJEMNOŚCI 1. Wiadomości ogólne 1.1. Rezystancja Zasadniczą rolę w obwodach elektrycznych odgrywają przewodniki metalowe, z których wykonuje się przesyłowe

Bardziej szczegółowo