Car-Parrinello Molecular Dynamics
|
|
- Leszek Król
- 8 lat temu
- Przeglądów:
Transkrypt
1 Car-Parrinello Molecular Dynamics Praktyczne wprowadzenie Łukasz Walewski Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Zakład Biofizyki, Wydział Fizyki Uniwersytet Warszawski CPMD, 13 luty 2007 p.1/32
2 Dynamika molekularna ab initio Cytowania C-P 1985 i frazy Ab initio molecular dynamics CPMD, 13 luty 2007 p.2/32
3 Układ wielu czastek Jądra atomowe: liczba jąder: K położenia: R I ładunki jądrowe: Z I masy atomowe: M I Elektrony: liczba elektronów: N położenia elektronów: r i CPMD, 13 luty 2007 p.3/32
4 Równanie Schrödingera ĤΨ(r N,R K ) = EΨ(r N,R K ) niezależne od czasu stan stacjonarny nierelatywistyczne Przestrzeń położeń: {r N,R K } CPMD, 13 luty 2007 p.4/32
5 Operatory Energia kinetyczna: Ĥ = T e + T n + V ee + V nn + V ext N K T e = i T n = 1 2 M I 2 I i=1 I=1 Energia potencjalna: V ee = N i<j 1 r i r j V nn = K I<J Z I Z J R I R J CPMD, 13 luty 2007 p.5/32
6 Oddziaływanie elektron-jadro Energia oddziaływania elektron-jądro: V ext = N i=1 v(r i,r K ) Potencjał zewnętrzny działający na elektron w położeniu r jest sumą potencjałów atomowych: v(r) = K I=1 v I (r,r I ) = K I=1 Z I r R I zależnych od typu i położenia R I atomu: I = 1,...,K W praktyce rozważa się tylko elektrony walencyjne doznające efektywnego oddziaływania jąder. CPMD, 13 luty 2007 p.6/32
7 Density Functional Theory Gęstość elektronowa: N dr 2 dr N Ψ(r,r 2,...,r N ) 2 = n(r) = N i=1 Φ i (r) 2 Ψ(r,r 2,...,r N ) N -elektronowa f. falowa n(r) jednoelektronowa gęstość (Hohenberg-Kohn) Φ i (r) jednoelektronowe spin-orbitale (Kohn-Sham) CPMD, 13 luty 2007 p.7/32
8 Baza funkcyjna: fale płaskie Orbitale KS rozwinięte w bazie fal płaskich: Φ j (r) = 1 Ω 1/2 G max G c j (G) e ig r G wektor sieci odwrotnej G max maksymalna długość G (ograniczenie na ilość fal płaskich w rozwinięciu) Ω objętość komórki elementarnej CP: potraktować c j (G) jako klasyczne zmienne dynamiczne CPMD, 13 luty 2007 p.8/32
9 Rozszerzony Lagrangian L CP (c,ċ,r,ṙ) = µ ċ i(g)ċ i (G) i,g E PW (c,r) + [ Λ ij i,j G M I Ṙ 2 I ċ i(g)c j (G) δ i,j ] I µ fikcyjna masa elektronu E PW (c,r) potencjał Kohna-Shama (E({Φ i (c)},r)) Λ ij mnożniki Lagrange a (ortogonalność) CPMD, 13 luty 2007 p.9/32
10 Równania ruchu Car-Parrinello Otrzymane ze stowarzyszonych równań Eulera-Lagrange a M I R = E PW R I µ c i (G) = EPW c i (G) + j Λ ij c j (G) Warunki: elektrony są szybki: µ M ions elektrony są zimne: T elec T ions Energia jest zawsze (niewiele) większa od E BO CPMD, 13 luty 2007 p.10/32
11 Pseudopotencjały... opisują elektrony wewnętrznych powłok. redukcja rozmiaru bazy funkcyjnej redukcja ilości elektronów N (częściowe) uwzględnienie efektów relatywistycznych Rodzaje pseudopotencjałów: Norm-conserving Ultra-soft CPMD, 13 luty 2007 p.11/32
12 CPMD w skrócie metoda DFT elektrony walencyjne: rozwinięcie f. falowej w bazie fal płaskich elektrony rdzenia: pseudopotencjały energia: równania Kohna-Shama dynamika: rozszerzony Lagrangian CP zawierający elektronowe stopnie swobody implementacja: algorytm Verleta CPMD, 13 luty 2007 p.12/32
13 Pakiet CPMD Copyright IBM Corp. and Max Planck Institute, Stuttgart dostępny bezpłatnie dla organizacji Non Profit stale rozwijany przez CPMD Consortium (aktualna wersja: ) strona domowa projektu: aktywna lista dyskusyjna wiele materiałów dodatkowych dostępnych przez www CPMD, 13 luty 2007 p.13/32
14 Dostępne opcje Funkcje standardowe: optymalizacja funkcji falowej, obliczenie energii optymalizacja geometrii (+ poszukiwanie stanów przejściowych) dynamika molekularna (CP, BO) NVE/NVT, NPE/NPT Funkcje rozszerzone: kwantowo-klasyczna dynamika molekularna (QM/MM) Gromos, Gromacs obliczenia w stanie wzbudzonym (TDDFT) kwantowa dynamika jąder atomowych path integral molecular dynamics (PIMD) CPMD, 13 luty 2007 p.14/32
15 Własności elektronowe moment dipolowy, polaryzowalność ( d/v ) analiza populacyjna (Mulliken, Davidson) orbitale molekularne, gęstość elektronowa, potencjał elektrostatyczny dipolowe momenty przejść między stanami Kohna-Shama widma oscylacyjne (IR) adsorpcyjne widma rentgenowskie CPMD, 13 luty 2007 p.15/32
16 Rozszerzenia Stany wzbudzone (TDDFT) widma elektronowe optymalizacja geometrii i widma oscylacyjne dynamika molekularna Rachunek zaburzeń widma fononowe widma Ramana widma NMR CPMD, 13 luty 2007 p.16/32
17 Wymagania Pakiet rozprowadzany w formie kodu źródłowego konieczność samodzielnej optymalizacji: kompilator (np. dla Linux: Intel, Portland Group nie GNU!) biblioteki numeryczne (BLAS/LAPACK, MKL, ACML) zasoby obliczeniowe (czas procesora, pamięć, pamięć masowa) Rzeczywiste obliczenia są wymagające obliczeniowo! CPMD, 13 luty 2007 p.17/32
18 Wydajność: biblioteki numeryczne Serial CPMD performance 400 IFC / ACML IFC / MKL PGI / ACML PGI / LAPACK 300 CPU time [ s ] AMD Athlon, 1.6 GHz AMD Opteron, 2.0 GHz Intel Pentium 4, 2.4 GHz Processor type CPMD: wersja skalarna, 32 H 2 O, 1 krok MD; CPMD, 13 luty 2007 p.18/32
19 Wydajność: przetwarzanie równoległe CrayX1e (MSP) CPU CrayX1e (MSP) ELA CrayX1e (SSP) CPU CrayX1e (SSP) ELA PC (1cpu/node) CPU PC (1 cpu/node) ELA PC (2 cpu/node) CPU PC (2 cpu/node) ELA Time [ s ] Number of processors CPMD: wersja równoległa (MPI), 32 H 2 O, 50 kroków MD; CPMD, 13 luty 2007 p.19/32
20 Wydajność: przykład układ: cząsteczka izolowana, 38 atomów maszyna: Cray X1e, 32 procesory 1 krok MD 4.5 sec. CPU t = 4 a. u. 0.1 fs R cutoff = 70 Ry (pseudopotencjały Troulier-Martins) czas symulacji 1 ps 12 h czasu zegarowego CPMD, 13 luty 2007 p.20/32
21 Uruchamianie zadań Niezbędne elementy: program zoptymalizowany na docelową maszynę pseudopotencjały dla wszystkich typów atomów występujących w układzie plik sterujący definicja układu i zadania CPMD, 13 luty 2007 p.21/32
22 Plik sterujacy Podział na sekcje: &CPMD... &END CPMD - typ zadania, krok czasowy, termostat SYSTEM - definicja komórki elementarnej, symetria układu DFT - funkcjonał korelacyjno-wymienny ATOMS - typy i położenia atomów, definicja więzów + dodatkowe sekcje w zależności od rodzaju zadania CPMD, 13 luty 2007 p.22/32
23 Plik sterujacy Sekcja &CPMD &CPMD OPTIMIZE GEOMETRY XYZ PCG MINIMIZE TIMESTEP 20 ISOLATED MOLECULE CENTER MOLECULE ELECTROSTATIC POTENTIAL RHOOUT &END CPMD, 13 luty 2007 p.23/32
24 Plik sterujacy Sekcja &DFT &DFT FUNCTIONAL PBE &END Dostępne funkcjonały: NONE, SONLY, LDA (in PADE form), BONLY, BP, BLYP, XLYP, GGA (=PW91), PBE, REVPBE, HCTH, OPTX, OLYP, TPSS, PBE0, B1LYP, B3LYP, X3LYP CPMD, 13 luty 2007 p.24/32
25 Plik sterujacy Sekcja &DFT - bardziej złożony przykład &DFT SLATER EXCHANGE LDA CORRELATION PZ GRADIENT CORRECTION BECKE88 &END CPMD, 13 luty 2007 p.25/32
26 Plik sterujacy Sekcja &SYSTEM &SYSTEM SYMMETRY 0 CUTOFF ANGSTROM CELL &END CPMD, 13 luty 2007 p.26/32
27 Plik sterujacy Sekcja &ATOMS &ATOMS *pp/o_mt_pbe.psp KLEINMAN-BYLANDER LMAX=P *pp/h_mt_pbe.psp KLEINMAN-BYLANDER LMAX=S &END CPMD, 13 luty 2007 p.27/32
28 Wyniki zoptymalizowana struktura **************************************************************** * * * FINAL RESULTS * * * **************************************************************** ATOM COORDINATES GRADIENTS (-FORCES) 1 O E E E-15 2 H E E E-16 3 H E E E-18 **************************************************************** Zapisywana także w formacie XYZ do pliku GEOMETRY.xyz CPMD, 13 luty 2007 p.28/32
29 Wyniki energia TOTAL INTEGRATED ELECTRONIC DENSITY IN G-SPACE = IN R-SPACE = (K+E1+L+N+X) TOTAL ENERGY = A.U. (K) KINETIC ENERGY = A.U. (E1=A-S+R) ELECTROSTATIC ENERGY = A.U. (S) ESELF = A.U. (R) ESR = A.U. (L) LOCAL PSEUDOPOTENTIAL ENERGY = A.U. (N) N-L PSEUDOPOTENTIAL ENERGY = A.U. (X) EXCHANGE-CORRELATION ENERGY = A.U. GRADIENT CORRECTION ENERGY = A.U. Energia zapisywana w trakcie symulacji do pliku ENERGIES. CPMD, 13 luty 2007 p.29/32
30 Wyniki średnie po trajektorii **************************************************************** * AVERAGED QUANTITIES * **************************************************************** MEAN VALUE +/- RMS DEVIATION <x> [<x^2>-<x>^2]**(1/2) ELECTRON KINETIC ENERGY E E-04 IONIC TEMPERATURE DENSITY FUNCTIONAL ENERGY E-03 CLASSICAL ENERGY E-04 CONSERVED ENERGY E-06 NOSE ENERGY ELECTRONS NOSE ENERGY IONS E-02 CONSTRAINTS ENERGY ION DISPLACEMENT CPU TIME **************************************************************** CPMD, 13 luty 2007 p.30/32
31 Wizualizacja wyników I Gęstość elektronowa i potencjał elektrostatyczny CPMD, 13 luty 2007 p.31/32
32 Wizualizacja wyników II Orbital molekularny HOMO CPMD, 13 luty 2007 p.32/32
Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu
Teoria funkcjona lu g Density Functional Theory (DFT)
Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego
Modelowanie molekularne
Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 13 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody
Modelowanie molekularne
Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 4 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody chemii
Modelowanie molekularne
Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 4 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody chemii
Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp
Metody obliczeniowe ab initio w fizyce struktur atomowych. Wykład 1: Wstęp dr inż. Paweł Scharoch, dr Jerzy Peisert Instytut Fizyki Politechniki Wrocławskiej, 03.02.2005r. Streszczenie: wyjaśnienie pojęcia
TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l
TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r
Modelowanie molekularne
Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 10 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody
Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 22 METODA FUNKCJONAŁÓW GĘSTOŚCI 22.1 Wstęp Definiujemy dla gazu elektronowego operatory anihilacji ψ σ (r) i kreacji ψ σ(r) pola fermionowego ψ σ
Modele kp wprowadzenie
Modele kp wprowadzenie Komórka elementarna i komórka sieci odwrotnej Funkcje falowe elektronu w krysztale Struktura pasmowa Przybliżenie masy efektywnej Naprężenia: potencjał deformacyjny, prawo Hooka
Teoria funkcjonału gęstości
Teoria funkcjonału gęstości Łukasz Rajchel Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego Uniwersytet Warszawski lrajchel1981@gmail.com Wykład dostępny w sieci: http://tiger.chem.uw.edu.pl/staff/lrajchel/
Teoria Orbitali Molekularnych. tworzenie wiązań chemicznych
Teoria Orbitali Molekularnych tworzenie wiązań chemicznych Zbliżanie się atomów aż do momentu nałożenia się ich orbitali H a +H b H a H b Wykres obrazujący zależność energii od odległości atomów długość
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych
Wyznaczanie krzywych energii potencjalnej dla wybranych cząsteczek dwuatomowych Wstęp Krzywa energii potencjalnej 1 to wykres zależności energii potencjalnej cząsteczek od długości wiązania (czyli od wzajemnej
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Struktura elektronowa σ-kompleksu benzenu z centrum aktywnym Fe IV O cytochromu P450
Struktura elektronowa σ-kompleksu benzenu z centrum aktywnym Fe IV O cytochromu P450 Modelowanie metodami DFT, CASSCF i CASPT2 Andrzej Niedziela 1 1 Wydział Chemii Uniwersytet Jagielloński 14.01.2009 /Seminarium
Wstęp do Modelu Standardowego
Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej
13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe)
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 13 UKŁADY KILKU CZĄSTEK W MECHANICE KWANTOWEJ 13.1 Układy helopodobne (trójcząstkowe układy dwuelektronowe) Zajmiemy się kwantowym opisem atomu He
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Wykorzystanie platformy GPGPU do prowadzenia obliczeń metodami dynamiki molekularnej
Wykorzystanie platformy GPGPU do prowadzenia obliczeń metodami dynamiki molekularnej 30 maj 2011, Kraków 1 z 22 POWIEW Program Obliczeń Wielkich Wyzwań Nauki i Techniki Celem jest udostepnienie w polskich
Modelowanie molekularne
Ck08 Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 2 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody
FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że
FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(
KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 3 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy Poziom przedmiotu Symbole efektów kształcenia Symbole efektów dla obszaru kształcenia Symbole efektów kierunkowych
Badanie długości czynników sieciujących metodami symulacji komputerowych
Badanie długości czynników sieciujących metodami symulacji komputerowych Agnieszka Obarska-Kosińska Prof. dr hab. Bogdan Lesyng Promotorzy: Dr hab. Janusz Bujnicki Zakład Biofizyki, Instytut Fizyki Doświadczalnej,
Ćwiczenie 3. Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe *
Ćwiczenie 3 Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * 1 Ćwiczenie 3 Spektroskopia elektronowa. Etylen. Trypletowe przejścia elektronowe * I. Narysuj etylen a) Wybierz Default
Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW)
Program Obliczeń Wielkich Wyzwań Nauki i Techniki (POWIEW) Maciej Cytowski, Maciej Filocha, Maciej E. Marchwiany, Maciej Szpindler Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19
Spis treści Tom 1 Przedmowa do wydania polskiego 13 Przedmowa 15 1 Wstęp 19 1.1. Istota fizyki.......... 1 9 1.2. Jednostki........... 2 1 1.3. Analiza wymiarowa......... 2 3 1.4. Dokładność w fizyce.........
Modele kp Studnia kwantowa
Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z
Fizyka 2. Janusz Andrzejewski
Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii
Cząsteczki. 1.Dlaczego atomy łącz. 2.Jak atomy łącz. 3.Co to jest wiązanie chemiczne? Jakie sąs. typy wiąza
Cząsteczki 1.Dlaczego atomy łącz czą się w cząsteczki?.jak atomy łącz czą się w cząsteczki? 3.Co to jest wiązanie chemiczne? Co to jest rząd d wiązania? Jakie sąs typy wiąza zań? Dlaczego atomy łącz czą
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 10 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
ADF Specyfika metodologii i pliku z danymi
ADF Specyfika metodologii i pliku z danymi Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii Uniwersytet Jagielloski WCSS Wrocław, Obliczenia w bazie orbitali KS fragmentów Typowe obliczenia:
Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1
Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały
WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków
Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 9 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle
Termodynamika i właściwości fizyczne stopów - zastosowanie w przemyśle Marcela Trybuła Władysław Gąsior Alain Pasturel Noel Jakse Plan: 1. Materiał badawczy 2. Eksperyment Metodologia 3. Teoria Metodologia
Fizyka 3.3 WYKŁAD II
Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło
WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.
1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Wykład 16: Atomy wieloelektronowe
Wykład 16: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
Atomy wieloelektronowe
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Modelowanie molekularne w projektowaniu leków
Modelowanie molekularne w projektowaniu leków Wykład I Wstęp (o czym będę a o czym nie będę mówić) Opis układu Solwent (woda z rozpuszczonymi jonami i innymi substancjami) Ligand (potencjalny lek) Makromolekuła
Atom wodoru i jony wodoropodobne
Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek
Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII
Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII
FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N
OPTYKA FALOWA I KWANTOWA 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N 8 D Y F R A K C Y J N A 9 K W A N T O W A 10 M I R A Ż 11 P
Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca. Uczeń:
Chemia - klasa I (część 2) Wymagania edukacyjne Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Chemia nieorganiczna Lekcja organizacyjna. Zapoznanie
Chemia teoretyczna I Semestr V (1 )
1/ 6 Chemia Chemia teoretyczna I Semestr V (1 ) Osoba odpowiedzialna za przedmiot: dr hab. inż. Aleksander Herman. 2/ 6 Wykład Program Podstawy mechaniki kwantowej Ważne problemy modelowe Charakterystyka
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Metoda dynamiki molekularnej (molecular-dynamics, MD): zastosowania i przykłady
Metoda dynamiki molekularnej (molecular-dynamics, MD): zastosowania i przykłady Jarosław Rybicki Jacek Dziedzic (przedstawiono również wyniki otrzymane przez M. Białoskórskiego, D. Kubackiego oraz inne
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
Podstawy chemii obliczeniowej
Podstawy chemii obliczeniowej Anna Kaczmarek Kędziera Katedra Chemii Materiałów, Adsorpcji i Katalizy Wydział Chemii UMK, Toruń Elementy chemii obliczeniowej i bioinformatyki 2015 Plan wykładu 15 godzin
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, Funkcja falowa
Wykład 3: Atomy wieloelektronowe
Wykład 3: Atomy wieloelektronowe Funkcje falowe Kolejność zapełniania orbitali Energia elektronów Konfiguracja elektronowa Reguła Hunda i zakaz Pauliego Efektywna liczba atomowa Reguły Slatera Wydział
Teoretyczne badania reakcji odwodornienia borazanu katalizowanych przez kompleksy oparte na palladzie
Teoretyczne badania reakcji odwodornienia borazanu katalizowanych przez kompleksy oparte na palladzie Monika Parafiniuk Praca wykonywana pod opieką dr Mariusza Mitoraja Cele pracy i plan prezentacji Cel
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.
KARTA PRZEDMIOTU. Informacje ogólne WYDZIAŁ MATEMATYCZNO-PRZYRODNICZY. SZKOŁA NAUK ŚCISŁYCH UNIWERSYTET KARDYNAŁA STEFANA WYSZYŃSKIEGO W WARSZAWIE
1 2 4 5 6 7 8 8.0 Kod przedmiotu Nazwa przedmiotu Jednostka Punkty ECTS Język wykładowy polski Poziom przedmiotu podstawowy K_W01 2 wiedza Symbole efektów kształcenia K_U01 2 umiejętności K_K01 11 kompetencje
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
Teoria funkcjona lu g
Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
Modyfikacja schematu SCPF obliczeń energii polaryzacji
Modyfikacja schematu SCPF obliczeń energii polaryzacji Zakład Metod Obliczeniowych Chemii 11 kwietnia 2006 roku 1 Po co? Jak? 2 Algorytm Analiza zbieżności 3 dla układów symetrycznych 4 Fulleren 5 Po co?
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Problemy i rozwiązania
Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają
Budowa komputera. Magistrala. Procesor Pamięć Układy I/O
Budowa komputera Magistrala Procesor Pamięć Układy I/O 1 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący przetwarzanie informacji Zmiana stanu tranzystorów wewnątrz
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Chemia teoretyczna (023) 1. Informacje ogólne koordynator modułu dr hab. Monika Musiał, prof. UŚ rok akademicki
Fizyka 3. Konsultacje: p. 329, Mechatronika
Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
Jak matematycznie opisać własności falowe materii? Czym są fale materii?
Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe materii (cząstek, układów cząstek) opisuje matematycznie pewna funkcja falowa ( x, t ) Tutaj upraszczamy
Sprzęt komputerowy 2. Autor prezentacji: 1 prof. dr hab. Maria Hilczer
Sprzęt komputerowy 2 Autor prezentacji: 1 prof. dr hab. Maria Hilczer Budowa komputera Magistrala Procesor Pamięć Układy I/O 2 Procesor to CPU (Central Processing Unit) centralny układ elektroniczny realizujący
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
Własności jąder w stanie podstawowym
Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów
Metody obliczeniowe chemii teoretycznej
Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave
Uniwersytet Śląski w Katowicach str. 1 Wydział Matematyki, Fizyki i Chemii
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy poziom Sylabus modułu: Chemia kwantowa 021 Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu
Dotyczy to zarówno istniejących już związków, jak i związków, których jeszcze dotąd nie otrzymano.
Chemia teoretyczna to dział chemii zaliczany do chemii fizycznej, zajmujący się zagadnieniami związanymi z wiedzą chemiczną od strony teoretycznej, tj. bez wykonywania eksperymentów na stole laboratoryjnym.
S. Baran - Podstawy fizyki materii skondensowanej Gaz Fermiego elektronów swobodnych. Gaz Fermiego elektronów swobodnych
Gaz Fermiego elektronów swobodnych charakter idea Teoria metali Paula Drudego Teoria metali Arnolda (1900 r.) Sommerfelda (1927 r.) klasyczna kwantowa elektrony przewodnictwa elektrony przewodnictwa w
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski
II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 2, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 2, 17.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Równania Maxwella r-nie falowe
3. Cząsteczki i wiązania
20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków
Chemia ogólna - część I: Atomy i cząsteczki
dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane
Atomowa budowa materii
Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól
Wykład V Wiązanie kowalencyjne. Półprzewodniki
Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie
Elementy mechaniki kwantowej. Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera
lementy mechaniki kwantowej Mechanika kwantowa co to jest? Funkcja falowa Równanie Schrödingera Funkcja falowa Jak matematycznie opisać własności falowe materii? Czym są fale materii? Własności falowe
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)