ZGINANIE BELEK Z MATERIAŁU SPRĘŻYSTO-PLASTYCZNEGO W ZAKRESIE SPRĘŻYSTO-PLASTYCZNYM. σ R. - ε pl 3. ROZKŁAD NAPRĘŻEŃ NORMALNYCH W PRZEKROJU ZGINANYM
|
|
- Jakub Dariusz Dziedzic
- 8 lat temu
- Przeglądów:
Transkrypt
1 ZGINNIE SPĘŻYSTO-PLSTYCZNE ZGINNIE BELEK Z TEIŁU SPĘŻYSTO-PLSTYCZNEGO ZKESIE SPĘŻYSTO-PLSTYCZNY. TEIŁ SPĘŻYSTO-PLSTYCZNY matriał ialni matriał ialni matriał ialni mat. ial. ęż. liniowym ężysty ężysto-astycny stywno-astycny umocninim astycnym. ZŁOŻENI. atriał ialni ężysto-astycny (mat. Prantla) o jnakowych własnościach na rociągani i na ściskani -. Obowiąuj asaa stywninia. Obowiąuj hipota płaskich prkrojów (hip. Brnouli go). pływ sił poprcnych na osiągnięci stanu astycngo jst pomijany. Zginani achoi jyni w głównych płascynach bwłaności. OZKŁD NPĘŻEŃ NOLNYCH PZEKOJU ZGINNY - x < max x g g > x < x < x <. Stan liniowo ężysty. Granicny stan ężysty (max. naprężni normaln w co najmnij jnym punkci prkroju osiąga wartość równą granicy astycności ; momnt ginający ). Stan jnostronni ężysto-astycny. Stan wustronni ężysto-astycny. Granicny stan astycny (naprężni normaln w całym prkroju osiąga wartość równą granicy astycności ) - w uastycnionym prkroju powstaj tw. prgub astycny, który różni się o "wykłgo" prgubu tym, ż prnosi momnt równy tw. granicnmu momntowi astycnmu prkroju )
2 ZGINNIE SPĘŻYSTO-PLSTYCZNE. GNICZN NOŚNOŚĆ SPĘŻYST PZEKOJU (granicny momnt ężysty ) Granicnym momntm ężystym (granicną nośnością ężystą prkroju) naywamy momnt ginając takij wartości, która jst wystarcająca o uastycninia prkroju w co najmnij jnym punkci (naprężni normaln x jst równ granicy astycności ) x x I yc x Iyc I max yc max. GNICZN NOŚNOŚĆ PLSTYCZN PZEKOJU (granic. momnt astyc. ) Granicnym momntm astycnym (granicną nośnością astycną prkroju) naywamy momnt ginając takij wartości, która jst wystarcająca o uastycninia całgo prkroju (naprężni normaln x w każym punkci prkroju jst równ granicy astycności ) równania równowagi Nx ( ) x ( ). () + x 0 () x 0 () 0 + warunk okrślający położni osi obojętnj. () Syo( ) Syo( ) [ S y ( ) S ( o yo )] lub ' ' Syc( ) Syc( ) - oś ciężkości Syc( ) + Syc( ) 0 Syc( ) Syc( ) ( ) S
3 ZGINNIE SPĘŻYSTO-PLSTYCZNE astycny wskaźnik wytrymałości prkroju ( ) ( ) ( ) S S S f yo yo yc współcynnik kstałtu k >. PZYKŁDY Oblicyć współcynnik kstałtu la prkroju prostokątngo i kołowgo bh ; yc ( ) S b hh bh h b S ( ) S ( ) b hh b h h bh yo yo bh ; bh k. π S ( yc ) π π k 7. π Oblicyć współcynnik kstałtu la następujących prkrojów : k.7 0 k. 7 k. 0 9 k k. k.
4 ZGINNIE SPĘŻYSTO-PLSTYCZNE 7. NOŚNOŚĆ GNICZN BELEK ZGINNYCH 7. NOŚNOŚĆ GNICZN PZEKOJU granicny momnt ężysty (granicna nośność ężysta prkroju) granicny momnt astycny (granicna nośność astycna prkroju) 7. NOŚNOŚĆ GNICZN BELEK granicna nośność ężysta (granicn obciążni ężyst) P - jst to taka wilkość obciążnia wnętrngo ( rguły wyrażongo popr pwin paramtr obciążnia), która powouj w co najmnij jnym punkci blki powstani naprężnia normalngo równgo granicy astycności granicna nośność astycna (granicn obciążni astycn) P - jst to taka wilkość obciążnia wnętrngo, która powouj uastycnini co najmnij jngo prkroju blki (powstani co najmnij jngo prgubu astycngo) nośność granicna P - jst to taka wilkość obciążnia wnętrngo, która powouj uastycnini tylu prkrojów (tn. powstani tylu prgubów astycnych), ż blka aminia się w mchanim. 7.. Blki statycni wynacaln granicna nośność ężysta P max ( P) P granicna nośność astycna P max ( P) P nośność granicna P o amiany blki statycni wynacalnj w mchanim wystarca powstani jngo prgubu, a tn twory się już prbciążniu równym granicnmu obciążniu astycnmu. Tak więc w blkach statycni wynacalnych granicna nośność astycna i nośność granicna są pojęciami tożsamymi, tn. P P Prykła ynacyć granicn obciążni ężyst, astycn i nośność granicną blki ( 00 Pa). q q q q oś ciężkości max q q q q q + cm S m cm c 0/ cm m oś obojętna / cm Iyc max ( ) S 8 cm yc 7. cm q 0. kn/ m q 0. kn/ m q q 0. kn/ m
5 ZGINNIE SPĘŻYSTO-PLSTYCZNE 7.. Blki statycni niwynacaln granicna nośność ężysta P clu wynacnia granicnj nośności ężystj P nalży po wynacniu (mtoami mchaniki buowli) wykrsu momntów ginających wykorystać warunk : max ( P) P granicna nośność astycna P clu wynacnia granicnj nośności astycnj P nalży po wynacniu (mtoami mchaniki buowli) wykrsu momntów ginających wykorystać warunk : nośność granicna P mtoa ścisła max ( P) P clu wynacnia nośności granicnj nalży po wynacniu wykrsu momntów ginających wprowaić o blki prgub astycny (wra obustronni pryłożonymi o nigo momntami skupionymi, równymi ) w prkroju maksymalngo momntu ginającgo. Powtórni nalży wynacyć wykrs momntów la blki o nowym schmaci statycnym i nowym obciążniu. Procurę taką nalży kontynuować aż o amiany blki w mchanim. Onaca to, ż w blc n-krotni statycn niwynacalnj maksymalna ilość powyżsych opracji moż wynosić n+ (moż tż być mnijsa - alży to o schmatu i obciążnia). Obciążni, pry którym blka aminia się w mchanim jst nośnością granicną P. mtoa kinmatycna toa kinmatycna oparta jst na tw. twirniach kstrmalnych torii astycności (patr np.: Jack Skrypk, Plastycność i płani, PN, arsawa, 987). Istota tj mtoy polga na naliniu i analii wsystkich kinmatycni opuscalnych (tn. gonych więami kinmatycnymi) schmatów niscnia blki. blc n-krotni statycni niwynacalnj maksymalna licba prgubów astycnych, jaka prowai o amiany blki w mchanim wynosi n+. prypaku mchanimu o tj licbi prgubów mówim tw. płnym mchanimi (schmaci) niscnia. prypaku, gy można utworyć mchanim objmujący tylko cęść blki (co ma mijsc pry licbi prgubów mnijsj niż n+ ) mówim tw. nicałkowitym mchanimi (schmaci) niscnia. Stosując asaę prac wirtualnych nalży wynacyć obciążnia niscąc la każgo kinmatycni opuscalnych schmatów niscnia. Najmnijsą uyskanych w tn sposób wartości obciążnia unajmy a nośność granicną P. ożna wykaać, ż jst to górn osacowani rcywistj nośności granicnj blki.
Wytrzymałość Materiałów
Wytrzymałość Materiałów Zginanie Wyznaczanie sił wewnętrznych w belkach i ramach, analiza stanu naprężeń i odkształceń, warunek bezpieczeństwa Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości,
Zginanie Proste Równomierne Belki
Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie
1. Zestawienie obciążeń
1. Zestawienie obciążeń Lp Opis obciążenia Obc. char. kn/m γ f k d Obc. obl. kn/m 1. Pokrcie ser.1,75 m [0,400kN/m2 1,75m] 0,70 1,35 -- 0,95 2. Obciążenie wiatrem połaci nawietrnej dachu - -0,86 1,50 0,00-1,29
3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)
Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje
Wewnętrzny stan bryły
Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek
OBLICZENIA STATYCZNE
OBLICZENIA STATYCZNE Robudowa istniejącego budynku świetlicy wiejskiej Inwestor: Gmina Skoki Adres: Kusewo diałka 130/5 i 128 Po.1.1.Dach krokiew. DANE: Wymiary prekroju: prekrój prostokątny Serokość b
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Projekt: Data: Pozycja: A ch = 0,5 20, ,40 = 5091,1 cm 4
Pręt nr 4 Wniki wmiarowania stali wg P-E 993 (Stal993_3d v..4) Zadanie: Hala stalowa suwnicą - P-E.rm3 Prekrój:,9 Z Y 50 Wmiar prekroju: h00,0 s76,0 g5, t9, r9,5 e0,7 Charakterstka geometrcna prekroju:
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy 1. Położenie osi obojętnej przekroju rozciąganego mimośrodowo zależy od: a) punktu przyłożenia
Opracowanie: Emilia Inczewska 1
Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla
WSTĘP DO TEORII PLASTYCZNOŚCI
13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają
materiał sztywno plastyczny Rys. 19.1
9. NOŚNOŚĆ SRĘŻYSTO-LSTYCZNYCH USTROJÓW RĘTOWYCH 9.. Idealizacja wykresu rozciągania Wykres rozciągania stali miękkiej, otrzymany ze statycznej próby rozciągania, daje obraz rzeczywistego zachowania się
Zestaw pytań z konstrukcji i mechaniki
Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku
Podstawa opracowania:
Podstawa opracowania: Kotwica J.: Konstrukcje drewniane w budownictwie tradycyjnym. Arkady, Warszawa 2004 Neuhaus H.: Budownictwo drewniane. Polskie Wydawnictwo Techniczne, Rzeszów 2004 Ściskanie pomiaru
MES dla ustrojów prętowych (statyka)
MES dla ustrojów prętowych (statyka) Jrzy Pamin -mail: jpamin@l5.pk.du.pl Piotr Pluciński -mail: pplucin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki
Raport wymiarowania stali do programu Rama3D/2D:
2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj
ZGINANIE PŁASKIE BELEK PROSTYCH
ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej
Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7
ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Przykład 4.2. Sprawdzenie naprężeń normalnych
Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m
TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1
ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych
Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Ekran 1 - Dane wejściowe Materiały Beton Klasa betonu: C 45/55 Wybór z listy rozwijalnej
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204
WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW
CHARAKTERYSTYKA OBCIĄŻENIOWA
Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i
JANOWSCY. Wielkości geometryczne i statyczne figur płaskich. ZESPÓŁ REDAKCYJNY: Dorota Szafran Jakub Janowski Wincenty Janowski
anowsc s.c. ul. Krzwa /5, 8-500 Sanok NIP:687-1--79 www.janowsc.com ANOSCY projktowani w budownictwi ilkości gomtrczn i statczn figur płaskich ZESPÓŁ REDAKCYNY: Dorota Szafran akub anowski incnt anowski
ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ
Górnictwo i Geoinżynieria Rok 3 Zesyt 008 Marian Paluch*, Antoni Tajduś* ANALIZA WYTRZYMAŁOŚCIOWA STROPU BĘDĄCEGO W KONTAKCIE DWUPARAMETROWYM Z POKŁADEM PRZY EKSPLOATACJI NA ZAWAŁ. Wstęp Zajmować będiemy
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń
Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń opracowanie: dr inŝ. Marek Golubiewski, mgr inŝ. Jolanta Bondarczuk-Siwicka
Zginanie proste belek
Zginanie belki występuje w przypadku obciążenia działającego prostopadle do osi belki Zginanie proste występuje w przypadku obciążenia działającego w płaszczyźnie głównej zx Siły przekrojowe w belkach
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie
Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])
P Litewka Efektywny eement skońcony o dżej krywiźnie ELEENTY TEOII PĘTÓW SILNIE ZKZYWIONYCH (Opracowano na podstawie [9,, 3, 34, 5]) Premiescenia i odkstałcenia osiowe Pre pręty sinie akrywione romie się
Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe
ZALETY POŁĄCZEŃ TRZPIENIOWYCH
POŁĄCZENIA ŚRUBOWE dr inż. ż Dariusz Czepiżak 1 ZALETY POŁĄCZEŃ TRZPIENIOWYCH 1. Mogą być wykonane w każdych warunkach atmosferycznych, 2. Mogą być wykonane przez pracowników nie mających wysokich kwalifikacji,
Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski
Katedra Geotechniki i Budownictwa Drogowego WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Maurski Mechanika Gruntów dr inż. Ireneus Dyka http://pracownicy.uwm.edu.pl/i.dyka e-mail: i.dyka@uwm.edu.pl
Projekt belki zespolonej
Pomoce dydaktyczne: - norma PN-EN 1994-1-1 Projektowanie zespolonych konstrukcji stalowo-betonowych. Reguły ogólne i reguły dla budynków. - norma PN-EN 199-1-1 Projektowanie konstrukcji z betonu. Reguły
7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH
7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór
Przykłady (twierdzenie A. Castigliano)
23 Przykłady (twierdzenie A. Castigiano) Zadanie 8.4.1 Obiczyć maksymane ugięcie beki przedstawionej na rysunku (8.2). Do obiczeń przyjąć następujące dane: q = 1 kn m, = 1 [m], E = 2 17 [Pa], d = 4 [cm],
ZESPÓŁ B-D ELEKTROTECHNIKI
ZESÓŁ B-D ELEKTOTECHNIKI Laboratorium Elktrotchniki i Elktroniki Samochodowj Tmat ćwicznia: Badani rozrusznika Opracowani: dr hab. inż. S. DUE 1. Instrukcja Laboratoryjna 2 omiary wykonan: a) omiar napięcia
Przykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Węzeł nr 28 - Połączenie zakładkowe dwóch belek
Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria
Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.
Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.
Nośność belek z uwzględnieniem niestateczności ich środników
Projektowanie konstrukcji metalowych Szkolenie OPL OIIB i PZITB 21 października 2015 Aula Wydziału Budownictwa i Architektury Politechniki Opolskiej, Opole, ul. Katowicka 48 Nośność belek z uwzględnieniem
ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE
. Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:
PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.
MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz
Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO
1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki
1 9% dla belek Strata w wyniku poślizgu w zakotwieniu Psl 1 3% Strata od odkształceń sprężystych betonu i stali Pc 3 5% Przyjęto łącznie: %
1.7. Maksymalne siły sprężające - początkowa siła sprężająca po chwilowym przeciążeniu stosowanym w celu zmniejszenia strat spowodowanych tarciem oraz poślizgiem w zakotwieniu maxp0 = 0,8 fpk Ap - wstępna
Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)
Jerzy Wyrwał Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron) Uwaga. Załączone materiały są pomyślane jako pomoc do zrozumienia informacji podawanych na wykładzie. Zatem ich
Szymon Skibicki, KATEDRA BUDOWNICTWA OGÓLNEGO
1 Obliczyć SGN (bez docisku) dla belki pokazanej na rysunku. Belka jest podparta w sposób ograniczający możliwość skręcania na podporze. Belki rozstawione są co 60cm. Obciążenia charakterystyczne belki
PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH
1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA
Badanie transformatora jednofazowego
BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania
1. Projekt techniczny Podciągu
1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami
Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.
Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech
Mechanika i wytrzymałość materiałów BILET No 1
Mechanika i wytrzymałość materiałów BILET No 1 1. Prawa ruchu Newtona. 2. Projektowanie prętów skręcanych ze względu na wytrzymałość oraz kąt skręcania. 3. Belka AB o cięŝarze G oparta jak pokazano na
Pręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony
Pręt nr Wniki wmiarowania stali wg P-E 993 (Stal993_d v..3 licencja) Zadanie: P_OER Prekrój: 8 - Złożon Z Y 39 83 Wmiar prekroju: h6,0 s438,7 Charakterstka geometrcna prekroju: Ig4490, Ig34953,6 83,00
Politechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat ćwiczenia:
Belki złożone i zespolone
Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki
Załącznik Nr:.. KROKWIE POŁACI STROMEJ-poz.1 ;
Załącnik Nr:.. KROKWIE POŁACI STROMEJ-po.1 ; I. Element 1-krokiew frontowa-połaci stromej krycie blachą na deskowaniu: Krokiew _prekrój nominalny-14/15 cm KROKIEW UKOSNA -prekrój nie skorodowany Serokość
Zmiany w wydaniu drugim skryptu Konstrukcje stalowe. Przykłady obliczeń według PN-EN
Zminy w wydniu drugim skryptu Konstrukcje stlowe. Prykłdy obliceń według PN-EN 99- Rodił. Dodno nowy punkt.. Inormcje o minch (str. 0.) obecnym wydniu uwględniono miny: wynikjące wprowdeni pre PKN w cerwcu
Wymiarowanie sztywnych ław i stóp fundamentowych
Wymiarowanie sztywnych ław i stóp fundamentowych Podstawowe zasady 1. Odpór podłoża przyjmuje się jako liniowy (dla ławy - trapez, dla stopy graniastosłup o podstawie B x L ścięty płaszczyzną). 2. Projektowanie
Ekoenergetyka Matematyka 1. Wykład 1.
Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych
ćwiczenie 211 Hardware'owa realizacja automatu z parametrem wewnętrznym 1. Synteza strukturalna automatu z parametrem wewnętrznym
ATEDA INFOMATYI TEHNIZNE Ćwicnia laoratoryjn Logiki Układów yfrowych ćwicni Tmat: Hardwarowa raliacja automatu paramtrm wwnętrnym. ynta strukturalna automatu paramtrm wwnętrnym Punktm wyjścia synty strukturalnj
Materiały do wykładu na temat Obliczanie sił przekrojowych, naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia.
Materiały do wykładu na temat Obliczanie sił przekrojowych naprężeń i zmian geometrycznych prętów rozciąganych iściskanych bez wyboczenia. Sprawdzanie warunków wytrzymałości takich prętów. Wydruk elektroniczny
Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek
1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka
Laboratorium wytrzymałości materiałów
Politechnika Lubelska MECHANIKA Laboratorium wytrzymałości materiałów Ćwiczenie 3 - Czyste zginanie statycznie wyznaczalnej belki Przygotował: Andrzej Teter (do użytku wewnętrznego) Czyste zginanie statycznie
1. Projekt techniczny żebra
1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia
Pręt nr 0 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr 1 z 13 Pręt nr 0 - Element żelbetowy wg PN-EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x=-0.120m,
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII
Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta.
Ćwicenie 1 Wynacanie współcynnika roprasania wrotnego promieniowania beta. Płytki roprasające Ustawienie licnika Geigera-Műllera w ołowianym domku Student winien wykaać się najomością następujących agadnień:
A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!
Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo
Współczynnik określający wspólną odkształcalność betonu i stali pod wpływem obciążeń długotrwałych:
Sprawdzić ugięcie w środku rozpiętości przęsła belki wolnopodpartej (patrz rysunek) od quasi stałej kombinacji obciążeń przyjmując, że: na całkowite obciążenie w kombinacji quasi stałej składa się obciążenie
EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku
EKSPERTYZA TECHNICZNA-KONSTRUKCYJNA stanu konstrukcji i elementów budynku TEMAT MODERNIZACJA POMIESZCZENIA RTG INWESTOR JEDNOSTKA PROJEKTOWA SAMODZIELNY PUBLICZNY ZESPÓŁ OPIEKI ZDROWOTNEJ 32-100 PROSZOWICE,
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Uwaga: Linie wpływu w trzech prętach.
Zestaw nr 1 Imię i nazwisko zadanie 1 2 3 4 5 6 7 Razem punkty Zad.1 (5p.). Narysować wykresy linii wpływu sił wewnętrznych w przekrojach K i L oraz reakcji w podporze R. Zad.2 (5p.). Narysować i napisać
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA
ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania
Podstawowe definicje
W-8 (Jarswc na ba J. Rukwsk) 5 slajów Ruch rgający Psaww fncj Swbn rgana harmncn Drgana łumn Drgana wymusn Skłaan rgań 3/8 L.R. Jarswc Psaww fncj rgana prcsy, w kórych ana wlkść fycna na prman rśn malj
e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2
OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65
P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie
atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego
Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej
Wykład 6: Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności anicznej Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co Literatura: [] Timoschenko S. Goodier A.J.N., Theory of
ĆWICZENIE 8 i 9. Zginanie poprzeczne z wykładową częścią
ĆWICZENIE 8 i 9 Zginanie poprzeczne z wkładową częścią z z QzS J b z Dskusja wzoru na naprężenia stczne. Uśrednione naprężenie stczne, J bz Qz x S z jest funkcją dwóch zmiennch: x- położenia przekroju
τ R2 := 0.32MPa τ b1_max := 3.75MPa E b1 := 30.0GPa τ b2_max := 4.43MPa E b2 := 34.6GPa
10.6 WYMIAROWANE PRZEKROJÓW 10.6.1. DANE DO WMIAROWANIA Beton istniejącej konstrukcji betonowej klasy B5 dla którego: - wytrzymałość obliczeniowa na ściskanie (wg. PN-91/S-1004 dla betonu B5) - wytrzymałość
Rozciąganie i ściskanie prętów projektowanie 3
Rozciąganie i ściskanie pętó pojektoanie 3 Sposób oziązyania pętó ozciąganych/ściskanych został omóiony ozziale. Zaania pojektoe spoazają się o okeślenia ymiaó pzekoju popzecznego pęta na postaie aunku
Sprawdzanie transformatora jednofazowego
Sprawdanie transformatora jednofaowego SPRAWDZANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego.
Dr inż. Janusz Dębiński
Wytrzymałość materiałów ćwiczenia projektowe 5. Projekt numer 5 przykład 5.. Temat projektu Na rysunku 5.a przedstawiono belkę swobodnie podpartą wykorzystywaną w projekcie numer 5 z wytrzymałości materiałów.
Analiza transformatora
ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora
ĆWICZENIE / Zespół Konstrukcji Drewnianych
ĆWICZENIE 3 06 / 07 Zespół Konstrukcji Drewnianych Słup ELEMENT OSIOWO ŚCISKANY Słup 3 Polecenie 4 Wyznaczyć nośność charakterystyczną słupa ściskanego na podstawie następujących danych: długość słupa:
W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6
achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo
ORGANIZACJA I ZARZĄDZANIE
P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym