WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014"

Transkrypt

1 WMG DUKCJ Z MTMTK W KLS TRZCJ GMZJUM WG PROGRMU MTMTK Z PLUSM w roku szkolnym 2013/2014 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOBR BRDZO DOBR CLUJĄC zna pojęcie liczby naturalnej, zna pojęcie notacji wykładniczej umie oszacować wartość umie obliczać wartości całkowitej, wymiernej zna pojęcie potęgi o wyrażenia zawierającego wyrażeń arytmetycznych zna pojęcie liczby wykładniku: naturalnym pierwiastki zawierających większą związane z procentami niewymiernej, rzeczywistej całkowitym ujemnym umie odczytać współrzędną liczbę działań umie przekształcać zna sposób zaokrąglania rozumie różnicę pomiędzy punktu na osi liczbowej, wyrażenia algebraiczne liczb rozwinięciem dziesiętnym liczby zaznaczyć liczbę na osi stosując wzory zna pojęcie potęgi o wymiernej i niewymiernej liczbowej działaniami na liczbach skróconego mnożenia wykładniku: naturalnym rozumie potrzebę stosowania umie obliczyć potęgę o trudniejsze umie usunąć zna pojęcie pierwiastka notacji wykładniczej w praktyce wykładniku całkowitym zadanie związane z niewymierność z arytmetycznego stopnia z umie obliczyć potęgę o ujemnym procentami mianownika stosując liczby nieujemnej i stopnia wykładniku: całkowitym umie zapisać liczbę w notacji umie przekształcać wzory skróconego z dowolnej liczby ujemnym wykładniczej wyrażenia algebraiczne mnożenia rozumie potrzebę umie zapisać liczbę w notacji umie oszacować wartość umie stosować zaokrąglania liczb wykładniczej wyrażenia zawierającego przekształcenia wyrażeń umie podać rozwinięcie umie porównać liczby pierwiastki algebraicznych w dziesiętne ułamka zwykłego przedstawione w różny sposób umie porównać liczby zadaniach tekstowych umie odczytać współrzędną umie wyłączyć czynnik przed przedstawione na różne punktu na osi liczbowej, znak pierwiastka sposoby rozbudowane równanie zaznaczyć liczbę na osi liczbowej tekstowe dotyczące różnych rozbudowaną nierówność umie obliczyć potęgę o działaniami na liczbach sposobów zapisywania liczb wykładniku naturalnym umie usunąć niewymierność z umie obliczać wartości prostych rozbudowany układ liniowy umie obliczyć pierwiastek mianownika korzystając z wyrażeń arytmetycznych metodą podstawiania lub arytmetyczny stopnia z własności pierwiastków zawierających większą liczbę metodą przeciwnych liczby nieujemnej i stopnia działań współczynników z dowolnej liczby związane z procentami umie wyłączyć czynnik przed trudniejsze umie porównać umie przedstawić dane w znak pierwiastka przedstawione liczby postaci diagramu umie włączyć czynnik pod znak z zastosowaniem równań zna kolejność wykonywania umie obliczyć liczbę na pierwiastka lub układów równań działań podstawie danego procentu umie dokonać porównań, zna wzory dotyczące umie obliczyć jakim procentem szacując w zadaniach potęgowanie i jednej liczby jest druga liczba tekstowych pierwiastkowania umie obliczyć wartość liczbową umie usunąć niewymierność z umie wykonać działania wyrażenia po przekształceniu mianownika korzystając z łączne na liczbach do postaci dogodnej do własności pierwiastków zna pojęcie procentu obliczeń proste zadanie rozumie potrzebę stosowania umie przekształcać wyrażenia procentów w życiu algebraiczne działaniami na liczbach

2 W R Ż L G B R C Z codziennym umie zamienić procent na ułamek i odwrotnie umie obliczyć procent danej liczby umie odczytać diagram procentowy zna pojęcia: wyrażenie algebraiczne, jednomian, suma algebraiczna, wyrazy podobne zna wzór na iloczyn sumy algebraicznej przez jednomian rozumie zasadę nazywania wyrażeń algebraicznych rozumie zasadę przeprowadzania redukcji wyrazów podobnych umie budować proste wyrażenia algebraiczne zna pojęcie równania zna pojęcie nierówności i jej rozwiązania zna metodę równań równoważnych zna pojęcie układu równań zna pojęcie rozwiązania układu równań zna metodę podstawiania zna metodę przeciwnych współczynników rozumie pojęcie rozwiązania równania rozumie pojęcie rozwiązania układu równań rozumie pojęcie rozwiązania nierówności równanie nierówność prosty układ liniowych metodą podstawiania lub metodą przeciwnych współczynników umie stosować przekształcenia wyrażeń algebraicznych w zadaniach tekstowych umie wyłączyć wspólny czynnik przed nawias zna pojęcia: równania równoważne, tożsamościowe, sprzeczne zna pojęcia: układ oznaczony, nieoznaczony, sprzeczny układ liniowych metodą podstawiania lub metodą przeciwnych współczynników równanie sprzeczne lub tożsamościowe układ sprzeczny lub nieoznaczony równanie, korzystając z proporcji umie przekształcić wzór umie obliczyć liczbę na podstawie danego procentu umie obliczyć jakim procentem jednej liczby jest druga liczba umie przedstawić dane w postaci diagramu związane z procentami umie obliczyć wartość liczbową wyrażenia po przekształceniu do postaci dogodnej do obliczeń umie przekształcać proste wyrażenia algebraiczne umie wyłączyć wspólny czynnik przed nawias umie stosować przekształcenia wyrażeń algebraicznych w prostych zadaniach tekstowych równanie nierówność układ liniowy metodą podstawiania lub metodą przeciwnych współczynników równanie sprzeczne lub tożsamościowe układ sprzeczny lub nieoznaczony równanie, korzystając z proporcji umie przekształcić wzór zastosowaniem równań lub układów równań

3 proste równanie, korzystając z proporcji F U K C J rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu zna pojęcie funkcji zna pojęcia: dziedzina, argument, wartość funkcji, zmienna zależna i niezależna zna pojęcie miejsca zerowego rozumie pojęcie przyporządkowania umie przedstawić funkcję za pomocą opisu słownego, wzoru, grafu, wykresu i tabelki umie odczytać wartość funkcji dla danego argumentu lub argument dla danej wartości z: - tabelki, wykresu, grafu rozumie związek między wzorem funkcji a jej wykresem umie sprawdzić rachunkowo i na wykresie, czy punkt należy do wykresu funkcji umie obliczyć miejsce zerowe funkcji umie odczytać z wykresu miejsce zerowe zna związek pomiędzy wielkościami wprost proporcjonalnymi zna kształt linii będącej wykresem wielkości wprost proporcjonalnych zna pojęcie współczynnik proporcjonalności zna związek pomiędzy wielkościami odwrotnie umie interpretować informacje odczytane z wykresu umie wskazać miejsce zerowe funkcji zna różne sposoby zapisu funkcji określonej danym wzorem zna etapy rysowania wykresów funkcji umie na podstawie wzoru wyznaczyć argument dla danej wartości funkcji i odwrotnie umie odczytać z wykresu zbiór argumentów, dla których funkcja przyjmuje wartości dodatnie lub ujemne umie rozpoznać wielkości wprost proporcjonalne umie obliczyć współczynnik proporcjonalności umie opisać wzorem dane wielkości wprost proporcjonalne umie narysować wykres funkcji typu y=ax jeśli dziedziną jest zbiór R umie rozpoznać wielkości odwrotnie proporcjonalne umie opisać wzorem dane wielkości odwrotnie proporcjonalne umie przedstawić funkcję za pomocą opisu słownego, wzoru, grafu, wykresu i tabelki umie wskazać miejsce zerowe funkcji umie przedstawić wykres funkcji spełniającej warunki umie podać argumenty, dla których funkcja przyjmuje wartości dodatnie lub ujemne zna nazwy wykresów niektórych funkcji ( liniowa, parabola) umie wyznaczyć współrzędne punktów przecięcia się wykresu z osiami x i y umie dopasować wzory do wykresów funkcji umie odczytać z wykresu zbiór argumentów, dla których funkcja przyjmuje określone wartości umie zastąpić wzorem opis słowny funkcji umie na podstawie wzoru narysować wykres funkcji potrafi rozwiązać zadania wykresem funkcji i jej wzorem umie rozpoznać wielkości wprost proporcjonalne umie narysować wykres funkcji typu y=ax umie rozwiązywać proste zadania wielkościami wprost proporcjonalnymi oraz ich wykresami umie rozpoznać wielkości odwrotnie proporcjonalne umie interpretować informacje odczytane z wykresu umie dopasować wzory do wykresów funkcji potrafi rozwiązać trudniejsze zadania wykresem funkcji i jej wzorem umie rozwiązywać zadania wielkościami wprost proporcjonalnymi oraz ich wykresami umie rozwiązywać trudniejsze zadania wielkościami odwrotnie proporcjonalnymi oraz ich wykresami umie rozwiązywać skomplikowane zadania wielkościami wprost proporcjonalnymi oraz ich wykresami umie narysować wykres funkcji typu y= x a umie rozwiązywać skomplikowane zadania wielkościami odwrotnie proporcjonalnymi oraz ich wykresami

4 proporcjonalnymi zna kształt linii będącej wykresem wielkości odwrotnie proporcjonalnych umie rozwiązywać proste zadania wielkościami odwrotnie proporcjonalnymi oraz ich wykresami F G U R P Ł S Z C Z Ź zna pojęcie trójkąta zna sumę miar kątów wewnętrznych trójkąta zna wzór na pole dowolnego trójkąta zna twierdzenie Pitagorasa i twierdzenie odwrotne zna wzory na obliczanie wysokości i pola trójkąta równobocznego rozumie potrzebę stosowania twierdzenia Pitagorasa i twierdzenia odwrotnego umie obliczyć miarę trzeciego kąta trójkąta, mając dwa dane umie zapisać wzór Pitagorasa dla trójkąta prostokątnego umie obliczyć długość przeciwprostokątnej na podstawie twierdzenia Pitagorasa umie obliczyć wysokość i pole trójkąta równobocznego o danym boku trójkąta o danej podstawie i wysokości umie sprawdzić, czy trójkąt o danych bokach jest prostokątny zna definicję prostokąta, kwadratu, trapezu, równoległoboku i rombu zna wzory na obliczanie pól powierzchni czworokątów zna własności czworokątów zna warunek istnienia trójkąta w układzie współrzędnych zna zależność między bokami i kątami trójkąta prostokątnego o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 rozumie zasadę klasyfikacji trójkątów umie sprawdzić, czy z odcinków o danych długościach można zbudować trójkąt umie obliczyć długość przyprostokątnej na podstawie twierdzenia Pitagorasa trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 i obwód tr umie wyznaczyć kąty trójkąta na podstawie danych z rysunku rozumie zasadę klasyfikacji czworokątów wielokąta zna wzór na obliczanie długości łuku zna wzór na obliczanie pola wycinka koła zna twierdzenie o kącie wpisanym opartym na półokręgu rozumie sposób wyznaczenia liczby koła, znając jego obwód i odwrotnie umie obliczyć długość łuku i pole wycinka koła, znając miarę kąta środkowego umie obliczyć długości promieni, pola i obwody kół wpisanych i opisanych na kwadracie, trójkącie równobocznym i sześciokącie umie sprawdzić, czy trójkąt o danych bokach jest prostokątny trójkąt prostokątny o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 i obwód trójkąta umie wyznaczyć kąty trójkąta na podstawie danych z rysunku proste zadanie trójkątami czworokąta wielokąta ( umie wyznaczyć kąty czworokąta na podstawie danych z rysunku proste zadanie wielokątami koła, znając jego obwód i odwrotnie umie obliczyć obwód figury ograniczonej łukami i odcinkami figury złożonej z wielokątów i wycinków koła umie stosować własność stycznej w obliczaniu miar kątów okręgami i kołami umie określić wzajemne trójkąta ograniczonego wykresami funkcji liniowych oraz osią ox lub oy trudniejsze z trójkątami trudniejsze z wielokątami odcinka koła figury złożonej z wielokątów i wycinków koła z okręgami w układzie współrzędnych umie obliczyć długości odcinków, mając dane długości promieni występujących okręgów lub odległości pomiędzy pewnymi punktami trudniejsze z wzajemnym położeniem dwóch okręgów trudniejsze z okręgami opisanymi i wpisanymi w wielokąty foremne umie podać współrzędne punktów symetrycznych względem prostych postaci y=a, x=a trójkątami wielokątami wzajemnym położeniem dwóch okręgów okręgami opisanymi i wpisanymi w wielokąty foremne

5 czworokąta umie wyznaczyć kąty czworokąta na podstawie danych z rysunku zna pojęcie okręgu i koła zna elementy okręgu i koła zna wzór na obliczanie długości okręgu zna wzór na obliczanie pola koła zna pojęcie łuku i wycinka koła zna pojęcie stycznej do okręgu umie obliczyć długość okręgu znając jego promień lub średnicę koła, znając jego promień lub średnicę umie obliczyć długość łuku jako określonej części okręgu wycinka koła jako określonej części koła zna pojęcie okręgów rozłącznych, przecinających się i stycznych zna pojęcie okręgu opisanego na wielokącie i wpisanego w wielokąt zna pojęcie symetralnej odcinka zna pojęcie dwusiecznej kąta zna pojęcie wielokąta foremnego umie konstruować sześciokąt i ośmiokąt foremny wpisany w okrąg o danym promieniu umie konstruować symetralną odcinka umie konstruować dwusieczną kąta zna pojęcie punktów i figur symetrycznych względem umie obliczyć obwód figury ograniczonej łukami i odcinkami figury złożonej z wielokątów i wycinków koła umie określić wzajemne położenie dwóch okręgów, znając ich promienie i odległość między ich środkami umie obliczyć odległość między środkami okręgów, znając ich promienie i położenie z okręgami w układzie współrzędnych umie obliczyć długości odcinków, mając dane długości promieni występujących okręgów lub odległości pomiędzy pewnymi punktami zna wzór na promień okręgu opisanego i wpisanego w kwadrat, trójkąt równoboczny i sześciokąt umie obliczyć miarę kąta wewnętrznego wielokąta foremnego umie obliczyć długości promieni, pola i obwody kół wpisanych i opisanych na kwadracie umie rysować figury w symetrii osiowej, gdy figura i oś: -nie mają punktów wspólnych -mają punkty wspólne umie rysować figury w symetrii środkowej, gdy środek symetrii: nie należy do figury; należy do figury umie określić własności punktów symetrycznych umie budować figury posiadające oś symetrii i nie posiadające środka symetrii umie budować figury o położenie dwóch okręgów, znając ich promienie i odległość między ich środkami umie obliczyć odległość między środkami okręgów, znając ich promienie i położenie z okręgami w układzie współrzędnych umie obliczyć długości odcinków, mając dane długości promieni występujących okręgów lub odległości pomiędzy pewnymi punktami wzajemnym położeniem dwóch okręgów proste zadanie okręgami opisanymi i wpisanymi w wielokąty foremne umie wskazywać osie i środki symetrii figur złożonych umie budować figury posiadające oś symetrii i nie posiadające środka symetrii umie budować figury o określonej ilości osi symetrii

6 prostej i względem punktu zna pojęcie osi symetrii figury zna pojęcie środka symetrii figury rozumie pojęcie osi symetrii figury i potrafi ją wskazać w prostych przypadkach rozumie pojęcie środka symetrii figury i potrafi go wskazać w prostych przypadkach umie znajdować punkty symetryczne do danych względem prostej i względem punktu umie rysować figury w symetrii osiowej, gdy figura i oś: -nie mają punktów wspólnych umie rysować figury w symetrii środkowej, gdy środek symetrii: nie należy do figury; umie znajdować punkty i figury symetryczne względem osi oraz początku układu współrzędnych określonej ilości osi symetrii F G U R zna pojęcie odcinków proporcjonalnych zna twierdzenie Talesa rozumie potrzebę stosowania twierdzenia Talesa umie zapisać proporcję odcinków leżących na ramionach kąta przeciętych prostymi równoległymi umie dzielić konstrukcyjnie odcinek na równe części zna pojęcie figur podobnych i skali podobieństwa rozumie pojęcie figur podobnych i potrafi je rozpoznać rozumie pojęcie skali umie zapisać proporcję odcinków leżących na ramionach kąta i na prostych równoległych, przecinających je umie stosować twierdzenia Talesa w zadaniach rachunkowych i konstrukcyjnych umie dzielić konstrukcyjnie odcinek w danym stosunku umie dzielić konstrukcyjnie odcinek w danym stosunku figurami podobnymi umie podać wymiary figury podobnej w danej skali umie stosować twierdzenia Talesa w zadaniach rachunkowych umie stosować twierdzenia Talesa w zadaniach konstrukcyjnych umie dzielić konstrukcyjnie odcinek w danym stosunku podziałem odcinka figurami podobnymi figury podobnej umie określić stosunek pól zna twierdzenie odwrotne do twierdzenia Talesa twierdzeniem Talesa i twierdzeniem odwrotnym figurami podobnym polami figur podobnych trudniejsze zadanie tekstowe wykorzystujące cechy trójkątów podobnych trudniejsze zadanie twierdzeniem Talesa i twierdzeniem odwrotnym trudniejsze zadanie polami figur podobnych

7 P O D O B B R Ł podobieństwa umie określić skalę podobieństwa zna pojęcie graniastosłupa, prostopadłościanu i sześcianu zna pojęcie graniastosłupa prostego i prawidłowego zna budowę graniastosłupa zna wzory na obliczanie pola powierzchni i objętości graniastosłupa zna jednostki pola i objętości rozumie sposób tworzenia nazw graniastosłupów umie określić ilość wierzchołków, krawędzi i ścian graniastosłupa umie obliczyć sumę długości krawędzi graniastosłupa powierzchni i objętość graniastosłupa, podstawiając do wzoru umie rozpoznać siatkę graniastosłupa umie rysować graniastosłup w rzucie równoległym zna wzór na stosunek pól figur podobnych umie określić stosunek pól figur podobnych figury podobnej znając skalę podobieństwa umie obliczyć skalę podobieństwa znając pola figur podobnych zna cechy podobieństwa trójkątów umie sprawdzić podobieństwo trójkątów o danych bokach umie sprawdzić podobieństwo trójkątów o danych dwóch kątach umie sprawdzić podobieństwo trójkątów prostokątnych o danym kącie ostrym zna pojęcie przekroju graniastosłupa rozumie zasady zamiany jednostek rozumie pojęcie kata prostej z płaszczyzna umie zamieniać jednostki pola i objętości graniastosłupem w graniastosłupie korzystając z twierdzenia Pitagorasa rozumie zasady zamiany jednostek umie zamieniać jednostki pola i objętości tekstowe o ostrosłupie w ostrosłupie korzystając z twierdzenia Pitagorasa zna pojęcie kąta rozwarcia stożka figur podobnych umie sprawdzić podobieństwo trójkątów na bazie cechy bkb umie określić długości boków trójkąta prostokątnego podobnego, znając skalę podobieństwa umie uzasadniać podobieństwo trójkątów tekstowe wykorzystujące cechy trójkątów podobnych umie zamieniać jednostki pola i objętości umie rozpoznać siatkę graniastosłupa w graniastosłupie korzystając z twierdzenia Pitagorasa w graniastosłupie korzystając z własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, proste zadanie graniastosłupem zna pojęcie przekroju ostrosłupa umie zamieniać jednostki pola i objętości umie rozpoznać siatkę ostrosłupa w ostrosłupie korzystając z twierdzenia Pitagorasa umie obliczyć długość odcinka w graniastosłupie korzystając z własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, trudniejsze z graniastosłupem trudniejsze z ostrosłupem trudniejsze z bryłami obrotowymi trudniejsze z polem powierzchni całkowitej lub objętością walca trudniejsze z bryłami złożonymi z walców nietypowe zadanie graniastosłupem nietypowe zadanie ostrosłupem nietypowe zadanie polem powierzchni całkowitej lub objętością walca nietypowe zadanie bryłami złożonymi z walców trudniejsze zadanie polem powierzchni całkowitej lub objętością stożka

8 zna pojęcie ostrosłupa i czworościanu zna pojęcie ostrosłupa prawidłowego i czworościanu foremnego zna budowę ostrosłupa umie określić ilość wierzchołków, krawędzi i ścian ostrosłupa zna wzory na obliczanie pola powierzchni i objętości ostrosłupa zna pojęcie wysokości ostrosłupa rozumie sposób tworzenia nazw ostrosłupów umie obliczyć sumę długości krawędzi ostrosłupa powierzchni i objętość ostrosłupa, podstawiając do wzoru umie rysować ostrosłup w rzucie równoległym umie rozpoznać siatkę ostrosłupa zna pojęcie bryły obrotowej zna pojęcia: walec, stożek, kula zna budowę brył obrotowych zna pojęcie przekroju bryły obrotowej zna pojęcie osi obrotu umie rysować bryły obrotowe w rzucie równoległym umie określić wymiary bryły powstałej w wyniku obrotu danej figury zna pojęcie walca zna wzór na objętość i pole powierzchni całkowitej walca rozumie pojęcie walca, wskazuje model umie kreślić siatkę walca przekroju osiowego bryły obrotowej polem objętością walca polem objętością stożka polem powierzchni lub objętością kuli w ostrosłupie korzystając z własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 ostrosłupem umie określić wymiary bryły powstałej w wyniku obrotu danej figury przekroju osiowego bryły obrotowej polem objętością walca umie stosować twierdzenie Pitagorasa w zadaniach o walcu umie stosować własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 w zadaniach o walcu polem objętością stożka umie stosować twierdzenie Pitagorasa w zadaniach o stożku umie stosować własności trójkątów prostokątnych o kątach 90 0, 45 0, 45 0 oraz 90 0, 30 0, 60 0 w zadaniach o stożku polem powierzchni lub objętością kuli polem objętością stożka bryłami złożonymi z walców i stożków przekroju kuli o danym promieniu, wykonanego w danej odległości od środka trudniejsze z polem powierzchni lub objętością kuli zamianą kształtu brył przy stałej objętości powierzchni i objętość nietypowej bryły, powstałej w wyniku obrotu danej figury wokół osi trudniejsze zadanie bryłami złożonymi z walców i stożków e stożkiem ściętym nietypowe zadanie polem powierzchni lub objętością kuli trudniejsze zadanie zamianą kształtu brył przy stałej objętości powierzchni i objętość nietypowej bryły, powstałej w wyniku obrotu danej figury wokół osi

9 bocznej walca, podstawiając do wzoru umie obliczyć objętość walca, podstawiając do wzoru zna pojęcie stożka zna wzór na objętość i pole powierzchni całkowitej stożka rozumie pojęcie stożka, wskazuje model umie kreślić siatkę stożka bocznej stożka, podstawiając do wzoru umie obliczyć objętość stożka, podstawiając do wzoru zna pojęcie kuli i sfery zna wzór na objętość i pole powierzchni całkowitej kuli i sfery rozumie pojęcie kuli i sfery, wskazuje modele powierzchni całkowitej i objętość kuli i sfery, znając promień M T M T K zna pojęcie jednostki umie posługiwać się jednostkami miary umie zamieniać jednostki stosowane w praktyce umie odczytać informacje przedstawione w formie tekstu, tabeli, schematu umie selekcjonować informacje umie porównać informacje umie interpretować informacje umie wykorzystać informacje zna pojęcie jednostki rozumie zasadę zamiany jednostek umie wykonać obliczenia w sytuacjach praktycznych, stosując zamianę jednostek umie analizować informacje umie przetwarzać informacje umie ustalić skalę mapy umie określić na podstawie poziomic wysokość szczytu umie na podstawie poziomic określić kształt góry umie ustalić odległość wzdłuż stoku umie zamieniać jednostki stosowane w praktyce umie wykonać obliczenia w sytuacjach praktycznych, stosując zamianę jednostek umie porównać informacje umie analizować informacje umie interpretować informacje umie wykorzystać informacje w praktyce umie porównać informacje umie analizować informacje umie ustalić odległość wzdłuż stoku umie zamieniać jednostki nietypowe umie przetwarzać informacje mapą trudniejsze z obliczaniem różnych podatków trudniejsze z oprocentowaniem obliczaniem różnych podatków oprocentowaniem

10 W Z S T S O W C H w praktyce zna pojęcie diagramu rozumie pojęcie diagramu umie odczytać informacje przedstawione na diagramie zna pojęcie mapy zna pojęcie skali mapy rozumie pojęcie skali mapy umie ustalić odległości na mapie o danej skali zna pojęcie oprocentowanie zna pojęcia cena netto, cena brutto rozumie pojęcie podatku rozumie pojęcie podatku VT umie obliczyć podatek VT oraz cenę brutto dla danej stawki VT zna pojęcie oprocentowanie rozumie pojęcie oprocentowanie umie obliczyć stan konta po roku czasu umie wykonać obliczenia w różnych sytuacjach praktycznych, operuje procentami zna zależność między prędkością, drogą i czasem umie obliczyć prędkość, drogę lub czas, mając dwie pozostałe wielkości:bez zamiany jednostek umie przekształcić wzór umie obliczyć podatek od wynagrodzenia umie obliczyć cenę netto znając cenę brutto oraz VT umie obliczyć stan konta po kilku latach umie obliczyć oprocentowanie, znając otrzymaną po roku kwotę i odsetki umie porównać lokaty w banku umie obliczyć prędkość, drogę lub czas, mając dwie pozostałe wielkości:bez zamiany jednostek ; z zamianą jednostek umie zamienić jednostki prędkości prędkością, drogą i czasem prędkością, drogą i czasem na bazie wykresu umie obliczyć o jaki procent zmienia się dana wielkość fizyczna proste zadanie dotyczące: -zmian długości, objętości, ciśnienia pod wpływem temperatury; zamiany jednostek temperatury, gęstości cząsteczek, pierwiastków i atomów roztworów umie określić azymut na podstawie poziomic umie określić nachylenie rozumie związek zmian czasu na Ziemi z ruchem kuli ziemskiej umie obliczyć lokalny czas w różnych miejscach na kuli ziemskiej umie podać długość geograficzną dla miejsc na Ziemi mających określony czas umie wykonać obliczenia w różnych sytuacjach praktycznych, operuje procentami umie obliczyć VT przed obniżką znając cenę brutto po obniżce o dany procent umie obliczyć wysokość podatku dla różnych podstaw obliczenia obliczaniem różnych podatków umie wykonać obliczenia w różnych sytuacjach praktycznych, operuje procentami umie obliczyć stan konta po kilku latach umie obliczyć oprocentowanie, znając otrzymaną po roku kwotę i odsetki umie porównać lokaty w banku oprocentowaniem umie obliczyć prędkość, drogę lub czas, mając dwie pozostałe wielkości z zamianą jednostek umie zamienić jednostki prędkości prędkością, drogą i czasem na bazie wykresu trudniejsze zadanie dotyczące: -zmian długości, objętości, ciśnienia pod wpływem temperatury; zamiany jednostek temperatury gęstości cząsteczek, pierwiastków i atomów roztworów

11 prędkością, drogą i czasem umie przekształcić wzór umie sporządzić wykres wielkości podanych w tabeli oraz odczytać z niego potrzebne informacje dotyczące: -zmian długości, objętości, ciśnienia pod wpływem temperatury; zamiany jednostek temperatury gęstości cząsteczek, pierwiastków i atomów roztworów

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE W ROKU SZKOLNYM 2014 /2015

WYMAGANIA EDUKACYJNE W ROKU SZKOLNYM 2014 /2015 WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE STOPNIE Z MATEMATYKI W KLASIE III GIMNAZJUM W ROKU SZKOLNYM 2014 /2015 Wymagania edukacyjne dostosowane są do programu MATEMATYKA Z PLUSEM LICZBY I WYRAŻENIA ALGEBRAICZNE

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń:

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń: DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) TEMAT ZAJĘĆ CELE PODSTAWOWE CELE PONADPODSTAWOWE 1. Lekcja organizacyjna. Uczeń: Uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA TRZECIA GIMNAZJUM PIERWSZY OKRES I. LICZBY I WYRAŻENIA ALGEBRAICZNE Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie notacji wykładniczej. 2. Zna sposób

Bardziej szczegółowo

ROK SZKOLNY 2012/2013

ROK SZKOLNY 2012/2013 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013 OPRACOWANY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08

Bardziej szczegółowo

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne Wielokąty i okręgi zna twierdzenie Pitagorasa rozumie potrzebę stosowania twierdzenia Pitagorasa umie obliczyć

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM Matematyka z plusem dla gimnazjum WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.)

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki kl.i

Przedmiotowy system oceniania z matematyki kl.i I Matematyka klasa I - wymagania programowe DZIAŁ 1. LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej (K) rozumie rozszerzenie osi liczbowej na liczby ujemne (K) umie porównywać

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM SZCZEGÓŁOWE WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Zasady wystawiania ocen na pierwsze półrocze i koniec roku I. Ocenie podlegają: odpowiedzi ustne, prace pisemne: Kartkówki,

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH, ŚCIEŻEK EDUKACYJNYCH I STANDARDÓW WYMAGAŃ EGZAMINACYJNYCH opracowane na podstawie programu nauczania Matematyka

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM ROK SZKOLNY 2015/2016 1 Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2015/z1

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3 W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3 dopuszczaj ący 1 rozumie wykres jako sposób prezentacji informacji umie odczytać z wykresu zna pojęcie funkcji zna pojęcia: dziedzina, argument,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody.

i danej prędkości; stosuje jednostki prędkości: km/h, m/s; umiejętności rachunkowe, a także własne poprawne metody. Propozycja rozkładu materiału nauczania Matematyka wokół nas Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji Zagadnienie

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej

Matematyka z plusem dla szkoły ponadgimnazjalnej 1 ZAŁOŻENIA DO PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem

WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem Liczby i wyrażenia algebraiczne WYMAGANIA EDUKACYJNE Z MATEMATYKI GIMNAZJUM KLASA III Zgodnie z programem Matematyka z plusem zna pojęcie notacji wykładniczej umie oszacować wynik działań umie zaokrąglić

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Publiczne Gimnazjum im. W. Witosa w Pławie PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI rok szkolny 2014/2015 Nauczanie matematyki odbywa się zgodnie z programem wydawnictwa Nowa Era Policzmy to razem. opr.

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen z przedmiotu matematyka w III klasie gimnazjum w roku szkolnym 2013/2014 Wymagania edukacyjne dostosowane do obowiązującej

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013

Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013 Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013 Uczeń otrzymuje ocenę celującą, gdy: a) w 100% opanował treści zawarte w programie nauczania. Uczeń otrzymuje ocenę bardzo dobrą,

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

- umie obliczyć potęgę o wykładniku: naturalnym(k), całkowitym ujemnym - umie oszacować wartość wyrażenia zawierającego pierwiastki

- umie obliczyć potęgę o wykładniku: naturalnym(k), całkowitym ujemnym - umie oszacować wartość wyrażenia zawierającego pierwiastki KLASA III LICZBY I WYRAŻENIA ALGEBRAICZNE - zna pojęcie liczby naturalnej, całkowitej, wymiernej - zna pojęcie liczby niewymiernej, rzeczywistej - zna sposób zaokrąglania liczb - zna pojęcie potęgi o wykładniku:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2014/2015 WMG DUKCJ Z MTMTK W KLS TRZCJ GMZJUM WG PROGRMU MTMTK Z PLUSM w roku szkolnym 2014/2015 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOBR BRDZO DOBR CLUJĄC zna pojęcie liczby naturalnej, zna pojęcie notacji wykładniczej

Bardziej szczegółowo

Program nauczania matematyki

Program nauczania matematyki Program nauczania matematyki w klasach 1-3 gimnazjum Policzmy to razem Jerzy Janowicz Zgodny z podstawą z podstawą programową z dnia 23 grudnia 2008 r. Spis treści 1. Ogólna charakterystyka programu 3

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej ROZKŁAD MATERIAŁU DLA KLASY II

Matematyka z plusem dla szkoły ponadgimnazjalnej ROZKŁAD MATERIAŁU DLA KLASY II 1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres podstawowy z rozszerzeniem) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE III GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM w roku szkolnym 2013/2014 WMG DUKCJ Z MTMTK W KLS GMZJUM WG POGMU MTMTK Z PLUSM w roku szkolnym 2013/2014 L C Z B OC DOPUSZCZJĄC DOSTTCZ DOB BDZO DOB CLUJĄC zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE TRZECIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU

KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE TRZECIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU KRYTERIA OCENIANIA Z MATEMATYKI W KLASIE TRZECIEJ PUBLICZNEGO GIMNAZJUM IM. JANA PAWŁA II W BIADACZU OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM, NR DPN-5002-17/08 OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Kryteria oceniania z zakresu klasy trzeciej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WG PROGRAMU MATEMATYKA Z PLUSEM L B WMG DUKJ MTMTK W KLS TJ GMJUM WG POGMU MTMTK PLUSM O DOPUSJĄ DOSTT DOB BDO DOB LUJĄ zna pojęcie liczby naturalnej, całkowitej, wymiernej zna sposób zaokrąglania liczb zna pojęcie potęgi o wykładniku:

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASIE I Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym Systemem Oceniania GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH Nauczyciel matematyki:

Bardziej szczegółowo

Załącznik nr 4 do PSO z matematyki

Załącznik nr 4 do PSO z matematyki Załącznik nr 4 do PSO z matematyki Wymagania na poszczególne oceny szkolne z matematyki na poziomie rozszerzonym Charakterystyka wymagań na poszczególne oceny: Wymagania na ocenę dopuszczającą dotyczą

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE

MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Klasa III LICZBY I WYRAŻENIA ALGEBRAICZNE

Klasa III LICZBY I WYRAŻENIA ALGEBRAICZNE Liczba godzin Klasa III LICZBY I WYRAŻENIA ALGEBRAICZNE dopuszczającą (K) Wymagania podstawowe na ocenę: dostateczną (P) 22 Różne sposoby zapisywania liczb. Działania na liczbach. Obliczenia procentowe.

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 5 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum.

Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum. Wymagania edukacyjne z matematyki w klasie trzeciej gimnazjum. Opracowano na podstawie programu Matematyka z plusem i podręcznika o numerze dopuszczenia 168/03/2011. Opracowały: Marzena Gąska Dorota Ścibak

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 MATEMATYKA

EGZAMIN MATURALNY 2013 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III DZIAŁ: LICZBY I WYRAŻENIA ALGEBRAICZNE. zna: pojęcie liczby naturalnej, całkowitej, wymiernej, liczby niewymiernej, rzeczywistej, sposób zaokrąglania liczb,

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Zadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział

Zadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział Zadanie. Na początku roku akademickiego mężczyźni stanowili 40% wszystkich studentów. Na koniec roku liczba wszystkich studentów zmalała o 0% i wówczas okazało się, że mężczyźni stanowią % wszystkich studentów.

Bardziej szczegółowo

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D) W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie

Bardziej szczegółowo

Lekcja organizacyjna. Odczytywanie wykresów. Odczytywanie wykresów (cd.) Pojęcie funkcji. Zależności funkcyjne. Wzory a wykresy

Lekcja organizacyjna. Odczytywanie wykresów. Odczytywanie wykresów (cd.) Pojęcie funkcji. Zależności funkcyjne. Wzory a wykresy Klasa III: DZIAŁ 1. FUNKCJE Lekcja organizacyjna. Odczytywanie wykresów Odczytywanie wykresów (cd.) Pojęcie funkcji. Zależności funkcyjne Wzory a wykresy Zależności między wielkościami proporcjonalnymi

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III gimnazjum

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III gimnazjum Wymagania edukacyjne na poszczególne oceny z matematyki w klasie III gimnazjum Ocena dopuszczająca I półrocze Ocenę dopuszczającą śródroczną otrzymuje uczeń, który: zna sposób zaokrąglania liczb rozumie

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym)

PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym) PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (Kształcenie ogólne w zakresie podstawowym) I. LICZBY Temat Ilość godzin Cele Zbiory 1 Określenia zbioru

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (dp.) P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra

Bardziej szczegółowo

MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY, KLASA 3 GIM

MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY, KLASA 3 GIM MATEMATYKA WYMAGANIA NA POSZCZEGÓLNE OCENY, KLASA 3 GIM Poziomy wymagań edukacyjnych: 2 konieczny ocena dopuszczająca (2) 3 podstawowy - ocena dostateczna (3) 4 rozszerzający ocena dobra (4) 5 dopełniający

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki ZESPÓŁ SZKÓŁ PONADGIMNAZJALNYCH W KRUSZWICY Przedmiotowy system oceniania z matematyki y str. - 1 - Przedmiotowy System Oceniania (PSO) z matematyki opracowany na podstawie programu nauczania nr DKW-4015-37/01

Bardziej szczegółowo

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. 2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4);

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

Kryteria wymagań z matematyki klasa III

Kryteria wymagań z matematyki klasa III Kryteria wymagań z matematyki klasa III POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający - ocena dobra (4); D dopełniający - ocena

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Statystyka) zna pojęcie wykresu, zna pojęcie diagramu słupkowego i kołowego,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM. rok szkolny 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM. rok szkolny 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM rok szkolny 2015/2016 POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny - ocena dopuszczająca (2); P podstawowy - ocena dostateczna (3); R rozszerzający

Bardziej szczegółowo

Dział 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

Dział 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Dział 1. LICZBY I WYRAŻENIA ALGEBRAICZNE zna pojęcie notacji wykładniczej zna sposób zaokrąglania liczb rozumie potrzebę zaokrąglania liczb umie oszacować wynik działań umie zaokrąglić liczby do podanego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM DZIAŁ I: LICZBY I WYRAŻENIA ALGEBRAICZNE Na o cenę dopuszczający uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKIW KLASIE TRZECIEJ GIMNAZJUM

WYMAGANIA Z MATEMATYKIW KLASIE TRZECIEJ GIMNAZJUM WYMAGANIA Z MATEMATYKIW KLASIE TRZECIEJ GIMNAZJUM OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/03/2011 4 GODZ. TYGODNIOWO 125 GODZ. W CIĄGU ROKU POZIOMY WYMAGAŃ EDUKACYJNYCH:

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA III GIMNAZJUM (IIIan1, IIIan2, IIIb) Na rok szkolny 2015/2016

WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA III GIMNAZJUM (IIIan1, IIIan2, IIIb) Na rok szkolny 2015/2016 WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA III GIMNAZJUM (IIIan1, IIIan2, IIIb) Na rok szkolny 2015/2016 OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM I PODRĘCZNIKA O NR DOP. 168/1/2009 POZIOMY WYMAGAŃ

Bardziej szczegółowo

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym, szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena dobra (4) D - dopełniający

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM BRYŁY KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA BRYŁY UCZEŃ ZNA: - pojęcie graniastosłupa, prostopadłościanu i sześcianu; - pojęcie graniastosłupa prostego i prawidłowego;

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM LICZBY I WYRAŻENIA ALGEBRAICZNE KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. III GIMNAZJUM OCENA DOPUSZCZAJĄCA LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, rzeczywistej; - sposób zaokrąglania

Bardziej szczegółowo

Wymagania edukacyjne z przedmiotu zajęcia techniczne dla klasy 5 szkoły podstawowej

Wymagania edukacyjne z przedmiotu zajęcia techniczne dla klasy 5 szkoły podstawowej Wymagania edukacyjne z przedmiotu zajęcia techniczne dla klasy 5 szkoły podstawowej Temat Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra Ocena celująca Dział 1. Bezpieczeństwo w szkole

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa III Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

Matematyka klasa III - wymagania programowe dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki

Matematyka klasa III - wymagania programowe dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki Matematyka klasa III - wymagania programowe dla uczniów z obowiązkiem dostosowania wymagań edukacyjnych z matematyki STATYSTYKA Na ocenę dopuszczającą uczeń: zna pojęcie diagramu słupkowego i kołowego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH OBOWIĄZUJĄCY PODRĘCZNIK Matematyka 3. Podręcznik dla gimnazjum. Nowa wersja, praca zbiorowa

Bardziej szczegółowo