Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI"

Transkrypt

1 MERO MEtalurgczny Renng On-lne Modelowane oputerowe przean fazowych w stane stały stopów ze szczególny uwzględnene odlewów ADI Wyład III: Metoda różnc sończonych dla transportu cepła asy Wocech Kapturewcz AGH Eduaca Kultura

2 Metoda różnc sończonych Wstęp Procesy wyany cepła asy w technolog ADI opsuą równana parabolczne tórych rozwązane nueryczne przeprowadzć ożna Metodą Różnc Sończonych (nte Dfference Method - DM) lub Metodą Eleentów Sończonych (nte Eleent Metod -EM). Równane przewodnctwa cepła (prawo ourera) a dentyczną forę a równane transportu asy (prawo ca). W zwązu z powyższy te obydwa procesy rozważyć ożna na przyładze ednego z nch np. przewodzena cepła. Borąc pod uwagę rozważana dotyczące transportu asy w esce dyfuzynośc ceplne "a" wprowadzy dyfuzyność asy "D" o tych saych ednostach ( /s). Pewne różnce wystąpć ogą w przypadu warunów brzegowych tóre są zaprezentowane w Wyładze III równana 3-0. W nneszy wyładze zaprezentowano uproszczoną wersę DM MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH

3 Metoda różnc sończonych (wersa uproszczona) Rozwązywane równana różnczowego o pochodnych cząstowych doonue sę poprzez rozwązywane uładu równań algebracznych tórych lczba równa est lczbe węzłów sat dysretyzac. Sposób przeprowadzena dysretyzac zennych zostane przedstawony na przyładze równana różnczowego przewodzena cepła w ednowyarowy płas stały cele bez wewnętrznych źródeł cepła przy stałe wartośc dyfuzynośc ceplne a : gdze: teperatura τ - czas współrzędna. τ a () MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 3

4 4 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Lewą stronę równana ożey zastąpć perwszy człone szeregu aylora : τ τ τ τ τ...! w zależnośc od sposobu rozwnęca pochodną zastępue sę loraze różncowy przedn (rys.): wsteczny: lub centralny : τ τ τ τ τ τ τ τ τ τ Rys.. unca teperatura czas gdze τ ro czasowy ()

5 Metoda różnc sończonych Naczęśce stosowane nabardze dogodne w oblczenach est przyblżene lewe strony równana różnczowego loraze różncowy przedn. Prawą stronę równana różnczowego przewodzena cepła czyl pochodną teperatury względe przestrzen oblcza sę za poocą lorazu różncowego centralnego drugego rzędu (rys. ): (3) gdze ro przestrzenny - - MERO MEtalurgczny Renng On-lne Rys.. unca teperatura - odległość Copyrght 005 W. Kapturewcz AGH 5

6 6 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Zestawaąc () () (5) otrzyue sę: a τ Po przeształcenu względe newadoe uzysue sę równane różncowe ze scheate awny z przyblżene od dołu w stosunu do rozwązana doładnego: ) ( ) ( a τ (4) gdze: (Różncowe ryteru ourera) D D τ Adewatny ryteru dla transportu asy est: gdze D dyfuzyność asy /s

7 Metoda różnc sończonych Równane (4) zachowue sens fzyczny eśl wartość (z defnc dodatna) ne a wpływu na erune zany teperatury Jest to spełnone gdy: ( ) 0 ryteru stablnośc wówczas: / (5) MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 7

8 Metoda różnc sończonych Metoda Crana Ncolsona W etodze Crana-Ncolsona za przyblżoną wartość teperatury względe czasu loraz różncowy syetryczny w chwl 05; dae ona wartośc przyblżone oscyluące woół wartośc rozwązana doładnego. Dla przyblżena pochodne teperatury przyue sę loraz różncowy przedn: 05 τ τ natoast drugą pochodną teperatury względe współrzędne przestrzen zastępue sę średną arytetyczną lorazów różncowych syetrycznych drugego rzędu w przedzałach czasu oraz : MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 8

9 9 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Metoda Crana Ncolsona 05 Podstawene przyblżeń do () dae: ( ) ( ) a τ sąd po uwzględnenu defnc lczby otrzyue sę: ( ) ) (

10 Metoda różnc sończonych Metoda Crana Ncolsona Ze względu na dużą doładność aprosyac pochodne stnee ożlwość zastosowana dużych roów czasowych; z te przyczyny etoda Crana- Ncolsona uważana est za naefetywneszą etodę różncową neustalonego przewodzena cepła (dla uładu -wyarowego - D). MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 0

11 Metoda różnc sończonych Metoda blansów eleentarnych Równane (4) wyprowadzć ożna poprzez zblansowane ustalonych struen ceplnych (lub struen asy). Sposób ten est szczególne przydatny przy zestawanu rów-nań dla sat neednorodne zaweraące zróżncowane ro przestrzenne cha-rateryzuące sę różny paraetra terofzyczny. Wydzely w przestrzen ednowyarowe trzy płase eleenty o wyarze lnowy. Środ tych eleentów na pozoe czasowy aą teperatury odpowedno - oraz (Rys. 3). e τ - Dstance Rys. 3. Scheat blansu eleentarnego MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH

12 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Metoda blansów Załadaąc w dany przedzale czasowy τ ustalony przepływ cepła stałe paraetry terofzyczne c ρ blans ceplny dla środowego eleentu o teperaturze ożna przedstawć następuąco: ( ) ( ) ( ) c ρ τ τ (6) c ρ -dyfuzyność ceplna cepło właścwe gęstość gdze Powyższy blans przeształca sę do postac równana (4): ) ( ) (

13 3 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Bezwyarowa postać równana różncowego W oblczenach ożna stosować dowolną salę teperatury a węc zaps równana (4) w postac: ) ( ) ( Θ Θ Θ Θ srf srf Θ 0 srf srf Θ 0 gdze: ab ab Θ 0 ab ab Θ 0 srf ab teperatura powerzchn otoczena

14 Metoda różnc sończonych Równane różncowe dla warunu brzegowego Warune brzegowy 3-go rodzau Równane różncowe dla teperatury eleentu przy powerzchn cała wyprowadzć ożna w oparcu o etodę blansów eleentarnych. Blans ceplny zestawony dla eleentu przy powerzchn a postać (rys. 4): ab ( ) ( ) n τ τ cρ α n n n n (7) surface n- n ab gdze α - współczynn wyany cepła W/ K α Rys. 4 MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 4

15 Metoda różnc sończonych Warune brzegowy 3-go rodzau Wyrażene α w równanu (7) a sens oporu ceplnego poędzy środe eleentu a otoczene. Przeształcaąc równane (7) otrzyuey:: lecz dla n ( G) ab N G N G α N (8) Bezwyarowy paraetr N a sens ryteru Bota odnesonego do wyaru eleentu różncowego ożna go nazwać różncowy ryteru Bota. Welość G ożna natoast nazwać różncowy ryteru warunu brzegowego 3-go rodzau. MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 5

16 Metoda różnc sończonych Warune brzegowy 3-go rodzau Warune stablnośc oblczeń według równana (8) est aby: sąd N 0 N G 0 Z powyższe nerównośc wyna że: N 3 Przy wcześneszy założenu że </3 warune powyższy est zawsze spełnony bowe dla te wartośc prawa strona nerównośc przyue wartość ueną zaś lewa (ryteru N) z rac sensu fzycznego est dodatna. MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 6

17 Metoda różnc sończonych Warune brzegowy 3-go rodzau Równane (8) orzystne est przedstawć w postac bardze uogólnone: ( A B ) A Paraetry A oraz B odzwercedlaą (dla przyętego uładu współrzędnych) oddzaływane ceplne na eleent eleentu leżącego odpowedno z lewe prawe strony tego eleentu (przy uowne przyęty uładze współrzędnych). Równane (9) ożna tratować ao uogólnony zaps równana (4) przy czy ryteru A oraz B przyuą wartość zależną od położena eleentu w obszarze sat D: Kryteru/ Eleent nr A B 0 n ( ) n N N B (9) MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 7

18 Metoda różnc sończonych Uwzględnene przeany fazowe Cepło rystalzac stała teperatura przeany Nastotneszą przeaną fazową w odlewach est prześce etalu ze stanu cełego w stan stały połączone z uwalnane utaonego cepła przeany czyl cepła rystalzac. Na le est stotna ta przeana loścowo ocenć to ożna dzeląc wartość cepła rystalzac danego etalu lub stopu przez ego cepło wła-ścwe. Uzysue sę wówczas lczbę H wyrażoną w stopnach [K] tórą ożna tratować ao zapas teperaturowy cepła rystalzac. Dla typowego żelwa: cepło rystalzac L 70 J/g cepło właścwe c ( )/ J/g K (średne cepło właścwe dla stanu cełego stałego) otrzyuey: H L/c 70/ K. MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 8

19 Metoda różnc sończonych Cepło rystalzac Wartość H po podzelenu przez teperaturę przeany dae wsaźn stot-nośc tego cepła przeany. Istotność cepła przeany S L przy założenu teperatury rystalzac dla żelwa r : S L H/ r 0.9 Można przyąć że od oentu osągnęca przez stygnący w stane ceły etal teperatury przeany etal ten posada zapas teperaturowy cepła rystalzac. eperatura danego eleentu ne spada ponże teperatury rystalzac do oentu wyczerpana zapasu teperatury to znaczy dopó będze spełnony warune: H (0) gdze r - obnżene teperatury w dany rou czasowy ponże teperatury rystalzac. MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 9

20 Metoda różnc sończonych Cepło rystalzac Jeśl będze spełnony warune (0) wówczas teperatura pozostae na stały pozoe czyl ( r ). Czas zużywana zapasu teperatury H będze czase rystalzac etalu w obszarze danego eleentu różncowego. MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 0

21 Metoda różnc sończonych Cepło rystalzac Krystalzaca w zarese teperatury Cepło rystalzac w zarese teperatury uwzględnć ożna poprzez zastosowane poęca efetywnego cepła właścwego:: gdze l r sol l sol MERO MEtalurgczny Renng On-lne c ef c L Jeżel teperatura danego eleentu różncowego znadue sę w zarese r wówczas w esce w równanach różncowych należy wprowadzć (dla sol l ): aef τ ef () gdze a ef c ρ ef r r - teperatura lqudus soldus dla stopu Copyrght 005 W. Kapturewcz AGH ()

22 Metoda różnc sończonych Cepło rystalzac Krystalzaca w zarese teperatury W przypadu gdy dysponuey funcą spetralnego cepła rzepnęca η wówczas równeż ożna sorzystać z poęca efetywnego cepła właścwego c ef (oraz odpowedno ef ) oblczaąc ego wartośc dla atualne teperatury etalu (teperatury danego przedzału różncowego) przy założenu że: c ef c η (3) gdze η A A 0 A A 0 A A regresson coeffcents Wprowadzene ryteru ef ne pogarsza stablnośc oblczeń ze względu na ego neszą wartość w porównanu z. MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH

23 3 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Uogólnona postać równana dla uładu ednowyarowego Przyey że eleenty różncowe ogą charateryzować sę odenny wyara właścwośca terofzyczny. Dla ednoerunowego przewodzena cepła (rys. 3) eleentarny blans cepła ożna zapsać: ) ( c ) ( ) ( ρ τ gdze ndes paraetru odnesonego do -tego eleentu Po przeształcenu otrzyuey postać równana (9): B A ) B A ( (4)

24 4 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Uogólnona postać równana dla uładu D A B gdze a τ c a ρ a warune stablnośc: (A B ) Jeśl założyy równoerny podzał różncowy wówczas stałe w równanu (4) przyuą postać: A B Jeśl eleenty różncowe będą dodatowo charateryzowały sę ednaowy współczynna przewodzena cepła (uład ednorodny) wówczas: B A równane (5) przye postać równana (4): ) ( ) (

25 5 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Uład dwuwyarowy (D) Dla uładu dwuwyarowego sat równane różncowe wyprowadzć ożna etodą eleentarnych blansów (rys. 5): y y y - τ τ τ y y ) ( y ) ( y ) ( ( ) ( ) y c y y ρ τ (Rys. 5)

26 Metoda różnc sończonych Uład D po przeształcenach względe teperatury w nowy rou czasowy: ( A B C D ) A B (5) C D gdze A B C y y y D y y y a τ ( ) y a τ a ( y ) c ρ MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 6

27 Metoda różnc sończonych Uład D Warune stablnośc rozwązana równana (5) est aby: A B C D Dla regularne sat różncowe ( A ) gdze est B C D ryteru wyznaczone równane (4) warune stablnośc wynos: 0.5 MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 7

28 Metoda różnc sończonych Uład trówyarowy (3D) Równane różncowe dla uładu 3D uzysać ożna poszerzaąc eleentarny blans ceplny w porównanu do uładu D o blans w erunu os z (rys. 6). Równane różncowe przyue wówczas postać z() z (Rys. 6) y() y MERO MEtalurgczny Renng On-lne () Copyrght 005 W. Kapturewcz AGH 8

29 9 Copyrght 005 W. Kapturewcz AGH MERO MEtalurgczny Renng On-lne Metoda różnc sończonych Uład 3D Dla uładu 3D równane ożna zapsać: ( ) G E D C B A D C B A G E (6) y y y D A B y y y C gdze z z z G z z z E

30 Metoda różnc sończonych Uład 3D Warune stablnośc równana (6) est: A B C D E G Dla uładu ednorodnego (eleenty sześcenne z ta say współczynne przewodzena cepła) równane (6) przyue postać: ( 6) ( ) (7) gdze ryteru różncowe ourera zwązane z satą ednorodną. Warune stablnośc rozwązana powyższego równana est aby sę 3-rotne ostrzeszy warune nż w przypadu rozwązana D. / 6 czyl otrzyue MERO MEtalurgczny Renng On-lne Copyrght 005 W. Kapturewcz AGH 30

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

4. Zjawisko przepływu ciepła

4. Zjawisko przepływu ciepła . Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego

Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego 5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI

Modelowanie komputerowe przemian fazowych w stanie stałym stopów ze szczególnym uwzględnieniem odlewów ADI METRO MEtalurgczny TRenng On-lne Modelowane omputerowe przeman fazowych w stane stałym stopów ze szczególnym uwzględnenem odlewów ADI Wyład II: ADI, wzrost ausferrytu Wojcech Kapturewcz AGH Eduacja Kultura

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie

Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie Lteratura przegląd etod Studu podyploowe Analty Fnansowy Metody tasonoczne Klasyfaca porządowane Dzechcarz J. (pod red.), Eonoetra: etody, przyłady, zadana, Wydawnctwo Aade Eonoczne we Wrocławu, Wrocław,

Bardziej szczegółowo

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic

max Wydział Elektroniki studia I st. Elektronika III r. EZI Technika optymalizacji Dr inż. Ewa Szlachcic Zadane rograowana lnowego PL dla ogranczeń neszoścowch rz ogranczenach: a f c A b d =n, d c=n, d A =[ n], d b =, Postać anonczna zadana PL a c X : A b, Postać anonczna acerzowa zadana PL a Lczba zennch

Bardziej szczegółowo

7. Wykład VII: Warunki Kuhna-Tuckera

7. Wykład VII: Warunki Kuhna-Tuckera Wocech Grega, Metody Optymalzac 7 Wykład VII: Warunk Kuhna-Tuckera 7 Warunk koneczne stnena ekstremum Rozważane est zadane z ogranczenam nerównoścowym w postac: mn F( x ) x X X o F( x ), o { R x : h n

Bardziej szczegółowo

2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie

2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

AGH Akademia Górniczo - Hutnicza im. St. Staszica w Krakowie. Wydział Odlewnictwa Katedra Inżynierii Procesów Odlewniczych. Rozprawa doktorska

AGH Akademia Górniczo - Hutnicza im. St. Staszica w Krakowie. Wydział Odlewnictwa Katedra Inżynierii Procesów Odlewniczych. Rozprawa doktorska AGH Aadema Górnczo - Hutncza m. t. taszca w Kraowe Wydzał Odlewnctwa Katedra Inżyner Procesów Odlewnczych Rozprawa dotorsa Zastosowane metody wadratur różnczowych w omputerowe symulac przewodzena cepła

Bardziej szczegółowo

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz

Bardziej szczegółowo

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL

WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji

Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.

Bardziej szczegółowo

MECHANIKA BUDOWLI 13

MECHANIKA BUDOWLI 13 1 Oga Kopacz, Adam Łodygos, Krzysztof ymper, chał Płotoa, Wocech Pałos Konsutace nauoe: prof. dr hab. JERZY RAKOWSKI Poznań 00/00 ECHANIKA BUDOWLI 1 Ugęca bee drgaących. Wzory transformacyne bee o cągłym

Bardziej szczegółowo

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji

ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc

Bardziej szczegółowo

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2

Wrocław 2003 STATECZNOŚĆ. STATYKA 2 - projekt 1 zadanie 2 Wrocław 00 STATECZNOŚĆ STATYKA - projet zadanie . Treść zadania Dla ray o scheacie statyczny ja na rysunu poniżej należy : - Sprawdzić czy uład jest statycznie niezienny - Wyznaczyć siły osiowe w prętach

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Co to jest elektrochemia?

Co to jest elektrochemia? Co to jest elektrochea? Dzał che zajujący sę reakcja checzny, który towarzyszy przenesene ładunku elektrycznego. Autoatyczne towarzyszą teu take zjawska, jak: Przepływ prądu elektrycznego, Powstawane gradentu

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna

Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej

Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA TEMPERATUROWEGO

SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA TEMPERATUROWEGO 49/14 Archves of Foundry, Year 2004, Volume 4, 14 Archwum O dlewnctwa, Rok 2004, Rocznk 4, Nr 14 PAN Katowce PL ISSN 1642-5308 SYMULACJA KRZEPNIĘCIA OBJĘTOŚCIOWEGO METALI Z UWZGLĘDNIENIEM PRZECHŁODZENIA

Bardziej szczegółowo

Egzamin poprawkowy z Analizy II 11 września 2013

Egzamin poprawkowy z Analizy II 11 września 2013 Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy

Bardziej szczegółowo

VIII. NIELINIOWE ZAGADNIENIA MECHANIKI

VIII. NIELINIOWE ZAGADNIENIA MECHANIKI Konerla P. Metoa Eleentów Skończonych, teora zastosowana 57 VIII. NIELINIOWE ZAGADNIENIA MECHANIKI. Rozaje nelnowośc a) Nelnowość fzyczna: nelnowe zwązk konstytutywne, plastyczność, lepkoplastyczność,

Bardziej szczegółowo

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH

DIAGNOSTYKA WYMIENNIKÓW CIEPŁA Z UWIARYGODNIENIEM WYNIKÓW POMIARÓW EKPLOATACYJNYCH RYNEK CIEŁA 03 DIANOSYKA YMIENNIKÓ CIEŁA Z UIARYODNIENIEM YNIKÓ OMIARÓ EKLOAACYJNYCH Autorzy: rof. dr hab. nż. Henryk Rusnowsk Dr nż. Adam Mlejsk Mgr nż. Marcn ls Nałęczów, 6-8 paźdzernka 03 SĘ Elementam

Bardziej szczegółowo

1. Komfort cieplny pomieszczeń

1. Komfort cieplny pomieszczeń 1. Komfort ceplny pomeszczeń Przy określanu warunków panuących w pomeszczenu używa sę zwykle dwóch poęć: mkroklmat komfort ceplny. Przez poęce mkroklmatu wnętrz rozume sę zespół wszystkch parametrów fzycznych

Bardziej szczegółowo

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału

= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału 5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamk Temperatura cepło Praca jaką wykonuje gaz I zasada termodynamk Przemany gazowe zotermczna zobaryczna zochoryczna adabatyczna Co to jest temperatura? 40 39 38 Temperatura (K) 8 7 6

Bardziej szczegółowo

Temat 13. Rozszerzalność cieplna i przewodnictwo cieplne ciał stałych.

Temat 13. Rozszerzalność cieplna i przewodnictwo cieplne ciał stałych. Temat 13. Rozszerzalność ceplna przewodnctwo ceplne cał stałych. W temace 8 wykazalśmy przy wykorzystanu warunków brzegowych orna-karmana, że wyraz lnowy w rozwnęcu energ potencjalnej w szereg potęgowy

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B

exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego

Bardziej szczegółowo

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

Małe drgania wokół położenia równowagi.

Małe drgania wokół położenia równowagi. ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne

Bardziej szczegółowo

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych

Sieć kątowa metoda spostrzeżeń pośredniczących. Układ równań obserwacyjnych Seć kątowa etoda spostrzeżeń pośrednząyh Układ równań obserwayjnyh rzyrosty współrzędnyh X = X X X X = X X Y = Y Y X Y = Y Y Długość odnka X ' ' ' ' x y Współzynnk kerunkowe x y * B * x y x y gdze - odpowedn

Bardziej szczegółowo

1. Wstęp. 2. Macierz admitancyjna.

1. Wstęp. 2. Macierz admitancyjna. 1. Wstęp. Znaomość stanu pracy SEE est podstawowym zagadnenem w sterowanu pracą systemu na wszystkch etapach: proektowana, rozwou, planowana stanów pracy oraz w czase beżące eksploatac. Kontrola rozpływów

Bardziej szczegółowo

STATYSTYKA. Zmienna losowa skokowa i jej rozkład

STATYSTYKA. Zmienna losowa skokowa i jej rozkład STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra

Bardziej szczegółowo

Płyny nienewtonowskie i zjawisko tiksotropii

Płyny nienewtonowskie i zjawisko tiksotropii Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu

Bardziej szczegółowo

MODEL ROZMYTY WYBORU SAMOCHODU W NAJWYŻSZYM STOPNIU SPEŁNIAJĄCEGO PREFERENCJE KLIENTA

MODEL ROZMYTY WYBORU SAMOCHODU W NAJWYŻSZYM STOPNIU SPEŁNIAJĄCEGO PREFERENCJE KLIENTA ZESZYTY NAUKWE PLITECHNIKI ŚLĄSKIEJ 2013 Sera: RGANIZACJA I ZARZĄDZANIE z. 64 Nr ol. 1894 Dorota GAWRŃSKA Poltechna Śląsa Wydzał rganzacj Zarządzana Instytut Eono Inforaty MDEL RZMYTY WYBRU SAMCHDU W NAJWYŻSZYM

Bardziej szczegółowo

Parametry zmiennej losowej

Parametry zmiennej losowej Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru

Bardziej szczegółowo

ĆWICZENIE NR 2 BADANIA OBWODÓW RLC PRĄDU HARMONICZNEGO

ĆWICZENIE NR 2 BADANIA OBWODÓW RLC PRĄDU HARMONICZNEGO ĆWENE N BADANA OBWODÓW PĄD HAMONNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha praw Krchhoffa oraz zależnośc fazowych poędzy snusodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,,

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA

EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej lub lodowej.

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Markowa. ZałoŜenia schematu Gaussa-

Markowa. ZałoŜenia schematu Gaussa- ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia

Blok 7: Zasada zachowania energii mechanicznej. Zderzenia Blok 7 Zaada zachowana energ echancznej. Zderzena I. Sły zachowawcze nezachowawcze Słą zachowawczą nazyway łę która wzdłuż dowolnego zaknętego toru wykonuje pracę równą zeru. Słą zachowawczą nazyway łę

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

CAŁKOWANIE NUMERYCZNE całki pojedyncze

CAŁKOWANIE NUMERYCZNE całki pojedyncze CAŁKOWANIE NUMERYCZNE całk pojedyncze Kwadratury nterpolacyjne Kwadratury nterpolacyjne Rozpatrujemy funkcję f() cągłą ogranczoną w przedzale domknętym [a, b]. Przedzał [a, b] dzelmy na skończoną lczbę

Bardziej szczegółowo

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU

METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Stansław Bogdanowcz Poltechna Warszawsa Wydzał Transportu Załad Logsty Systemów Transportowych METODA USTALANIA WSPÓŁCZYNNIKA DYNAMICZNEGO WYKORZYSTANIA ŁADOWNOŚCI POJAZDU Streszczene: Ogólna podstawa

Bardziej szczegółowo

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH

9. STATECZNOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH Część 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 1 9. 9. STATECZOŚĆ SPRĘŻYSTA UKŁADÓW PRĘTOWYCH 9.1. Wstęp Omówene zagadnena statecznośc sprężystej uładów prętowych naeży rozpocząć od przybżena probemu

Bardziej szczegółowo

1. Wstępna geometria skrzyżowania (wariant 1a)

1. Wstępna geometria skrzyżowania (wariant 1a) . Wtępna geometra rzyżowana (warant a) 2. Strutura erunowa ruchu 3. Warun geometryczne Srzyżowane et zloalzowane w śródmeścu o newelm ruchu pezych. Pochylene podłużne na wlotach nr 3 ne przeracza 0,5%,

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy

OPTYMALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE. 1. Problem badawczy B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 2 2004 Krzysztof PIASECKI* OPTYALIZACJA KOSZTÓW PRZEBUDOWY PORTFELA JAKO ZADANIE TRANSPORTOWE Wszyste oszty generowane przez prowze malerse są włączone

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,

Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia, Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą

Bardziej szczegółowo

Regulamin promocji 14 wiosna

Regulamin promocji 14 wiosna promocja_14_wosna strona 1/5 Regulamn promocj 14 wosna 1. Organzatorem promocj 14 wosna, zwanej dalej promocją, jest JPK Jarosław Paweł Krzymn, zwany dalej JPK. 2. Promocja trwa od 01 lutego 2014 do 30

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ

1. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ Część. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. WZORY TRANSFORMACYJNE METODY PRZEMIESZCZEŃ.. Wstęp Podstawowym narzędzem służącym do rozwązywana zadań metodą przemeszczeń są wzory transformacyjne.

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych

Sprawdzenie stateczności skarpy wykopu pod składowisko odpadów komunalnych Sprawdzee stateczośc skarpy wykopu pod składowsko odpadów koualych Ustalee wartośc współczyka stateczośc wykoae zostae uproszczoą etodą Bshopa, w oparcu o poższą forułę: [ W s( α )] ( φ ) ( φ ) W ta F

Bardziej szczegółowo

Wykład Turbina parowa kondensacyjna

Wykład Turbina parowa kondensacyjna Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW

Bardziej szczegółowo

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla

KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

Układ termodynamiczny

Układ termodynamiczny Uład terodynaiczny Uład terodynaiczny to ciało lub zbiór rozważanych ciał, w tóry obo wszelich innych zjawis (echanicznych, eletrycznych, agnetycznych itd.) uwzględniay zjawisa cieplne. Stan uładu charateryzuje

Bardziej szczegółowo

65120/ / / /200

65120/ / / /200 . W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę

Bardziej szczegółowo

Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik

Michał Strzeszewski Piotr Wereszczyński. Norma PN EN 12831. Nowa metoda. obliczania projektowego obciążenia cieplnego. Poradnik Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego obcążena ceplnego Poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

dy dx stąd w przybliżeniu: y

dy dx stąd w przybliżeniu: y Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc

Bardziej szczegółowo

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody.

Rys. 1. Temperatura punktu rosy na wykresie p-t dla wody. F-Pow wlot / Powetrze wlotne. Defncje odstawowe Powetrze wlotne jest roztwore (lub eszanną) owetrza sucheo wody w ostac: a) ary rzerzanej lub b) ary nasyconej suchej lub c) ary nasyconej suchej ły cekłej

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE

MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo