Ekonomia matematyczna Dynamiczny model wymiany rynkowej (Arrowa-Hurwicza)
|
|
- Bronisława Rybak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Ekonoia ateatyczna -. Dynaiczny odel wyiany rynkowej (Arrowa-Hurwicza) W oencie t 0, na rynku, na który występuje skończona liczba n towarów,,...,n o cenach pt p t,...,p n t operuje agentów,...,. Każdy z nich jest scharakteryzowany przez: ) swój koszyk początkowy e i e i,e i,...,e in 0, dający dochód n I i pt e i, pt j e ij p j t przy cenach pt p t,...,p n t, ) przestrzeń konsupcyjną X i R n, w zakresie której, i-ty agent wybiera koszyki, w oparciu o relację prefencji i wyznaczoną przezściśle quasi-wklęsłą, rosnące i ciągłą funkcję użyteczności u i : R n R, (u i x u i y x i y). Ilości towarów i liczba agentów oraz ich preferencje są stałe w okresie czasu 0,, jednak ceny ogą być różne w oentach t 0,. Zate, w każdy oencie t 0, każdy agent określa swój popyt x i pt i pt,ipt przy cenach pt, rozwiązując zadanie aksyalizacji uzyteczności: pt, I i pt gdzie Bpt,I i pt x R n : x, pt I i pt,pt 0. axux : x Bpt,I i pt, Definicja Globalny popyte na rynku w oencie t 0, jest sua popytów agentów xpt a globalną nadwyżką popytu jest różnica zpt xpt e x i pt. x i pt e i. W dynaiczny odelu wyiany rynkowej przyuje się następujące zasady funkcjonowania rynku w czasie (nierealistyczne, ale potrzebne aby "ogarnąć" odel i poprawnie wnioskować), określane terine tâtonneent: ) w oencie t regulator rynku (akler) podaje ceny pt, zbiera inforacje o popytach
2 agentów przy tych cenach i wylicza globalną nadwyżkę popytu zpt ) jeśli zpt 0, to pt jest wektore cen równowagi i akler dopuszcza do transakcji, prowadzących do alokacji równowagi Walrasa, ) jeśli zpt 0, to akler nie dopuszcza do transakcji i uwzględniając, na które towary jest nadierny popyt (z j pt 0), a na które nadierna podaż (z j pt 0), proponuje nowe ceny pt t na oent t t - wracay do punktu ), ale już dla oentu t t. Zate: a) wyiana następuje w oencie t wtedy i tylko wtedy gdy zpt 0, b) ziana cen następuje po oencie t wtedy i tylko wtedy gdy zpt 0 W wersji z czase dyskretny, najprostszy stosowany przez aklera echaniz dostosowania cen do popytu a postać gdzie 0, tj. pt t pt t zpt pt t pt t Id zpt gdzie Id jk nn jest acierzą jednostkową. Przyjując różne współczynniki j 0 regulacji cen dla różnych towarów, ożna uogólnić powyższy echaniz pt t pt t zpt gdzie jk j nn jest acierzą przekątniową. Rozważano ogólniejsze echanizy regulacji cen, np.: pt t pt Gzptt -dyskr - dyskr - dyskr gdzie G : R n R n jest odwzorowanie o własności Gz 0 wtedy i tylko wtedy gdy z 0: a) zgodny co do znaków, tj. taki, ze z j G j z 0, gdy z j 0,np. odwzorowanie linowy Gz z n,gdzie jk nn jest acierzą o własności z j k jk z k 0 gdy z j 0,j,,...,n. b) zgodny co do kierunku, tj. : b) taki,że z,gz 0, tj. z,gz gdy z 0, b) taki,że z,gz gdy z 0, W wersji z czase ciągły, powyższe echanizy regulacji cen ają postaci: p t zpt -c
3 p t zpt p t Gzpt Podstawowy proble: Czy echaniz regulacji cen gwarantuje zbieżność cen do cen równowagi - w skończony lub nieskończony czasie? -c -c Przykład (Keeny, Snell) Na rynku jest agentów i dwa towary. Funkcja użyteczności i tego agenta a postać u i x,x x a i x a i x 0. y y x gdzie 0 a i, a jego koszykie początkowy jest e i, e i 0, 0. Ponieważ funkcja u i jestściśle rosnąca i u i x, 0 u i 0,x 0, a u i x,x 0 gdy x x 0, to dla rozwiązania zadania aksyalizacji uzyteczności, z warunków Kuhna-Tuckera ay u i x i a i x a i x x p Stąd otrzyujey u i x x i a i x x a i p x p x p e i p e i p I i p
4 a następnie a i x x a i p a i x x a i p x p x p I i p x x a i p a i p x p x p I i p x p a i a i x p x p x p I i p x p a i a i x p x p a i a i x p I i p x a i I ip p x a i I i p p Stąd zp a i I ip p e i, a i e ip e i p p a i e ip e i p p e ip p ai e i p a i e i p p p p p a i e i a i e i a i e i p p A B, p p B A a i I i p p e i e e i, a i p e i p i p e i e, a i p e i p i p e ip p, ai e i p a i e i p p p, a i e i, p p a i e i p p a i e i a i e i a i e i
5 gdzie A B a i e i a i e i Wektor cen równowagi jest rozwiązanie równania p p A B, p p B A czyli a postać p A Mechaniz regulacji cen to układ równań różniczkowych p B 0 p t zpt p t A p t p B t p t B p t A p t 0, 0 Bez rozwiązywania tego układu ożna zauważyć następujące własności trajektorii tego układu: ) gdy p t p B, to p t t A p A i wtedy p t B t 0, tzn. p t rośnie oraz p t 0 tzn. p t aleje, ) gdy p t p t B A, to p t rośnie, ) gdy p t p B, to wtedy p t A W przypadkach ) i ) ay A i wtedy p p t B t 0, tzn. p t aleje oraz p t 0 tzn. p t t 0, tzn. p t jest stała oraz p t 0 tzn. p t jest stała. p li t t p t B A. p Istotnie, gdyby w przypadku ) li t t C B, to p t A p t A p t p B ACB 0 dla wszystkich t i wtedy li t t p t, więc p li t t 0, sprzeczność. Analogiczny arguent a zastosowanie w przypadku ). p t 5
6 Zauważy,że p tp t Ap t Bp t p tp t Bp t Ap t a stąd dt d p t p t p tp t p tp t 0 co oznacza,że pt const. Taką własność ają zawsze rozwiązania równania p t zpt. Zilustrujy rozwiązania z przykładu dla,a,b i różnych cen początkowych p 0,p 0 p t p t p t p t p t p t 6
7 . p q p q p q p0 q
8 . p q p q p q p0 q
9 . p q p q p q p0 q W powyższy przykładzie ay dokładnie jeden proień równowagi A,B : 0, do 9
10 którego zbiega startująca w dowolny p 0 trajektoria cen regulowanych przez echaniz p t zpt p0 p 0. 0
Spis treści. Wstęp Konstrukcja modelu matematycznego... 1
Spis treści Wstęp........................................................ XI 1. Konstrukcja modelu matematycznego............................. 1 2. Relacje. Teoria preferencji konsumenta...........................
Bardziej szczegółowoEkonomia matematyczna - 1.2
Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x
Bardziej szczegółowoZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ
ZESTAWY ZADAŃ Z EKONOMII MATEMATYCZNEJ Zestaw 5 1.Narynkuistniejądwajhandlowcyidwatowary,przyczymtowarupierwszegosą3sztuki,adrugiego 2sztuki. a). Jak wygląda zbiór alokacji dopuszczalnych, jeśli towary
Bardziej szczegółowoModel pajęczyny: Równania modelu: Q d (t)=α-βp(t) Q s (t)=-γ+δp(t-1) Q d (t)= Q s (t) t=0,1,2. α,β,γ,δ>0
Model pajęczyny: Dorota Pawlicka Model jest modelem dynamicznym z czasem dyskretnym t=0,1,2 Rozważmy rynek pewnego pojedynczego dobra. Celem modelu jest ustalenie takiej ścieżki cenowej {} na dobro aby
Bardziej szczegółowoStabilność II Metody Lapunowa badania stabilności
Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli
Bardziej szczegółowoUkłady równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Bardziej szczegółowo26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136
Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 26 marzec, 212 Łańcuchy z czasem ciągłym S = {, 1,..., }, B S = 2 S, ale T = [, ) lub T = (, ). Gdy S skończone,
Bardziej szczegółowoInterpolacja. Interpolacja wykorzystująca wielomian Newtona
Interpolacja Funkcja y = f(x) jest dana w postaci dyskretnej: (1) y 1 = f(x 1 ), y 2 = f(x 2 ), y 3 = f(x 3 ), y n = f(x n ), y n +1 = f(x n +1 ), to znaczy, że w pewny przedziale x 1 ; x 2 Ú ziennej niezależnej
Bardziej szczegółowoRównowaga i stabilność rynku konkurencyjnego z krzyżowymi zależnościami między dynamiką cen, popytem na towary i ich podażą
Monika Majewska * Równowaga i stabilność rynku konkurencyjnego z krzyżowymi zależnościami między dynamiką cen, popytem na towary i ich podażą Wstęp Równowaga od lat pozostaje niezmiennie w centrum zainteresowania
Bardziej szczegółowo6. ZWIĄZKI FIZYCZNE Wstęp
6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe
Bardziej szczegółowoUOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM
UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM Wojciech Zieliński Katedra Ekonoetrii i Statystyki, SGGW Nowoursynowska 159, PL-0-767 Warszawa wojtekzielinski@statystykainfo Streszczenie: W odelu regresji
Bardziej szczegółowo1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne
Bardziej szczegółowoRozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
Bardziej szczegółowoPrognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Bardziej szczegółowoMikroekonomia. Wykład 4
Mikroekonomia Wykład 4 Ekonomia dobrobytu Na rynku doskonale konkurencyjnym, na którym występuje dwóch konsumentów scharakteryzowanych wypukłymi krzywymi obojętności, równowaga ustali się w prostokącie
Bardziej szczegółowoModel przepływów międzygałęziowych (model Leontiewa)
Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoPorównanie różnych podejść typu ODE do modelowania sieci regu
Porównanie różnych podejść typu ODE do modelowania sieci regulacji genów 8 stycznia 2010 Plan prezentacji 1 Praca źródłowa Sieci regulacji genów 2 Założenia Funkcja Hill a Modele dyskretne 3 Przykład Modele
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Bardziej szczegółowoOBLICZANIE POCHODNYCH FUNKCJI.
OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoSpacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
Bardziej szczegółowox = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n )
*** Elementy teorii popytu *** II. Funkcja popytu konsumenta x = (x 1, x 2,..., x n ), p = (p 1, p 2,..., p n ) p, x = p 1 x 1 + p 2 x 2 + + p n x n cena koszyka x Zbiór wszystkich koszyków, na jakie sta
Bardziej szczegółowoMACIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI.
MAIERZE. ZWIĄZEK Z ODWZOROWANIAMI LINIOWYMI. k { 1,,..., k} Definicja 1. Macierzą nazyway każde odwzorowanie określone na iloczynie kartezjański.wartość tego odwzorowania na parze (i,j) k j oznaczay aij
Bardziej szczegółowoWykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Bardziej szczegółowoRÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych
RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )
Bardziej szczegółowoMechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Bardziej szczegółowo13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 2
RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na
Bardziej szczegółowojest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.
Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych
Bardziej szczegółowoProblemy Decyzyjne Markowa
Problemy Decyzyjne Markowa na podstawie AIMA ch17 i slajdów S. Russel a Wojciech Jaśkowski Instytut Informatyki, Politechnika Poznańska 18 kwietnia 2013 Sekwencyjne problemy decyzyjne Cechy sekwencyjnego
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowo3.Funkcje elementarne - przypomnienie
3.Funkcje elementarne - przypomnienie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny3.Funkcje w Krakowie) elementarne - przypomnienie 1 / 51 1 Funkcje
Bardziej szczegółowoProcesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.
Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych
Bardziej szczegółowoFinanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych
dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Bardziej szczegółowoBADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
Bardziej szczegółowojest ciągiem elementów z przestrzeni B(R, R)
Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)
Bardziej szczegółowoAnaliza numeryczna kolokwium2a-15grudnia2005
kolokwium2a-15grudnia2005 1.Niechf(x)=a n x n +a n 1 x n 1 +...+a 0.Jakąwartośćprzyjmujeilorazróżnicowy f[x 0,...,x n ]dladowolnychn+1paramiróżnychwęzłówx j?odpowiedźuzasadnić. 2. Pokazać, że zamiana zmiennych
Bardziej szczegółowoO MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Bardziej szczegółowoVII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Bardziej szczegółowo13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
Bardziej szczegółowo0 Rachunek czasu. Informacje pierwotne: początkowa i końcowa data inwestycji.
0 Rachunek czasu Inforacje pierwotne: początkowa i końcowa data inwestycji. Konwencja: nie naliczay odsetek za początkowy dzień trwania inwestycji, naliczay za końcowy. Liczba dni trwania inwestycji liczba
Bardziej szczegółowoAnaliza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowoCIĄGI wiadomości podstawowe
1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowo1 Metody rozwiązywania równań nieliniowych. Postawienie problemu
1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie
Bardziej szczegółowoII. Równania autonomiczne. 1. Podstawowe pojęcia.
II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),
Bardziej szczegółowoRównania trygonometryczne z parametrem- inne spojrzenie
Agnieszka Zielińska aga7ziel@wppl Nauczyciel ateatyki w III Liceu Ogólnokształcący w Zaościu Równania trygonoetryczne z paraetre- inne spojrzenie Cele tego reeratu jest zapoznanie państwa z oii etodai
Bardziej szczegółowo2010 W. W. Norton & Company, Inc. Popyt
2010 W. W. Norton & Company, Inc. Popyt Własności Funkcji Popytu Statyka porównawcza funkcji popytu pokazuje jak zmienia się funkcja popytu x 1 *(p 1,p 2,y) i x 2 *(p 1,p 2,y) gdy zmianie ulegają ceny
Bardziej szczegółowoMETODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
Bardziej szczegółowoElementy matematyki finansowej
ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,
Bardziej szczegółowoRewolucja marginalistyczna
Rewolucja marginalistyczna Lata 70. XIX wieku Odrzucenie ekonomii klasycznej, ale zachowanie pewnej ciągłości Pomost do ekonomii neoklasycznej Rewolucja marginalistyczna, a nie marginalna Główna innowacja
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoIII. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.
III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań. Analiza stabilności rozwiązań stanowi ważną część jakościowej teorii równań różniczkowych. Jej istotą jest poszukiwanie odpowiedzi
Bardziej szczegółowoSIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Bardziej szczegółowoPrzekształcenie Z. Krzysztof Patan
Przekształcenie Z Krzysztof Patan Wprowadzenie Przekształcenie Laplace a można stosować do sygnałów i systemów czasu ciągłego W przypadku sygnałów czy systemów czasu dyskretnego do wyznaczenia transmitancji
Bardziej szczegółowoInformacja o przestrzeniach Sobolewa
Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Bardziej szczegółowoElementy modelowania matematycznego
Eleenty odelowania ateatycznego Systey kolejkowe. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ RZYKŁAD KOLEJKI N(t) długość kolejki w chwili t T i czas obsługi i-tego klienta Do okienka
Bardziej szczegółowomacierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Bardziej szczegółowoINTERPOLACJA I APROKSYMACJA FUNKCJI
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Wprowadzenie Na czym polega interpolacja? Interpolacja polega
Bardziej szczegółowoEkonomia. matematyczna. Materia y do çwiczeƒ. Joanna Górka Witold Orzeszko Marcin Wata
Ekonomia matematyczna Materia y do çwiczeƒ Joanna Górka Witold Orzeszko Marcin Wata Ekonomia matematyczna Ekonomia matematyczna Materia y do çwiczeƒ Joanna Górka Witold Orzeszko Marcin Wata WYDAWNICTWO
Bardziej szczegółowoRównanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Bardziej szczegółowoMetody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Bardziej szczegółowoZadania z ekonomii matematycznej Teoria konsumenta
Paweł Kliber Zadania z ekonomii matematycznej Teoria konsumenta Zad Dla podanych niżej funcji użyteczności: (a u (x x = x + x (b u (x x = x x (c u (x x = x x (d u (x x = x x 4 (e u (x x = x + x = x + x
Bardziej szczegółowoWykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.
Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.
Bardziej szczegółowoAlgebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Bardziej szczegółowoMECHANIKA II. Praca i energia punktu materialnego
MECHANIKA II. Praca i energia punktu materialnego Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny, Katedra Mechaniki i Inżynierii Materiałowej http://kmim.wm.pwr.edu.pl/lewandowski/ daniel.lewandowski@pwr.edu.pl
Bardziej szczegółowoUkłady równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.
Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora
Bardziej szczegółowoDokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski
Dokumentacja Portal Mathfinance Wycena opcji paryskich metoda PDE Wiktor Madejski Spis treści 1 Wstęp 2 2 Opcje paryskie 2 2.1 Układ PDE dla opcji paryskich..................... 2 2.2 Schemat numeryczny..........................
Bardziej szczegółowoZdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013
Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej
Bardziej szczegółowoAlgebra liniowa. 1. Macierze.
Algebra liniowa 1 Macierze Niech m oraz n będą liczbami naturalnymi Przestrzeń M(m n F) = F n F n będącą iloczynem kartezjańskim m egzemplarzy przestrzeni F n z naturalnie określonymi działaniami nazywamy
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowoSystemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
Bardziej szczegółowoPORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA
Inżynieria Rolnicza (90)/007 PORÓWNANIE WPŁYWU WYBRANYCH PARAMETRÓW CIĄGNIKA ROLNICZEGO NA JEGO DRGANIA Instytut Inżynierii Rolniczej, Akadeia Rolnicza w Poznaniu Streszczenie. Drgania ciągnika, szczególnie
Bardziej szczegółowoI. Podstawowe pojęcia ekonomiczne. /6 godzin /
PROPOZYCJA ROZKŁADU MATERIAŁU NAUCZANIA PRZEDMIOTU PODSTAWY EKONOMII dla zawodu: technik ekonomista-23,02,/mf/1991.08.09 liceum ekonomiczne, wszystkie specjalności, klasa I, semestr pierwszy I. Podstawowe
Bardziej szczegółowoPostać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Bardziej szczegółowoZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
Bardziej szczegółowoPOD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Bardziej szczegółowoRewolucja marginalistyczna
Rewolucja marginalistyczna Lata 70. XIX wieku Odrzucenie ekonomii klasycznej, ale zachowanie pewnej ciągłości Pomost do ekonomii neoklasycznej Rewolucja marginalistyczna, a nie marginalna Główna innowacja
Bardziej szczegółowo========================= Zapisujemy naszą funkcję kwadratową w postaci kanonicznej: 2
Leszek Sochański Arkusz przykładowy, poziom podstawowy (A1) Zadanie 1. Wykresem funkcji kwadratowej f jest parabola o wierzchołku 5,7 Wówczas prawdziwa jest równość W. A. f 1 f 9 B. f 1 f 11 C. f 1 f 1
Bardziej szczegółowoRozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Bardziej szczegółowoIteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Bardziej szczegółowo1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA
.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowazenie Wyprowazone w rozziałach.3 (strona statyczna i.4 (strona geoetryczna równania (.3.36 i (.4. są niezależne o rozaju ciała aterialnego, które oże
Bardziej szczegółowo9 Funkcje Użyteczności
9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność
Bardziej szczegółowoWykład 7 Macierze i wyznaczniki
Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoTeoria popytu. Popyt indywidualny konsumenta
Teoria popytu Popyt indywidualny konsumenta Koszyk towarów Definicja 1 Wektor x=(x 1,x 2,x 3,...,x n ) taki, że x i 0 dla każdego i,w którym i-ta współrzędna oznacza ilość towaru nr i, którą konsument
Bardziej szczegółowoRównania Pitagorasa i Fermata
Równania Pitagorasa i Fermata Oliwia Jarzęcka, Kajetan Grzybacz, Paweł Jarosz 7 lutego 18 1 Wstęp Punktem wyjścia dla naszych rozważań jest klasyczne równanie Pitagorasa związane z trójkątem prostokątnym
Bardziej szczegółowoZadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Bardziej szczegółowoObliczenia naukowe Wykład nr 8
Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,
Bardziej szczegółowo5. Utarg krańcowy (MR) można zapisać jako: A)
1. Na rynku pewnego dobra działają dwie firmy, które zachowują się zgodnie z modelem Stackelberga. Firmy ponoszą stałe koszty krańcowe równe 24. Odwrócona linia popytu na tym rynku ma postać: P = 480-0.5Q.
Bardziej szczegółowo4. Utarg krańcowy (MR) można zapisać jako: A)
1. Rozważmy rynek doskonale konkurencyjny w długim okresie. Funkcja kosztu całkowitego pojedynczej firmy jest następująca: TC = 1296q 2 + 1369 dla q > 0 oraz TC = 0 dla q = 0. Wszystkie firmy są identyczne.
Bardziej szczegółowoPochodna funkcji odwrotnej
Pochodna funkcji odwrotnej Niech będzie dana w przedziale funkcja różniczkowalna i różnowartościowa. Wiadomo, że istnieje wówczas funkcja odwrotna (którą oznaczymy tu : ), ciągła w przedziale (lub zależnie
Bardziej szczegółowoWłasności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Bardziej szczegółowoModele wielorownaniowe
Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej
Bardziej szczegółowo