Wykład 2 - model produkcji input-output (Model 1)

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 2 - model produkcji input-output (Model 1)"

Transkrypt

1 Wykład 2 - model produkcji input-output (Model 1) 1 Wprowadzenie Celem wykładu jest omówienie (znanego z wcześniejszych zajęć) modelu produkcji typu input-output w postaci pozwalającej na zaprogramowanie w pakiecie GEMPACK. Dla uproszczenia model 1 jest modelem gospodarki zamknietej, tj. nie obejmuje importu i eksportu. 2 Oznaczenia Przyjęte oznaczenia odpowiadają oznaczeniom stosowanym w modelu MINIMAL (tj. modelu, na podstawie którego wykonywane będą projekty). Zgodnie z przyjętą konwencją, WIELKIMI LITERAMI oznaczane są poziomy zmiennych, natomiast małe litery symbolizują procentowe przyrosty. W modelu występują dwa zbiory - gałęzi (IND) oraz nabywców (USER): IND = {P rodukty, Uslugi} USER = {P rodukty, Uslugi, F inalny} W modelu występują następujące : i IND X1T OT i - produkcja globalna w gałęzi i (w ujęciu ilościowym), i IND V 1T OT i - produkcja globalna w gałęzi i (w ujęciu wartościowym), i IND X ij - popyt nabywcy j na produkty gałęzi i (w ujęciu ilościowym), i IND USE ij - popyt nabywcy j na produkty gałęzi i (w ujęciu wartościowym). Powyżej zapisano zmienne na poziomach ; te same symbole zapisywane małymi literami wyrażają procentowe przyrosty poszczególnych zmiennych. 1

2 3 Model 3.1 Postać z poziomami zmiennych Model składa się z dwóch grup równań. Pierwsza z nich to tzw. równania bilansowe produkcji, mówiące, że produkcja danej gałęzi jest równa sumie popytu na jej wyroby: i IND X1T OT i = X ij (1) Druga grupa równań opisuję technologię produkcji. W modelu input-output wyrażają one założenie, że nakłady materiałowe (zużycie pośrednie) na jednostkę produkcji danej gałęzi są stałe (in. nakłady materiałowe są proporcjonalne do produkcji gałęzi). Nakłady materiałowe na jednostkę produkcji wyrażane są przez współczynniki bezpośrednich nakładów, oznaczane w analizie input output symbolem a ij (uwaga - dla podkreślenia, że współczynniki bezpośrednich nakładów są stałymi, a nie zmiennymi, zapisujemy je jako ā ij ). Równania nakładów materiałowych mają postać: i IND j IND X i,j = ā ij X1T OT j (2) 3.2 Przekształcenie do postaci z procentowymi przyrostami zmiennych W przekształceniu korzystamy z dwóch elementarnych reguł linearyzacji: Równanie na poziomach Y = X + Z Y = αx Równanie na procentowych przyrostach Y y = Xx + Zz y = x Na podstawie powyższych reguł możemy przekształcić równania 1-2 do postaci: i IND X1T OT i x1tot i = X ij x ij (3) i IND j IND x i,j = x1tot j (4) Warto zauważyć, że w równaniu 4 po linearyzacji znika stała ā ij, co oznacza, że do rozwiązania modelu produkcji input-output w postaci z procentowymi przyrostami zmiennych nie trzeba obliczać współczynników bezpośrednich nakładów materiałowych. 4 Dane Przykładowe dane do modelu, zapisane w formie I i II ćwiartki tablicy input-output, są następujące: P rodukty U slugi F inalny P rodukty Uslugi Powyższa macierz to jednocześnie macierz [USE ij ]. Warto też zauważyć, że wartość produkcji globalnej można obliczyć sumując wiersze tej macierzy, tj. V 1T OT i = USE ij. 2

3 5 Normalizacja cen i ostateczna postać modelu W modelu w postaci zlinearyzowanej wielkości zapisywane wielkimi literami należy traktować jako stałe (reprezentujące tzw. rozwiązanie początkowe), wyznaczane na podstawie danych. Dla podkreślenia tego faktu będziemy dalej zapisywać Jednak dane zawarte w tablicy input-output wyrażone są w ujęciu wartościowym (pieniężnym), podczas gdy X1T OT i i X ij, występujące we wzorach 3-4, wyrażają ilości. Dane w ujęciu ilościowym nie są zwykle dostępne. W takiej sytuacji rozwiązanie polega na zastosowaniu tzw. normalizacji cen. Przyjmując umownie, że wyjściowe ceny produktów i usług są równe 1 w rozwiązaniu początkowym, mamy X1T OT i = V 1T OT i oraz X ij = USE ij, gdzie kreska nad symbolem zmiennej oznacza jej poziom początkowy, tj. wielkość pochodzącą z danych. Wówczas nieobserwowane ilości można w równaniach 3-4 można zastąpić obserwowanymi wartościami pieniężnymi, uzyskując w ten sposób finalną postać modelu: i IND V 1T OT i x1tot i = USE ij x ij (5) i IND j IND x i,j = x ij (6) Zauważmy, że normalizacja cen jest założeniem, które nie wnosi dodatkowej informacji, tj. nie pozwala z danych pieniężnych uzyskać ilości produktów i usług w konkretnych jednostkach fizycznych, takich jak np. sztuki, tony, godziny itp. Ponieważ jednak w rozwiązaniu modelu interesują nas tylko procentowe zmiany (produkcji i popytu), jednostki fizyczne nie mają znaczenia. Np. gdy mówimy o wzroście produkcji o 10%, nie jest ważne, czy mierzymy tę produkcję w kilogramach czy w tonach - istotne jest natomiast, że mamy na myśli ilość, nie zaś np. wartość. Równania 5-6 zapisane w kodzie TABLO wyglądają następująco: Equation E_x1tot # Rownanie bilansowe produkcji # (all,i,ind) V1TOT(i)*x1tot(i) = sum{j, USER, USE(i,j)*x(i,j)}; Equation E_x # Zuzycie posrednie proporcjonalne do produkcji # (all,i,ind)(all,j,ind) x(i,j) = x1tot(j); Pliki z pełnym kodem modelu i założeniami symulacji można znaleźć na stronie w materiałach ćwiczeniowych. 6 Przykładowa symulacja W przykładowej symulacji zakładamy wzrost popytu na Produkty o 20% (w ujęciu ilościowym). Zakładamy, że popyt finalny na Usługi nie zmienia się. Po rozwiązaniu w pakiecie GEMPACK 1 otrzymujemy następujące zmiany procentowe popytu, wyrażone 1 Ten niewielki model łatwo rozwiązać także na kartce. 3

4 w postaci zmiennej x ij : P rodukty U slugi F inalny P rodukty U slugi oraz procentowe zmiany produkcji, wyrażone w postaci zmiennej x1tot i : P rodukty 8.57 Uslugi 2.86 Powyższe liczby stanowią komplet wyników symulacji, wyznaczonych poprzez rozwiązanie układu równań 5-6. Mimo to można pogłębić interpretację wyników i rozumienie modelu dzięki podstawieniu uzyskanych liczb do wybranych równań. Podstawmy np. wyniki do równania bilansowego produkcji (5) dla pierwszej gałęzi (Produkty): V 1T OT P rodukty x1tot P rodukty = USE P rodukty, P rodukty x P rodukty, P rodukty +USE P rodukty, Uslugi x P rodukty, Uslugi +USE P rodukty, F inalny x P rodukty, F inalny Pod wartości współczynników podstawiamy liczby z bazy danych: 10 x1tot P rodukty = 1 x P rodukty, P rodukty +6 x P rodukty, Uslugi +3 x P rodukty, F inalny Dzieląc obustronnie przez 10 otrzymujemy: x1tot P rodukty = 0.1 x P rodukty, P rodukty +0.6 x P rodukty, Uslugi +0.3 x P rodukty, F inalny Z powyższego widać, że procentową zmianę produkcji w gałęzi Produkty można wyznaczyć jako ważoną sumę procentowych zmian popytu na Produkty ze strony poszczególnych nabywców. Podstawiają do powyższego równania wyniki symulacji otrzymujemy: x1tot P rodukty = = 8.57 Wynik 8.57 był już oczywiście znany, ale dzięki podstawieniu do równania uzyskujemy dekompozycję tego wyniku. Interpretacja jest następująca: produkcja gałęzi Produkty wzrasta o 8.57%, przy czym wzrost popytu finalnego na Produkty bezpośrednio przyczynia się do wzrostu produkcji o 6%, wzrost popytu na Produkty ze strony sektora 4

5 Usług przyczynia się do wzrostu produkcji o 1.716%, a wzrost zużycia wewnętrznego w sektorze Produkty - do zwiększenia produkcji o 0.857%. Podobną dekompozycję można przeprowadzić dla zmian produkcji gałęzi Usługi. Z kolei równania 6 można zinterpretować następująco: procentowy przyrost zużycia materiałów pochodzących z gałęzi i w produkcji gałęzi j jest równy procentowemu przyrostowi produkcji w gałęzi j. Na przykład: x P rodukty, Uslugi = x1tot Uslugi = 2.86 tj. popyt gałęzi Uslugi na Produkty wzrasta o 2.86% - dokładnie o tyle, o ile wzrasta produkcja gałęzi Uslugi. 5

Wykład 2 - model produkcji input-output (Model 1)

Wykład 2 - model produkcji input-output (Model 1) Wykład 2 - model produkcji input-output (Model 1) 1 Wprowadzenie Celem wykładu jest omówienie (znanego z wcześniejszych zaję) modelu produkcji typu input-output w postaci pozwalającej na zaprogramowanie

Bardziej szczegółowo

Wykład 3 - model produkcji i cen input-output (Model 2)

Wykład 3 - model produkcji i cen input-output (Model 2) Wykład 3 - model produkcji i cen input-output (Model 2) 1 Wprowadzenie W ramach niniejszego wykładu opisujemy model 2, będący rozszerzeniem znanego z poprzedniego wykładu modelu 1. Rozszerzenie polega

Bardziej szczegółowo

Stosowane modele równowagi. Wykład 1

Stosowane modele równowagi. Wykład 1 Stosowane modele równowagi ogólnej (CGE) Wykład 1 Literatura Horridge M., MINIMAL. A Simplified General Equilibrium Model, 2001, http://www.copsmodels.com/minimal.htm dowolny podręcznik do mikroekonomii

Bardziej szczegółowo

Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa

Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa Ekonometria Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 10 1 / 22 Outline 1 2 Jakub Mućk Ekonometria Ćwiczenia 10 2 / 22 Oznaczenia i definicje Numeracja gałęzi: i, j = 1, 2,,

Bardziej szczegółowo

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych

Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych dr inż. Ryszard Rębowski 1 OPIS ZJAWISKA Finanse i Rachunkowość studia niestacjonarne/stacjonarne Model Przepływów Międzygałęziowych 8 listopada 2015 1 Opis zjawiska Będziemy obserwowali proces tworzenia

Bardziej szczegółowo

Prosty model równowagi ogólnej dla gospodarki zamkniętej (Model 3)

Prosty model równowagi ogólnej dla gospodarki zamkniętej (Model 3) Prosty model równowagi ogólnej dla gospodarki zamkniętej (Model 3) Jakub Boratyński 1 Wprowadzenie Dotychczas omawiane modele model 1 i model 2 nie były modelami równowagi ogólnej w ścisłym znaczeniu tego

Bardziej szczegółowo

Model przepływów międzygałęziowych (model Leontiewa)

Model przepływów międzygałęziowych (model Leontiewa) Model przepływów międzygałęziowych (model Leontiewa) Maciej Grzesiak Przedstawimy tzw. analizę wejścia-wyjścia jako narzędzie do badań ekonomicznych. Stworzymy matematyczny model gospodarki, w którym można

Bardziej szczegółowo

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego

Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d

Bardziej szczegółowo

CIĄGI wiadomości podstawowe

CIĄGI wiadomości podstawowe 1 CIĄGI wiadomości podstawowe Jak głosi definicja ciąg liczbowy to funkcja, której dziedziną są liczby naturalne dodatnie (w zadaniach oznacza się to najczęściej n 1) a wartościami tej funkcji są wszystkie

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE A. RÓWNANIA RZĘDU PIERWSZEGO Uwagi ogólne Równanie różniczkowe zwyczajne rzędu pierwszego zawiera. Poza tym może zawierać oraz zmienną. Czyli ma postać ogólną Na przykład

Bardziej szczegółowo

Modele wielorownaniowe

Modele wielorownaniowe Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej

Bardziej szczegółowo

Układy równań liniowych. Ax = b (1)

Układy równań liniowych. Ax = b (1) Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m

Bardziej szczegółowo

Podstawianie zmiennej pomocniczej w równaniach i nie tylko

Podstawianie zmiennej pomocniczej w równaniach i nie tylko Tomasz Grębski Matematyka Podstawianie zmiennej pomocniczej w równaniach i nie tylko Zadania z rozwiązaniami Spis treści Wstęp... Typowe podstawienia... 6 Symbole używane w zbiorze... 7. Podstawienie zmiennej

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Elementarne reguły linearyzacji

Elementarne reguły linearyzacji Elementarne reguły linearyzacji lub Z X Y = z x y + = Z X Y / = z x y = Z X Y + = z Z x X y Y + = z S x S y Z X + = Z X Y = z Z x X y Y = ( - stała) ( - stała) Z X Y = z Z x X y Y = α X Y = α X Y = α α

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH

UKŁADY RÓWNAŃ LINIOWYCH Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Analiza tworzenia i podziału dochodów na podstawie modelu wielosektorowego

Analiza tworzenia i podziału dochodów na podstawie modelu wielosektorowego UNIWERSYTET ŁÓDZKI PRACE DOKTORSKIE Z ZAKRESU EKONOMII I ZARZĄDZANIA 1/ JAKUB BORATYNSKI Analiza tworzenia i podziału dochodów na podstawie modelu wielosektorowego B 372130 UU WYDAWNICTWO UNIWERSYTETU

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp. Definicja 1. Operatorem

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Analiza progu rentowności

Analiza progu rentowności Analiza progu rentowności Próg rentowności ( literaturze przedmiotu spotyka się również określenia: punkt równowagi, punkt krytyczny, punkt bez straty punkt zerowy) jest to taki punkt, w którym jednostka

Bardziej szczegółowo

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska

Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w

Bardziej szczegółowo

Rozdział 1 PROGRAMOWANIE LINIOWE

Rozdział 1 PROGRAMOWANIE LINIOWE Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH

O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH A. KARPIO KATEDRA EKONOMETRII I STATYSTYKI SGGW W WARSZAWIE Krzywa dochodowości Obligacja jest papierem wartościowym, którego wycena opiera się na oczekiwanych

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do rachunku błędów pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do rachunku błędów pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją symbolami:

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

4 Analiza input-output i jej zastosowania w modelowaniu ekonomiczno-ekologicznym

4 Analiza input-output i jej zastosowania w modelowaniu ekonomiczno-ekologicznym Mariusz Plich Budowa i wykorzystanie wielosektorowych modeli ekonomiczno-ekologicznych Wydawnictwo Uiniwersytetu Łódzkiego 2002 4 Analiza input-output i jej zastosowania w modelowaniu ekonomiczno-ekologicznym

Bardziej szczegółowo

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA

Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe

Bardziej szczegółowo

, A T = A + B = [a ij + b ij ].

, A T = A + B = [a ij + b ij ]. 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2)

Matematyka A kolokwium: godz. 18:05 20:00, 24 maja 2017 r. rozwiązania. ) zachodzi równość: x (t) ( 1 + x(t) 2) Matematyka A kolokwium: godz. 18:05 0:00, 4 maja 017 r. rozwiązania 1. 7 p. Znaleźć wszystkie takie funkcje t xt, że dla każdego t π, π zachodzi równość: x t 1 + xt 1+4t 0. p. Wśród znalezionych w poprzedniej

Bardziej szczegółowo

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b.

FUNKCJA LINIOWA. Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. FUNKCJA LINIOWA Zadanie 1. (1 pkt) Na rysunku przedstawiony jest fragment wykresu pewnej funkcji liniowej y = ax + b. Jakie znaki mają współczynniki a i b? R: Przedstawiona prosta, jest wykresem funkcji

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu:

x 2 = a RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych 2. Proste równania kwadratowe Równanie kwadratowe typu: RÓWNANIA KWADRATOWE 1. Wprowadzenie do równań kwadratowych Przed rozpoczęciem nauki o równaniach kwadratowych, warto dobrze opanować rozwiązywanie zwykłych równań liniowych. W równaniach liniowych niewiadoma

Bardziej szczegółowo

Przemysł spożywczy w Polsce analiza z wykorzystaniem tablic przepływów międzygałęziowych

Przemysł spożywczy w Polsce analiza z wykorzystaniem tablic przepływów międzygałęziowych Przemysł spożywczy w Polsce analiza z wykorzystaniem tablic przepływów międzygałęziowych Zakład Ekonomiki Przemysłu Spożywczego Warszawa, 21 kwietnia 2017 r. Plan wystąpienia Bilans tworzenia i rozdysponowania

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Badania Operacyjne Ćwiczenia nr 4 (Materiały)

Badania Operacyjne Ćwiczenia nr 4 (Materiały) Analiza wrażliwości Rozwiązanie programu liniowego jest dopiero początkiem analizy. Z punktu widzenia decydenta (menadżera) jest istotne, żeby wiedzieć jak na rozwiązanie optymalne wpływają zmiany parametrów

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO

D. Miszczyńska, M.Miszczyński KBO UŁ 1 GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO D. Miszczyńska, M.Miszczyński KBO UŁ GRY KONFLIKTOWE GRY 2-OSOBOWE O SUMIE WYPŁAT ZERO Gra w sensie niżej przedstawionym to zasady którymi kierują się decydenci. Zakładamy, że rezultatem gry jest wypłata,

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe

FUNKCJE. Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Teoria funkcje cz.1. Definicja funkcji i wiadomości podstawowe 1 FUNKCJE Definicja funkcji i wiadomości podstawowe Jeżeli mamy dwa zbiory: zbiór X i zbiór Y, i jeżeli każdemu elementowi ze zbioru X przyporządkujemy dokładnie jeden element ze zbioru Y, to takie przyporządkowanie

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Programowanie strukturalne i obiektowe. Funkcje

Programowanie strukturalne i obiektowe. Funkcje Funkcje Często w programach spotykamy się z sytuacją, kiedy chcemy wykonać określoną czynność kilka razy np. dodać dwie liczby w trzech miejscach w programie. Oczywiście moglibyśmy to zrobić pisząc trzy

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Metoda eliminacji Gaussa

Metoda eliminacji Gaussa Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny

Bardziej szczegółowo

Równania różniczkowe liniowe II rzędu

Równania różniczkowe liniowe II rzędu Równania różniczkowe liniowe II rzędu Definicja równania różniczkowego liniowego II rzędu Warunki początkowe dla równania różniczkowego II rzędu Równania różniczkowe liniowe II rzędu jednorodne (krótko

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

9. Dyskretna transformata Fouriera algorytm FFT

9. Dyskretna transformata Fouriera algorytm FFT Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu

Bardziej szczegółowo

Rachunki narodowe ćwiczenia, 2015

Rachunki narodowe ćwiczenia, 2015 Obliczanie (zmian) wolumenów (na przykładzie PKB). Przykład opracowany na podstawie Understanding, ćwiczenie 3, str. 40. PKB, podobnie jak wiele innych wielkości makroekonomicznych, może być przedstawiany

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Analiza matematyczna dla informatyków 3 Zajęcia 14

Analiza matematyczna dla informatyków 3 Zajęcia 14 Analiza matematyczna dla informatyków 3 Zajęcia 14 Metoda rozwiązywania (Jednorodne równanie różniczkowe liniowe rzędu n o stałych współczynnikach). gdzie a 0,..., a n 1 C. Wielomian charakterystyczny:

Bardziej szczegółowo

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi

Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

2a. Przeciętna stopa zwrotu

2a. Przeciętna stopa zwrotu 2a. Przeciętna stopa zwrotu Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie Matematyka finansowa rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2a. Przeciętna stopa zwrotu Matematyka

Bardziej szczegółowo

2. DZIAŁANIA NA WIELOMIANACH

2. DZIAŁANIA NA WIELOMIANACH WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Wykład 8. Rachunek dochodu narodowego i model gospodarki

Wykład 8. Rachunek dochodu narodowego i model gospodarki Wykład 8. Rachunek dochodu narodowego i model gospodarki 1. Makroekonomia. Makroekonomia bada gospodarkę narodową jako całość i wpływające na nią wielkości makroekonomiczne oraz ich powiązania. Najważniejszym

Bardziej szczegółowo

Równania różniczkowe wyższych rzędów

Równania różniczkowe wyższych rzędów Równania różniczkowe wyższych rzędów Marcin Orchel Spis treści 1 Wstęp 1 1.1 Istnienie rozwiązań............................... 1 1. Rozwiązanie ogólne............................... 1.3 Obniżanie rzędu

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 2

Kształcenie w zakresie podstawowym. Klasa 2 Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn

Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra

Bardziej szczegółowo

1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 4,5, y = 1 TAK NIE

1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 4,5, y = 1 TAK NIE 1. Czy poniższa para liczb spełnia równanie 6x + 4y = 23? Wstaw znak X w odpowiednią kratkę. x = 0,5, y = 5 TAK NIE x = 3, y = 1 TAK NIE x = 7, y = 5 TAK NIE x = 4,5, y = 1 TAK NIE 2. Sprawdź, czy para

Bardziej szczegółowo

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D)

FUNKCJA LINIOWA. A) B) C) D) Wskaż, dla którego funkcja liniowa określona wzorem jest stała. A) B) C) D) FUNKCJA LINIOWA 1. Funkcja jest rosnąca, gdy 2. Wskaż, dla którego funkcja liniowa jest rosnąca Wskaż, dla którego funkcja liniowa określona wzorem jest stała. 3. Funkcja liniowa A) jest malejąca i jej

Bardziej szczegółowo

punktów 0 2 punktów oznaczenie i wyskalowanie osi wykresu narysowanie odcinka łączącego punkty o współrzędnych (0 m; 0 J) i (31,25 m; J)

punktów 0 2 punktów oznaczenie i wyskalowanie osi wykresu narysowanie odcinka łączącego punkty o współrzędnych (0 m; 0 J) i (31,25 m; J) Egzamin gimnazjalny cz. matematyczno-przyrodnicza ROZWIAZANIA I SCHEMAT PUNKTACJI Zadania zamknięte 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 A A C B C B D C C D C D C A B A B C D C C D D

Bardziej szczegółowo