Jozef Lipták. a 2. i = A i = B 0 i = C 6 a. i = D

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jozef Lipták. a 2. i = A i = B 0 i = C 6 a. i = D"

Transkrypt

1 Řešení písemné práce z Klasické elektrodnamik Jozef Lipták Úloha Na obrázku je průběh potenciálů Φ A,, Φ D pro čtři sférick smetrické nábojové hustot ρ A,, ρ D Pro r a se všechn potenciál shodují a platí, že Φ = /πɛ 0 r Pro 0 r < a je Φ A lineární funkce radiální souřadnice r, Φ C = konst a pro Φ B a Φ D pak platí Φ B r <a = 3a r πɛ 0 a 3, Φ D r <a = r πɛ 0 a a π ϵ0 a π ϵ0 3 a π ϵ0 a A B C Určete všechn objemové ρ A,, ρ D, plošné σ A,, σ D a bodové q A,, q D náboje, které budí potenciál Φ A, Φ B, Φ C a Φ D Určete celkové hodnot A,, D těchto nábojů D 0 0 a a a Objemovou hustotu náboje spočteme za pomoci Poissonov rovnice ρ = ɛ 0 Φ, kde pro sférick smetrický potenciál je nejsnazží spočíst fr = rf /r Pro r > a dostáváme samozřejme ρr > a = 0, v okolí počátku pak ρ i r < a = ɛ 0 U 0 ra 3 a i = A i = B 0 i = C 6 a i = D, kde U 0 = πɛ 0 a Plošné nábojové hustot se projeví nespojitostí elektrického pole a ted první derivace potenciálu To nastává pro případ C a D na sféře r = a To, že plošná nábojová hustota je dána nespojitostí radiální složk elektrického pole, je ve sférick smetrické situaci obzvlášt dobře patrné: náboj uvnitř sfér o poloměru r je dán přímo součinem ploch a elektrické indukce r = πr ɛ 0 E r r Konkrétně E C r a = 0, ED r a = U 0 a e r a protože těsně nad povrchem koule je pokaždé E r r a + = U 0 /a máme σ A = σ B = 0, σ C = 0 ɛ 0U 0 a = ɛ 0U 0 a, σ D = ɛ 0U 0 = 3 ɛ 0U 0 a a Protože elektrická intenzita v počátku je konečná, nemůže tam sídlit nenulový bodový náboj Nepřítomnost bodového náboje ovšem nezaručuje, že nábojová hustota je konečná, jak je vidět na příkladě nábojové hustot ρ A b Celkový náboj sídlí vžd v kouli r a a je ve všech čtřech případech roven To lze spočíst jednak sečtením nábojů plošných a objemových i = πa σ i + a 0 ρ i πr dr, a nebo mnohem snáze přímo z tvaru potenciálu pro r > a, který odpovídá právě poli bodového náboje

2 Úloha Dvě kuličk z vodivé a nestlačitelné kapalin o poloměrech nikoli průměrech 30 mm resp 50 mm se vzdáleností středů 0 mm se nacházejí na potenciálech 30 V resp +680 V vzhledem k nekonečnu V důsledku vzájemného elektrostatického přitahování se posléze obě spojí do jedné větší kulové kapk Nalezněte její elektrický potenciál taktéž vzhledem k nekonečnu Za každou platnou cifru výsledku dostanete 3 bod nanejvýš ovšem 5 Označíme-li poloměr kuliček a a b pak pro kuličku vzniklou splnutím máme c = 3 a 3 + b 3 Pro náboj bude platit c = a + b ; pro další výpočt zvolíme jednotk náboje [] = Vmm tak, že položíme πɛ 0 =, ted pro kapacitu kuličk o poloměru a máme C a = a Komplikace úloh spočívá v tom, že neznáme náboje, ale pouze napětí na kuličkách V nejnižší aproimaci při zanedbání jejich vzájemného ovlivňování dostaneme, že náboje jsou a = C a U a a b = C b U b, a ted U c = c /c = au a + bu b / 3 a 3 + b 3 Zadání je zvoleno tak, že tento výsledek dá právě jednu platnou cifru výsledku Na cvičení jsme nalezli matici kapacit zahrnující první opravu: a ab/d C AB = πɛ 0 ab/d b ted c = au a + bu b ab/du a + U b Na dalším cvičení jsme nalezli vztah pro posloupnost fiktivních nábojů, která dokáže udržet ekvipotenciál ve tvaru sfér se zadanými poloměr a napětími Nejprve jsme umístili náboje q 0 = au a a q 0 = bu b do vzdálenosti d a poté jsme mezi ně přidali fiktivní náboje s polohami a velikostí a s i = d s, s b i =, i d s i a q i = d s i q i, q i b = q i d s i Hledané c pak představuje jejich součet c = i q i + q i Na pět platných cifer potřebujeme: q i = { 000, 38, 80, 8, }Vmm, q i = {3000, 59, 65, 9, }Vmm, případně q i = { 39, 0579, 00089, 000, 0000}nC, q i = {3783, 09, 009, 000, 0000}nC, s i = {0, 055, 07, 073, 073}mm, s i = {0, 5688, 5708, 57087, 57087}mm Výsledné napětí sečtením šesti členů vjde 7555 V

3 Úloha 3 Nalezněte kapacitu kondenzátoru tvořeného dvěma koncentrickými elektrodami ve tvaru rotačních elipsoidů Vnitřní elektroda má rovníkový poloměr cm a polární poloměr 5cm, vnější elektroda má rovníkový poloměr 5cm a polární poloměr 7cm Rotační elipsoid, ze kterých je kondenzátor vtvořem, se dostanou rotací elips se zadanou hlavní a vedlejší polosou okolo hlavní poloos V prvním kroku si pro obě elips spočteme vzdálenost l ohnisek od středu Z vlastnosti elips, že součet vzdáleností od ohnisek je na elipse konstantní, aplikované na bod na osách, plne P = R + l Dosazením číselných hodnot pro vnitřní elipsoid R i = cm, P i = 5cm a pro vnější elipsoid R o = 5cm, P o = 7cm zjistíme, že pro oba elipsoid dostáváme stejnou hodnotu l = Pi Ri = Po Ro = cm Obrázek k úloze 3 Vertikální osa je osou aiální smetrie kondenzátoru Elisoid jsou tak konfokální: elips, které je generují mají stejná ohniska Na cvičení jsme nalezli skalární potenciál od nabité tčk a ukázali, že jeho ekvipotenciál jsou přesně konfokální elipsoid s ohnisk na krajích tčk Pole tčk tak lze též chápat jako vnější pole nabitého vodivého protáhlého elipsoidu Uvnitř takového elipsoidu je potenciál konstantní Pole dvou konfokálních elipsoidů pak dostaneme prostou superpozicí Zde vužíváme, že každý z elipsoidů leží na ekvipotenciále pole druhého elipsoidu Pro jeden elipsoid nabitý nábojem je pole vně elisoidu dáno vzorcem odvozeným na cvičení, φ = cosh η + log 8πε o l cosh η, kde eliptická souřadnice η je spojena se vzdálenostmi od ohnisek r, r + vztahem cosh η = r + r + l Součet vzdáleností od ohnisek je ale přesně dvojnásobek hlavní poloos P příslušné elips, ted cosh η = P l Tento vztah lze také přímo včíst z trasformací definujících tto křivočaré souřadnice, na pólu musí platit z = P = l cosh η, na rovníku na ose pak = R = l sinh η Na některých cvičeních jsme pak používali zkratku s = l cosh η Uvnitř elipsoidu je potenciál konstantní s hodnotou potenciálu danou spojitostí s polem vně Superpozicí polí elipsoidu o polosách R i, P i s nábojem + a elipsoidu o polosách R o, P o s nábojem mezi oběma elipsoid dostaneme φ = log cosh η + 8πε o l cosh η log cosh η o + cosh η o Vně vnějšího elipsoidu a na něm je potenciál nulový, uvnitř vnitřního elipsoidu a na něm je potenciál konstantní daný V = log cosh η i + 8πε o l cosh η i log cosh η o + cosh η o Použitím vztahu pro cosh η a spojením logaritmů dostaneme V = 8πε o l log P i + lp o l P o + lp i l Toto je též napětí mezi oběma částmi kondenzátoru Kapacita elipsoidálního kondenzátoru ted je C = V = 8πε ol log P i + lp o l = πɛ 0 + O l P o + lp i l P i P 0 P Poslední výraz reprezentuje rozvoj v bezrozměrné výstřednosti l P Dominantní člen má ilustrovat, že pro malé výstřednosti dostaneme známý vztah pro kapacitu kulového kondenzátoru Tento rozvoj však není obecně užitečný pro zadané hodnot Pro t dosazením do přesného výrazu dostáváme C = 38pF

4 Úloha Mějme náboje rozložené ve vrcholech a středu pravidelného šestiúhelníku jak je znázorněno na obrázku Vzdálenost nábojů ve vrcholech od počátku je a Určete tenzor dominantního multipólu pro toto rozložení a pomocí něj zapište skalární potenciál v závislosti na radiální vzdálenosti a směrovém vektoru e Po té nalezněte skalární potenciál φ a elektrickou intenzitu E ve sférických souřadnicích r, ϑ, ϕ 6 q Rozložení nábojů Poloh nábojů lze pomocí kartézských jednotkových vektorů zapsat: náboj q i průvodič r i člen r i r i 6q 0 0 q a e a e e q a e + a 3 e e e + 3 e e + e e + 3 e e q a e a 3 e e e 3 e e + e e + 3 e e q a e a e e q a e + a 3 e e e + 3 e e + e e + 3 e e q a e a 3 e e e 3 e e + e e + 3 e e Celkový náboj je nulový Dík středové smetrii nábojového rozložení je dipólový člen též nulový Druhý moment nábojového rozložení je pro diskrétní náboje dán sumou = i q i r i r i Dosazením dostáváme = 3qa e e + e e Dominantní člen multipólového rozložení je ted kvadrupól Tenzor, který ho charakterizuje, je dán bezestopou částí druhého momentu, K = 3 = 3 q Stopa momentu je = c c = 6qa a pro bezestopou část dostáváme K = 3qa e e e e + e z e z Skalární potenciál kvadrupólu je φ = πε o r 3 e K e V kartézských souřadnicích je jednotkový směrový vektor e = r e + e + z e z a potenciál tak je φ,, z = q a 3 πε o r 5 + z = q a 3 3 z πε o r 3 r Dosadíme-li směrový vektor vjádřený pomocí sférických úhlů e = sin ϑ cos ϕ e + sin ϑ sin ϕ e + cos ϑ e z, nalezneme skalární potenciál ve sférických souřadnicích, φr, ϑ, ϕ = q a 3 πε o r 3 3 cos ϑ = q a 3 πε o r 3 3 cosϑ +

5 Obra zek nı z e zobrazuje ekvipotencia l v r ezech = 0, = 0, z = 0, u hlova za vislost potencia lu pr i r = konst je zna zorne na v s e Derivacı podle sour adnic r, ϑ, ϕ se zahrnutı m Lame ho koeficientu h dostaneme komponent i elektricke intenzit, ~ ϑ, ϕ = q a 9 3 cos ϑ ~er + sinϑ ~eϑ Er, πεo r z z Ekvipotencia l skala rnı ho potencia lu v rovinna ch z = 0, = 0, = 0 U hlova za vislost skala rnı ho potencia lu

i = A i = B 0 i = C i = D Plošné nábojové hustoty se projeví nespojitostí elektrického pole a tedy první derivace potenciálu.

i = A i = B 0 i = C i = D Plošné nábojové hustoty se projeví nespojitostí elektrického pole a tedy první derivace potenciálu. Řešení písemné práce Klscké elektrodnmk Klár Ševčíková Úloh N obráku je průběh potencálů Φ A,, Φ D pro čtř sférck smetrcké nábojové hustot ρ A,, ρ D Pro r se všechn potencál shodují pltí, že Φ = /4πɛ 0

Bardziej szczegółowo

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky

Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování

Bardziej szczegółowo

Matematika 2, vzorová písemka 1

Matematika 2, vzorová písemka 1 Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět

Bardziej szczegółowo

Funkce zadané implicitně. 4. března 2019

Funkce zadané implicitně. 4. března 2019 Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f

Bardziej szczegółowo

Úvodní informace. 18. února 2019

Úvodní informace. 18. února 2019 Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.

Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid

Bardziej szczegółowo

Geometrická nelinearita: úvod

Geometrická nelinearita: úvod Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,

Bardziej szczegółowo

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a

Bardziej szczegółowo

1 Soustava lineárních rovnic

1 Soustava lineárních rovnic Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační

Bardziej szczegółowo

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu

Kapitola 4: Soustavy diferenciálních rovnic 1. řádu Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter

Bardziej szczegółowo

NOFY026 Klasická elektrodynamika, LS 2019

NOFY026 Klasická elektrodynamika, LS 2019 Zápočtový problém č. 1 NOFY06 Klasická elektrodynamika, LS 019 termín odevzdání: 9. 4. 019 Zadání: Uvažujte skalární potenciál elektrického pole v klínu mezi dvěma vodivými uzemněnými polorovinami ohraničenými

Bardziej szczegółowo

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :

Bardziej szczegółowo

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.

Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou. Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.

Bardziej szczegółowo

DFT. verze:

DFT. verze: Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály

Bardziej szczegółowo

Teorii Relativity. My nastoupíme do konkrétní inerciální soustavy a v ní budeme hledat detailnější pochopení významu těchto polních rovnic.

Teorii Relativity. My nastoupíme do konkrétní inerciální soustavy a v ní budeme hledat detailnější pochopení významu těchto polních rovnic. Poznámky k přednášce Klasická elektrodynamika Úvod Fyzikální pole je následníkem principu působení na dálku. V klasické představě zprostředkovává pole vytvářené jedním zdrojem působení na druhý zdroj.

Bardziej szczegółowo

kontaktní modely (Winklerův, Pasternakův)

kontaktní modely (Winklerův, Pasternakův) TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z

Bardziej szczegółowo

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].

x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ]. II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.

Bardziej szczegółowo

5. a 12. prosince 2018

5. a 12. prosince 2018 Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže

Bardziej szczegółowo

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006

Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006 Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce

Bardziej szczegółowo

Rovnice proudění Slapový model

Rovnice proudění Slapový model do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19

Kristýna Kuncová. Matematika B2 18/19 (6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)

Bardziej szczegółowo

MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATIKA 3.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce

Bardziej szczegółowo

Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.

Referenční plochy. Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma

Bardziej szczegółowo

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T

Bardziej szczegółowo

Co nám prozradí derivace? 21. listopadu 2018

Co nám prozradí derivace? 21. listopadu 2018 Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?

Bardziej szczegółowo

Inverzní Z-transformace

Inverzní Z-transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25

Bardziej szczegółowo

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35

(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35 (1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst

Bardziej szczegółowo

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R

Bardziej szczegółowo

Numerické metody minimalizace

Numerické metody minimalizace Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace

Bardziej szczegółowo

Numerické metody 8. května FJFI ČVUT v Praze

Numerické metody 8. května FJFI ČVUT v Praze Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme

Bardziej szczegółowo

Cauchyova úloha pro obyčejnou diferenciální rovnici

Cauchyova úloha pro obyčejnou diferenciální rovnici Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité

Bardziej szczegółowo

(13) Fourierovy řady

(13) Fourierovy řady (13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx

Bardziej szczegółowo

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS

Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě

Bardziej szczegółowo

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.

x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2. Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5

Bardziej szczegółowo

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn

Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové

Bardziej szczegółowo

Paradoxy geometrické pravděpodobnosti

Paradoxy geometrické pravděpodobnosti Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh

Bardziej szczegółowo

Linea rnı (ne)za vislost

Linea rnı (ne)za vislost [1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,

Bardziej szczegółowo

Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:

Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,

Bardziej szczegółowo

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36

Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36 (1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,

Bardziej szczegółowo

GEM a soustavy lineárních rovnic, část 2

GEM a soustavy lineárních rovnic, část 2 GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova

Bardziej szczegółowo

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Bardziej szczegółowo

Diferenciální rovnice základní pojmy. Rovnice se

Diferenciální rovnice základní pojmy. Rovnice se Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Bardziej szczegółowo

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze

Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální

Bardziej szczegółowo

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)

Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument) KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A

Bardziej szczegółowo

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text

Bardziej szczegółowo

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek

Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.

Bardziej szczegółowo

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018

Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018 Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv

Bardziej szczegółowo

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více

Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více 5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme

Bardziej szczegółowo

Obsah. 1.2 Integrály typu ( ) R x, s αx+β

Obsah. 1.2 Integrály typu ( ) R x, s αx+β Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................

Bardziej szczegółowo

Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.

Teorie.   kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje. 8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě

Bardziej szczegółowo

Matematika III Stechiometrie stručný

Matematika III Stechiometrie stručný Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup

Bardziej szczegółowo

Základní elektrotechnická terminologie,

Základní elektrotechnická terminologie, Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1

Bardziej szczegółowo

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25

(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25 (2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25

Bardziej szczegółowo

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!

Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy! Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.

Bardziej szczegółowo

GEOMETRIE. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ / /0016. základu studia.

GEOMETRIE. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ / /0016. základu studia. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA GEOMETRIE Jiří Doležal Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 Studijní opory s převažujícími distančními

Bardziej szczegółowo

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.

Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a. Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, derivace

Funkce více proměnných: limita, spojitost, derivace Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více

Bardziej szczegółowo

Tvarová optimalizace pro 3D kontaktní problém

Tvarová optimalizace pro 3D kontaktní problém Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik

Bardziej szczegółowo

2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011.

2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Kosinová věta pro úhel Pravoúhlý sférický trojúhelník Podpořeno z projektu FRVŠ 584/2011. Referenční plochy, souřadnicové soustavy Důležité křivky - loxodroma, ortodroma Kartografická zobrazení,

Bardziej szczegółowo

Lineární algebra - iterační metody

Lineární algebra - iterační metody Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je

Bardziej szczegółowo

Edita Pelantová, katedra matematiky / 16

Edita Pelantová, katedra matematiky / 16 Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a

Bardziej szczegółowo

III. Dvojný a trojný integrál

III. Dvojný a trojný integrál III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht množina bodů nespojitosti funkce f v má míru. Potom f je integrovatelná

Bardziej szczegółowo

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Bardziej szczegółowo

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha

ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční

Bardziej szczegółowo

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou

Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou 2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,

Bardziej szczegółowo

1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení.

1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení. Obsah 1 2 3 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5 : jednoduché nepravé kuželové ρ = f (U), ɛ = g(v ) = nv ρ = f (U), ɛ = g(u, V ) azimutální ρ = f (U), ɛ = V ρ = f

Bardziej szczegółowo

Kapitola 2. Nelineární rovnice

Kapitola 2. Nelineární rovnice Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné

Bardziej szczegółowo

Energetické principy a variační metody ve stavební mechanice

Energetické principy a variační metody ve stavební mechanice Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná

Bardziej szczegółowo

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Bardziej szczegółowo

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz

Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D.   pf.jcu.cz Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/

Bardziej szczegółowo

Periodický pohyb obecného oscilátoru ve dvou dimenzích

Periodický pohyb obecného oscilátoru ve dvou dimenzích Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta

Bardziej szczegółowo

Pracovní listy. Stereometrie hlavního textu

Pracovní listy. Stereometrie hlavního textu v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam

Bardziej szczegółowo

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu   (reg. č. CZ.1.07/2.2.00/28. Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného

Bardziej szczegółowo

(A B) ij = k. (A) ik (B) jk.

(A B) ij = k. (A) ik (B) jk. Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!

Bardziej szczegółowo

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.

Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body. Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32

Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32 Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html

Bardziej szczegółowo

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina

Bardziej szczegółowo

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala

Bardziej szczegółowo

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál

Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura

Bardziej szczegółowo

7. Aplikace derivace

7. Aplikace derivace 7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,

Bardziej szczegółowo

Elektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI

Elektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI Elektrodynamika Elektriké a magnetiké veličiny, jednotky SI Elektriký proud I je v systému SI základní veličina, jednotka je Ampere A. Definie: Stejné proudy ve rovnoběžnýh dráteh ve vzdalenosti m mají

Bardziej szczegółowo

podle přednášky doc. Eduarda Fuchse 16. prosince 2010

podle přednášky doc. Eduarda Fuchse 16. prosince 2010 Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010

Bardziej szczegółowo

Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.

Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D. Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i

Bardziej szczegółowo

Matematická analýza 2. Kubr Milan

Matematická analýza 2. Kubr Milan Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................

Bardziej szczegółowo

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17

Bardziej szczegółowo

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?

Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))? Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P

Bardziej szczegółowo

ze Speciální teorie relativity

ze Speciální teorie relativity Poznámky ze Speciální teorie relativity Page 1 of 38 Následující text shrnuje a rozšiřuje mé poznámky ze Speciální teorie relativity přednášené v základním kurzu fyziky v zimním semestru 1999/2000 na MFF

Bardziej szczegółowo

MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM. Doc. Ing. Jan Zeman, Ph.D.

MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM. Doc. Ing. Jan Zeman, Ph.D. MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM SPOJENÍM SLOŽEK Soutěžní práce Jan Stránský Vedoucí práce: Doc. Ing. Jan Zeman, Ph.D. České Vysoké Učení Technické

Bardziej szczegółowo

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7

Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7 Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí

Bardziej szczegółowo

Univerzita Palackého v Olomouci

Univerzita Palackého v Olomouci Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly

Bardziej szczegółowo

Transformace okrajových podmínek pomocí Poisson-Lie T-plurality

Transformace okrajových podmínek pomocí Poisson-Lie T-plurality České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská VÝZKUMNÝ ÚKOL Transformace okrajových podmínek pomocí Poisson-Lie T-plurality Ivo Petr Vedoucí práce: Prof. RNDr. Ladislav Hlavatý,

Bardziej szczegółowo

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky

Bardziej szczegółowo

1 Sférická trigonometrie

1 Sférická trigonometrie MMK, vzorové příklady ke zkoušce Přírodovědecká fakulta UK Tomáš Bayer bayertom@natur.cuni.cz Stav k 0. 5. 019 Není-li zadáno jinak, volte poloměr Země R = 6380km. 1 Sférická trigonometrie 1. O kolik procent

Bardziej szczegółowo

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO POČÍTAČOVÁ GEOMETRIE JIŘÍ KOBZA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Bardziej szczegółowo