Jozef Lipták. a 2. i = A i = B 0 i = C 6 a. i = D
|
|
- Eugeniusz Fabian Mucha
- 5 lat temu
- Przeglądów:
Transkrypt
1 Řešení písemné práce z Klasické elektrodnamik Jozef Lipták Úloha Na obrázku je průběh potenciálů Φ A,, Φ D pro čtři sférick smetrické nábojové hustot ρ A,, ρ D Pro r a se všechn potenciál shodují a platí, že Φ = /πɛ 0 r Pro 0 r < a je Φ A lineární funkce radiální souřadnice r, Φ C = konst a pro Φ B a Φ D pak platí Φ B r <a = 3a r πɛ 0 a 3, Φ D r <a = r πɛ 0 a a π ϵ0 a π ϵ0 3 a π ϵ0 a A B C Určete všechn objemové ρ A,, ρ D, plošné σ A,, σ D a bodové q A,, q D náboje, které budí potenciál Φ A, Φ B, Φ C a Φ D Určete celkové hodnot A,, D těchto nábojů D 0 0 a a a Objemovou hustotu náboje spočteme za pomoci Poissonov rovnice ρ = ɛ 0 Φ, kde pro sférick smetrický potenciál je nejsnazží spočíst fr = rf /r Pro r > a dostáváme samozřejme ρr > a = 0, v okolí počátku pak ρ i r < a = ɛ 0 U 0 ra 3 a i = A i = B 0 i = C 6 a i = D, kde U 0 = πɛ 0 a Plošné nábojové hustot se projeví nespojitostí elektrického pole a ted první derivace potenciálu To nastává pro případ C a D na sféře r = a To, že plošná nábojová hustota je dána nespojitostí radiální složk elektrického pole, je ve sférick smetrické situaci obzvlášt dobře patrné: náboj uvnitř sfér o poloměru r je dán přímo součinem ploch a elektrické indukce r = πr ɛ 0 E r r Konkrétně E C r a = 0, ED r a = U 0 a e r a protože těsně nad povrchem koule je pokaždé E r r a + = U 0 /a máme σ A = σ B = 0, σ C = 0 ɛ 0U 0 a = ɛ 0U 0 a, σ D = ɛ 0U 0 = 3 ɛ 0U 0 a a Protože elektrická intenzita v počátku je konečná, nemůže tam sídlit nenulový bodový náboj Nepřítomnost bodového náboje ovšem nezaručuje, že nábojová hustota je konečná, jak je vidět na příkladě nábojové hustot ρ A b Celkový náboj sídlí vžd v kouli r a a je ve všech čtřech případech roven To lze spočíst jednak sečtením nábojů plošných a objemových i = πa σ i + a 0 ρ i πr dr, a nebo mnohem snáze přímo z tvaru potenciálu pro r > a, který odpovídá právě poli bodového náboje
2 Úloha Dvě kuličk z vodivé a nestlačitelné kapalin o poloměrech nikoli průměrech 30 mm resp 50 mm se vzdáleností středů 0 mm se nacházejí na potenciálech 30 V resp +680 V vzhledem k nekonečnu V důsledku vzájemného elektrostatického přitahování se posléze obě spojí do jedné větší kulové kapk Nalezněte její elektrický potenciál taktéž vzhledem k nekonečnu Za každou platnou cifru výsledku dostanete 3 bod nanejvýš ovšem 5 Označíme-li poloměr kuliček a a b pak pro kuličku vzniklou splnutím máme c = 3 a 3 + b 3 Pro náboj bude platit c = a + b ; pro další výpočt zvolíme jednotk náboje [] = Vmm tak, že položíme πɛ 0 =, ted pro kapacitu kuličk o poloměru a máme C a = a Komplikace úloh spočívá v tom, že neznáme náboje, ale pouze napětí na kuličkách V nejnižší aproimaci při zanedbání jejich vzájemného ovlivňování dostaneme, že náboje jsou a = C a U a a b = C b U b, a ted U c = c /c = au a + bu b / 3 a 3 + b 3 Zadání je zvoleno tak, že tento výsledek dá právě jednu platnou cifru výsledku Na cvičení jsme nalezli matici kapacit zahrnující první opravu: a ab/d C AB = πɛ 0 ab/d b ted c = au a + bu b ab/du a + U b Na dalším cvičení jsme nalezli vztah pro posloupnost fiktivních nábojů, která dokáže udržet ekvipotenciál ve tvaru sfér se zadanými poloměr a napětími Nejprve jsme umístili náboje q 0 = au a a q 0 = bu b do vzdálenosti d a poté jsme mezi ně přidali fiktivní náboje s polohami a velikostí a s i = d s, s b i =, i d s i a q i = d s i q i, q i b = q i d s i Hledané c pak představuje jejich součet c = i q i + q i Na pět platných cifer potřebujeme: q i = { 000, 38, 80, 8, }Vmm, q i = {3000, 59, 65, 9, }Vmm, případně q i = { 39, 0579, 00089, 000, 0000}nC, q i = {3783, 09, 009, 000, 0000}nC, s i = {0, 055, 07, 073, 073}mm, s i = {0, 5688, 5708, 57087, 57087}mm Výsledné napětí sečtením šesti členů vjde 7555 V
3 Úloha 3 Nalezněte kapacitu kondenzátoru tvořeného dvěma koncentrickými elektrodami ve tvaru rotačních elipsoidů Vnitřní elektroda má rovníkový poloměr cm a polární poloměr 5cm, vnější elektroda má rovníkový poloměr 5cm a polární poloměr 7cm Rotační elipsoid, ze kterých je kondenzátor vtvořem, se dostanou rotací elips se zadanou hlavní a vedlejší polosou okolo hlavní poloos V prvním kroku si pro obě elips spočteme vzdálenost l ohnisek od středu Z vlastnosti elips, že součet vzdáleností od ohnisek je na elipse konstantní, aplikované na bod na osách, plne P = R + l Dosazením číselných hodnot pro vnitřní elipsoid R i = cm, P i = 5cm a pro vnější elipsoid R o = 5cm, P o = 7cm zjistíme, že pro oba elipsoid dostáváme stejnou hodnotu l = Pi Ri = Po Ro = cm Obrázek k úloze 3 Vertikální osa je osou aiální smetrie kondenzátoru Elisoid jsou tak konfokální: elips, které je generují mají stejná ohniska Na cvičení jsme nalezli skalární potenciál od nabité tčk a ukázali, že jeho ekvipotenciál jsou přesně konfokální elipsoid s ohnisk na krajích tčk Pole tčk tak lze též chápat jako vnější pole nabitého vodivého protáhlého elipsoidu Uvnitř takového elipsoidu je potenciál konstantní Pole dvou konfokálních elipsoidů pak dostaneme prostou superpozicí Zde vužíváme, že každý z elipsoidů leží na ekvipotenciále pole druhého elipsoidu Pro jeden elipsoid nabitý nábojem je pole vně elisoidu dáno vzorcem odvozeným na cvičení, φ = cosh η + log 8πε o l cosh η, kde eliptická souřadnice η je spojena se vzdálenostmi od ohnisek r, r + vztahem cosh η = r + r + l Součet vzdáleností od ohnisek je ale přesně dvojnásobek hlavní poloos P příslušné elips, ted cosh η = P l Tento vztah lze také přímo včíst z trasformací definujících tto křivočaré souřadnice, na pólu musí platit z = P = l cosh η, na rovníku na ose pak = R = l sinh η Na některých cvičeních jsme pak používali zkratku s = l cosh η Uvnitř elipsoidu je potenciál konstantní s hodnotou potenciálu danou spojitostí s polem vně Superpozicí polí elipsoidu o polosách R i, P i s nábojem + a elipsoidu o polosách R o, P o s nábojem mezi oběma elipsoid dostaneme φ = log cosh η + 8πε o l cosh η log cosh η o + cosh η o Vně vnějšího elipsoidu a na něm je potenciál nulový, uvnitř vnitřního elipsoidu a na něm je potenciál konstantní daný V = log cosh η i + 8πε o l cosh η i log cosh η o + cosh η o Použitím vztahu pro cosh η a spojením logaritmů dostaneme V = 8πε o l log P i + lp o l P o + lp i l Toto je též napětí mezi oběma částmi kondenzátoru Kapacita elipsoidálního kondenzátoru ted je C = V = 8πε ol log P i + lp o l = πɛ 0 + O l P o + lp i l P i P 0 P Poslední výraz reprezentuje rozvoj v bezrozměrné výstřednosti l P Dominantní člen má ilustrovat, že pro malé výstřednosti dostaneme známý vztah pro kapacitu kulového kondenzátoru Tento rozvoj však není obecně užitečný pro zadané hodnot Pro t dosazením do přesného výrazu dostáváme C = 38pF
4 Úloha Mějme náboje rozložené ve vrcholech a středu pravidelného šestiúhelníku jak je znázorněno na obrázku Vzdálenost nábojů ve vrcholech od počátku je a Určete tenzor dominantního multipólu pro toto rozložení a pomocí něj zapište skalární potenciál v závislosti na radiální vzdálenosti a směrovém vektoru e Po té nalezněte skalární potenciál φ a elektrickou intenzitu E ve sférických souřadnicích r, ϑ, ϕ 6 q Rozložení nábojů Poloh nábojů lze pomocí kartézských jednotkových vektorů zapsat: náboj q i průvodič r i člen r i r i 6q 0 0 q a e a e e q a e + a 3 e e e + 3 e e + e e + 3 e e q a e a 3 e e e 3 e e + e e + 3 e e q a e a e e q a e + a 3 e e e + 3 e e + e e + 3 e e q a e a 3 e e e 3 e e + e e + 3 e e Celkový náboj je nulový Dík středové smetrii nábojového rozložení je dipólový člen též nulový Druhý moment nábojového rozložení je pro diskrétní náboje dán sumou = i q i r i r i Dosazením dostáváme = 3qa e e + e e Dominantní člen multipólového rozložení je ted kvadrupól Tenzor, který ho charakterizuje, je dán bezestopou částí druhého momentu, K = 3 = 3 q Stopa momentu je = c c = 6qa a pro bezestopou část dostáváme K = 3qa e e e e + e z e z Skalární potenciál kvadrupólu je φ = πε o r 3 e K e V kartézských souřadnicích je jednotkový směrový vektor e = r e + e + z e z a potenciál tak je φ,, z = q a 3 πε o r 5 + z = q a 3 3 z πε o r 3 r Dosadíme-li směrový vektor vjádřený pomocí sférických úhlů e = sin ϑ cos ϕ e + sin ϑ sin ϕ e + cos ϑ e z, nalezneme skalární potenciál ve sférických souřadnicích, φr, ϑ, ϕ = q a 3 πε o r 3 3 cos ϑ = q a 3 πε o r 3 3 cosϑ +
5 Obra zek nı z e zobrazuje ekvipotencia l v r ezech = 0, = 0, z = 0, u hlova za vislost potencia lu pr i r = konst je zna zorne na v s e Derivacı podle sour adnic r, ϑ, ϕ se zahrnutı m Lame ho koeficientu h dostaneme komponent i elektricke intenzit, ~ ϑ, ϕ = q a 9 3 cos ϑ ~er + sinϑ ~eϑ Er, πεo r z z Ekvipotencia l skala rnı ho potencia lu v rovinna ch z = 0, = 0, = 0 U hlova za vislost skala rnı ho potencia lu
i = A i = B 0 i = C i = D Plošné nábojové hustoty se projeví nespojitostí elektrického pole a tedy první derivace potenciálu.
Řešení písemné práce Klscké elektrodnmk Klár Ševčíková Úloh N obráku je průběh potencálů Φ A,, Φ D pro čtř sférck smetrcké nábojové hustot ρ A,, ρ D Pro r se všechn potencál shodují pltí, že Φ = /4πɛ 0
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
NOFY026 Klasická elektrodynamika, LS 2019
Zápočtový problém č. 1 NOFY06 Klasická elektrodynamika, LS 019 termín odevzdání: 9. 4. 019 Zadání: Uvažujte skalární potenciál elektrického pole v klínu mezi dvěma vodivými uzemněnými polorovinami ohraničenými
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Teorii Relativity. My nastoupíme do konkrétní inerciální soustavy a v ní budeme hledat detailnější pochopení významu těchto polních rovnic.
Poznámky k přednášce Klasická elektrodynamika Úvod Fyzikální pole je následníkem principu působení na dálku. V klasické představě zprostředkovává pole vytvářené jedním zdrojem působení na druhý zdroj.
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].
II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.
8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Základní elektrotechnická terminologie,
Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
GEOMETRIE. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ / /0016. základu studia.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA GEOMETRIE Jiří Doležal Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 Studijní opory s převažujícími distančními
Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
Funkce více proměnných: limita, spojitost, derivace
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011.
Obsah 1 2 Kosinová věta pro úhel Pravoúhlý sférický trojúhelník Podpořeno z projektu FRVŠ 584/2011. Referenční plochy, souřadnicové soustavy Důležité křivky - loxodroma, ortodroma Kartografická zobrazení,
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
III. Dvojný a trojný integrál
III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht množina bodů nespojitosti funkce f v má míru. Potom f je integrovatelná
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Metody, s nimiž se seznámíme v této kapitole, lze použít pro libovolnou
2. Řešení nelineárních rovnic Průvodce studiem Budeme se zabývat výpočtem reálných kořenů nelineární rovnice f(x) =0, (2.0.1) kde f je v jistém smyslu rozumná reálná funkce. Pro některé funkce (kvadratické,
1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení.
Obsah 1 2 3 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5 : jednoduché nepravé kuželové ρ = f (U), ɛ = g(v ) = nv ρ = f (U), ɛ = g(u, V ) azimutální ρ = f (U), ɛ = V ρ = f
Kapitola 2. Nelineární rovnice
Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Pracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
(A B) ij = k. (A) ik (B) jk.
Příklady z lineární algebry Michael Krbek 1 Opakování 1.1 Matice, determinanty 1. Je dána matice 1 2 0 M = 3 0 1. 1 0 1 Určete M 2, MM T, M T M a vyjádřete M jako součet symetrické a antisymetrické matice!
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala
Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
Elektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI
Elektrodynamika Elektriké a magnetiké veličiny, jednotky SI Elektriký proud I je v systému SI základní veličina, jednotka je Ampere A. Definie: Stejné proudy ve rovnoběžnýh dráteh ve vzdalenosti m mají
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.
Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i
Matematická analýza 2. Kubr Milan
Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?
Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P
ze Speciální teorie relativity
Poznámky ze Speciální teorie relativity Page 1 of 38 Následující text shrnuje a rozšiřuje mé poznámky ze Speciální teorie relativity přednášené v základním kurzu fyziky v zimním semestru 1999/2000 na MFF
MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM. Doc. Ing. Jan Zeman, Ph.D.
MIKROMECHANICKÉ MODELY PRO TEPELNOU VODIVOST V KOMPOZITNÍCH MATERIÁLECH S NEDOKONALÝM SPOJENÍM SLOŽEK Soutěžní práce Jan Stránský Vedoucí práce: Doc. Ing. Jan Zeman, Ph.D. České Vysoké Učení Technické
Matematika prˇedna sˇka Lenka Prˇibylova 7. u nora 2007 c Lenka Prˇibylova, 200 7
Matematika přednáška Lenka Přibylová 7. února 2007 Obsah Základy matematické logiky 9 Základní množinové pojmy 13 Množina reálných čísel a její podmnožiny 16 Funkce 18 Složená funkce 20 Vlastnosti funkcí
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Transformace okrajových podmínek pomocí Poisson-Lie T-plurality
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská VÝZKUMNÝ ÚKOL Transformace okrajových podmínek pomocí Poisson-Lie T-plurality Ivo Petr Vedoucí práce: Prof. RNDr. Ladislav Hlavatý,
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
1 Sférická trigonometrie
MMK, vzorové příklady ke zkoušce Přírodovědecká fakulta UK Tomáš Bayer bayertom@natur.cuni.cz Stav k 0. 5. 019 Není-li zadáno jinak, volte poloměr Země R = 6380km. 1 Sférická trigonometrie 1. O kolik procent
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO POČÍTAČOVÁ GEOMETRIE JIŘÍ KOBZA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY