1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení.
|
|
- Tomasz Ciesielski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Obsah Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5
2 : jednoduché nepravé kuželové ρ = f (U), ɛ = g(v ) = nv ρ = f (U), ɛ = g(u, V ) azimutální ρ = f (U), ɛ = V ρ = f (U), ɛ = g(u, V ) válcové X = f (V ) = nv, Y = g(u) X = f (U, V ), Y = g(u)
3 Rovnoběžky zůstávají stejné jako u jednoduchých (rovnběžky jsou soustředné kružnice resp. přímky) Poledníky jako křivky. Cílem je zmírnit nárůst délkového zkreslení v rovnoběžkách. se nazývají též pseudokónická, pseudocylidrická, pseudoazimutální.
4 Rovnoběžky zůstávají stejné jako u jednoduchých (rovnběžky jsou soustředné kružnice resp. přímky) Poledníky jako křivky. Cílem je zmírnit nárůst délkového zkreslení v rovnoběžkách. se nazývají též pseudokónická, pseudocylidrická, pseudoazimutální.
5 Společné vlastnosti: nejsou konformní. (Proč?) Mohou být ekvivalentní a zároveň ekvidistantní v rovnoběžkách (P = m p m r sin(σ)). Použití pro zobrazení celého světa
6 Společné vlastnosti: nejsou konformní. (Proč?) Mohou být ekvivalentní a zároveň ekvidistantní v rovnoběžkách (P = m p m r sin(σ)). Použití pro zobrazení celého světa
7 Společné vlastnosti: nejsou konformní. (Proč?) Mohou být ekvivalentní a zároveň ekvidistantní v rovnoběžkách (P = m p m r sin(σ)). Použití pro zobrazení celého světa
8 Dělení Nepravá kuželová (pseudokužolová) ρ = f (U), ɛ = g(u, V ) Nepravá válcová (pseudoválcová) X = f (U), Y = g(u, V ) Nepravá azimutální (pseudoazimutální) ρ = f (U, V ), ɛ = g(u)
9 Dělení Nepravá kuželová (pseudokužolová) ρ = f (U), ɛ = g(u, V ) Nepravá válcová (pseudoválcová) X = f (U), Y = g(u, V ) Nepravá azimutální (pseudoazimutální) ρ = f (U, V ), ɛ = g(u)
10 Délkové zkreslení: m 2 A = ds 2 ds 2 = dx 2 + dy 2 M 2 dϕ 2 + N 2 cos 2 ϕdλ 2 dx = f f dϕ + ϕ λ dλ zkráceně: dy = g g dϕ + ϕ λ dλ dx = f ϕ dϕ + f λ dλ, dy = g ϕ dϕ + g λ dλ
11 Délkové zkreslení: m 2 A = ds 2 ds 2 = dx 2 + dy 2 M 2 dϕ 2 + N 2 cos 2 ϕdλ 2 dx = f f dϕ + ϕ λ dλ zkráceně: dy = g g dϕ + ϕ λ dλ dx = f ϕ dϕ + f λ dλ, dy = g ϕ dϕ + g λ dλ
12 Výsledek: Dále bylo odvozeno (viz MK1) (f 2 ϕ + gϕ) 2 m p = M (f 2 m r = λ + gλ 2) N cos ϕ tan σ = f λg ϕ f ϕ g λ f λ g ϕ + f ϕ g λ, kde σ je úhel, jež svírá obraz rovnoběžky a poledníku.
13 Obsah Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5
14 - Bonneovo zobrazení Evidistantní v rovnoběžkách Ekvivalentní Rovnoběžky jsou soustředné kružnice Poledníky jsou křivky souměrné podle základního poledníku
15 Bonneovo zobrazení
16 Bonneovo zobrazení ρ = f (U), ɛ = g(u, V ) Rovnice dle jednoduchých ekvidistantních zobrazení: ρ = ρ 0 + R(U 0 U), kde ρ 0 = R cot U 0 (viz jednoduchá zobrazení, pro m p Uo = 1)
17 Bonneovo zobrazení ρ = f (U), ɛ = g(u, V ) Rovnice dle jednoduchých ekvidistantních zobrazení: ρ = ρ 0 + R(U 0 U), kde ρ 0 = R cot U 0 (viz jednoduchá zobrazení, pro m p Uo = 1)
18 Pro ɛ pro nezkreselnou rovnoběžku musí platit: R cos U V = ρɛ ɛ = R cos U ρ Pro ekvivalenci dosazujeme R o poloměru koule o stejném povrchu s elipsoidem. V X = ρ 0 ρ cos ɛ = F (ρ, ɛ) = f (U, V ) Y = ρ sin ɛ = G(ρ, ɛ) = g(u, V )
19 Pro ɛ pro nezkreselnou rovnoběžku musí platit: R cos U V = ρɛ ɛ = R cos U ρ Pro ekvivalenci dosazujeme R o poloměru koule o stejném povrchu s elipsoidem. V X = ρ 0 ρ cos ɛ = F (ρ, ɛ) = f (U, V ) Y = ρ sin ɛ = G(ρ, ɛ) = g(u, V )
20 Výpočet zkreslení: obdobně pro f v, g v. f U = δx δu = δx δρ g U = δy δu = δy δρ δρ δu + δx δɛ δρ δu + δy δɛ δɛ δu δɛ δu
21 Po dosazní:, m p = cotgσ = V 1 + V 2 ( sin U R cos U ρ m r = 1 ) 2 ( sin U R cos U ) = ρ po úpravě sin σ = 1/m p, tudíž P = m p m r sin σ = 1
22 Bonneovo zobrazení Volba kobnstanty U 0 podél přímého a nezkreslého obrazu základního poledníku má dobré vlastnosti. Pro své vlastnosti bylo použito pro zobrazení Evropy, Severní Ameriky i jiných států.
23 Bonneovo zobrazení v programu proj: proj +proj=bonne +lon_0=0 +lat_1=60
24 Bonneovo zobrazení
25 Bonneovo zobrazení
26 Obsah Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5
27 jsou nejčastěji odvozeny matematicky a to: Afinním promítáním jednoduchých azimutálních zobrazení na šikmou rovinu Kombinací jednoduchých azimutálních zobrazení Vlastnosti: Obrazy poledníku jsou křivky Obrazy rovnoběžek jsou kružnice Obrazy pólů jsou body Nejsou konformní
28 jsou nejčastěji odvozeny matematicky a to: Afinním promítáním jednoduchých azimutálních zobrazení na šikmou rovinu Kombinací jednoduchých azimutálních zobrazení Vlastnosti: Obrazy poledníku jsou křivky Obrazy rovnoběžek jsou kružnice Obrazy pólů jsou body Nejsou konformní
29 Wernerovo - Stabovo zobrazení (speciální případ Bonneovo U 0 = 90)
30 Zobrazovací rovnice ρ = R(90 o U) (1) ɛ = RcosU V (2) ρ
31 Obsah Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5
32 1. krok je azimutální zobrazení v příčné poloze 2. krok afinní transformace Nejsou konformní Póly se zobrazují jako křivky nebo body Obrazem základního poledníku a rovníku jsou úsečky, vše ostatní křivky Používají se pro mapy celého světa či hemisfér
33 Aitovovo zobrození (Aitoff projection)
34 Aitovovo zobrození (Aitoff projection) Vychází z příčného azimutálního Dělením zeměpisné délky dvěma získáváme možnost zobrazení celého světa Souřadnice Y násobíme dvěma
35 Azimutální zobrazení
36 Aitovovo zobrazení vychází z Postelovo zobrazení (ekvidistantní v polednících) (Postel - Fracie, 1568) dρ R dψ = 1 ψ = 90 o S Po separaci proměnných a volbě konstanty tak, že pól je zobrazen jako bod: ρ = Rψ ɛ = D
37 Aitovovo zobrazení vychází z Postelovo zobrazení (ekvidistantní v polednících) (Postel - Fracie, 1568) dρ R dψ = 1 ψ = 90 o S Po separaci proměnných a volbě konstanty tak, že pól je zobrazen jako bod: ρ = Rψ ɛ = D
38 Aitovovo zobrození (Aitoff projection)
39 Aitovovo zobrození (Aitoff projection) y = 2RU k sin V k (3) x = RU k cos V k (4) U k, V k - kartografické souřadnice s poloviční zem. délkou
40 Aitovovo zobrození (Aitoff projection)
41 Hammerovo zobrazení Podobný postup jako Aitovovo aplikovaný na Lambertovo ekvivalentní zobrazení Výsledné zobrazení je ekvivalentní Použití pro politické mapy světa http: //lazarus.elte.hu/cet/modules/guszlev/hammer1.htm
42 Hammerovo zobrazení
43 Hammerovo zobrazení - ukvidefomáty ω
44 Wagnerovo zobrazení
45 Wagnerovo zobrazení Rozpracování myšlenky Aitovova zobrazení Přenásobení různých částí různým způsobem Zobrazení je ekvivalentní Princip: Z azimutálního zobrazení je použita pouze určitá část ve tavru sfer. 4-úhelníku. Její rozměry jsou zvětšeny na plochu referenční koule. Následje přečíslování na ±90 0 a ±180 0 a přenásobeny.
46 Winkel zobrazení
47 Winkel zobrazení Kombinace jednoduchého válcového a modifikovaného azimutálního zobrazení (Aitovova) Zobrazení založené na průměrováním jednoduchých a nepravých zobrazení Vlastnosti Nezkreslený střední poledník Střední poledník a rovník je zobrazen jako úsečka Zobrazení zkresluje vše Vyrovnávací zobrazení, použito pro mapy světa
48 Globulární (kruhová) zobrazení používána ve středověku zobrazení polokoule obrazy poledníků a rovnoběžek jsou jednoduché křivky (kružnice, přímky) základní poledník a rovník jsou přímé pól se zobrazuje jako bod celá polokoule zobrazena v kružnici Nicolosiho zobrazení kružnice poledníků a rovnoběžek děĺı pravidelně základní poledník a rovník Apianovo zobrazení kružnice poledníků a přímky rovnoběžek děĺı pravidelně základní poledník a rovník Loritzovo zobrazení (jako Apianovo, akorát úseky na okrajové kružnici pravidelné)
49 Nicolosiho zobrazení
50 Apianovo zobrazení
51 Cvičení Návod Vyberte si některé z nepravých zobrazení Zobrazete pomocí tohoto zobrazení celý svět. Nastavte vhodně parametry pro co možná nejlepší zobrazení ČR. texty/index_soubory/hlavni_soubory/neprava_ soubory/neazimut.html Použijte přiložené soubory shp. Pro převod a vizualizci použijte vhnodý program - např ArcGIS, QGIS, případně data převeďte pomocí programu proj4 a následné zobrazte v libovolném GIS prohĺıžeči.
52 Obsah Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5
53 - obecné vlastnosti Vlastnosti převzaté z jednoduchých válcových zobrazení Základní poledník je úsečka Obrazy rovnoběžek jsou úsečky, obrazy poledníků jsou obecné křivky Obraz pólu je úsečka nebo bod Nejsou konformní
54 - obecné vlastnosti velmi používaná zobrazení celého světa obrazy rovnoběžek úsečky, obrazy poledníků obecné křivky základní poledník úsečka Y = f (U), X = g(u, V ) členění: sinusoidální (Mercator-Sansonovo, Eckertovo) eliptická (Mollweidovo, Eckertovo) přímková (Eckertovo, Collignonovo) ostatní (Erdi-Krauszovo)
55 Mercartorovo - Sansonovo zobrazení (mezní případ Bonneova zobrazení pro U 0 = 0 ) X = RV cos(u) Y = RU Ekvidistantní v rovnoběžkách a ekvidistance středního poledníku Zobrazení je ekvivalentní Póly jako body, nezkreslený základní poledník Často využíváno i dnes
56 Mercartorovo - Sansonovo zobrazení (mezní případ Bonneova zobrazení pro U 0 = 0 ) X = RV cos(u) Y = RU Ekvidistantní v rovnoběžkách a ekvidistance středního poledníku Zobrazení je ekvivalentní Póly jako body, nezkreslený základní poledník Často využíváno i dnes
57 Mercartorovo - Sansonovo zobrazení - sinusoidální X = RV cos(u) Y = RU X = RV cos Y R Pro V=konst. (poledník), se jedná o rovnici sinusoidy.
58 Mercartorovo - Sansonovo zobrazení (sinusoidalni)
59 Goodovy úpravy - Mercartorovo - Sansonovo zobrazení http: //en.wikipedia.org/wiki/goode_homolosine_projection
60 Mollweidovo zobrazení Nepravé zobrazení eliptické Karl Mollweid Ekvivalentní Není ekvidistantní Země zobrazena do elipsy s poměrem poloos 2:1 Použito pro reklamní účely Póly jako body Obrazem poledníků jsou elipsy
61 Mollweidovo zobrazení
62 Eckertova zobrazení Max Eckert (začátek 20. století) Konstrukce pomocí volby délky rovníku, poledníku a pólů. přímkové eliptické sinusoidální Obrazy pólů a poledníku jsou stejně dlouhé Oraz rovníku má délku dvojnásobnou než obraz poledníku
63 Přímkové - Eckert I Eckert I - vyrovnávací varianta - nekonformní, neekvivalentní
64 Přímkové - Eckert II Eckert II - ekvivalentní
65 Eckert III - vyrovnávací varianta - nekonformní, neekvivalentní
66 Eckert IV - ekvivalentní
67 Eckert V - vyrovnávací varianta - nekonformní, neekvivalentní
68 Eckert VI - ekvivalentní
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 10 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Volba kartografického zobrazení olivněna několika faktory: účel mapy uživatel mapy kartografické vlastnosti
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
1 Sférická trigonometrie
MMK, vzorové příklady ke zkoušce Přírodovědecká fakulta UK Tomáš Bayer bayertom@natur.cuni.cz Stav k 0. 5. 019 Není-li zadáno jinak, volte poloměr Země R = 6380km. 1 Sférická trigonometrie 1. O kolik procent
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011.
Obsah 1 2 Kosinová věta pro úhel Pravoúhlý sférický trojúhelník Podpořeno z projektu FRVŠ 584/2011. Referenční plochy, souřadnicové soustavy Důležité křivky - loxodroma, ortodroma Kartografická zobrazení,
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
v = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
Paradoxy geometrické pravděpodobnosti
Katedra aplikované matematiky 1. června 2009 Úvod Cíle práce : Analýza Bertrandova paradoxu. Tvorba simulačního softwaru. Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 Osnova 1 2 3 4 V rovině je zadán kruh
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
TVL 26925 LED NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE
TVL 26925 LED NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE BAREVNÝ TELEVIZNÍ PŘÍJÍMAČ S DÁLKOVÝM OVLÁDÁNÍM FAREBNÝ TELEVÍZNY PRIJÍMAČ S DIALKOVÝM OVLÁDÁNÍM TELEWIZOR KOLOROWY Z PILOTEM Obsah Vlastnosti... 2 Úvod...
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Vlastnosti. Příprava. Czech - 2 -
Obsah Vlastnosti... 2 Úvod... 2 Příprava... 2 Bezpečnostní opatření... 3 Obsah balení... 4 Informace o životním prostředí... 5 Tlačítka dálkového ovládání... 6 LCD TV a Ovládací tlačítka... 7 Přehled zapojení
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
POLIURETANOWE SPRĘŻYNY NACISKOWE. POLYURETHANOVÉ TLAČNÉ PRUŽINY
POLIURETAOWE SPRĘŻYY ACISKOWE. POLYURETHAOVÉ TLAČÉ PRUŽIY Oferowane są wymiary wyrobów o różnych twardościach. Konstrukcja tych sprężyn umożliwia zastąpienie sprężyn tradycyjnych tam, gdzie korozja, wibracje,
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Zwój Prawoskrętny. Vinutí Pravé
SPRĘŻYNY NACISKOWE TYP TLAČNÉ PRUŽINY Sprężyny naciskowe SPEC są wykonywane precyzyjnie i wydajnie. Stosowanie sprężyn SPEC wpływa na obniżkę kosztów z uwagi na oszczędność czasu wynikającą z braku potrzeby
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
NÁVOD K POUŽITÍ KEZELÉSI KÉZIKÖNYV INSTRUKCJA OBSŁUGI NÁVOD NA POUŽÍVANIE. Česky. Magyar. Polski. Slovensky
CANON INC. 30-2 Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan Europe, Africa & Middle East CANON EUROPA N.V. PO Box 2262, 1180 EG Amstelveen, The Netherlands For your local Canon office, please refer
EGZAMIN Z ANALIZY II R
EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
FAVORIT 60660. naczyń
FAVORIT 60660 Návod k použití Instrukcja obsługi Návod na používanie Myčka nádobí Zmywarka do naczyń Umývačka riadu 2 Obsah Děkujeme, že jste si vybrali jeden z našich vysoce kvalitních výrobků. Přečtěte
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Register and win! www.kaercher.com
Register and win! www.kaercher.com A B A, B A B 2 6 A régi készülékek értékes újrahasznosítható anyagokat tartalmaznak, amelyeket tanácsos újra felhasználni. Szárazelemek, olaj és hasonló anyagok ne kerüljenek
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
GEOMETRIE. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ / /0016. základu studia.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA GEOMETRIE Jiří Doležal Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 Studijní opory s převažujícími distančními
Zásuvný modul QGISu. QGIS plugin pro práci s katastrálními daty
Zásuvný modul QGISu pro práci s katastrálními daty Anna Kratochvílová, Václav Petráš České vysoké učení technické v Praze Fakulta stavební 19. dubna 2012 Obsah 1 Úvod 2 Nástroje a knihovny 3 Funkcionalita
Analiza matematyczna 2 zadania z odpowiedziami
Analiza matematyczna zadania z odpowiedziami Maciej Burnecki strona główna Spis treści I Całki niewłaściwe pierwszego rodzaju II Całki niewłaściwe drugiego rodzaju 5 III Szeregi liczbowe 6 IV Szeregi potęgowe
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami
ANALIZA MATEMATYCZNA zadania z odpowiedziami Maciej Burnecki strona główna Spis treści Całki niewłaściwe pierwszego rodzaju Całki niewłaściwe drugiego rodzaju Szeregi liczbowe 4 4 Szeregi potęgowe 5 5
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Ilustracja metody MONTE CARLO. obliczania całek podwójnych
Ilustracja metody MONTE CARLO obliczania całek podwójnych Często jest tak, iż wiemy, że istnieje całka oznaczona z funkcji f jednak nie potrafimy jej analitycznie policzyć. Konieczne jest wtedy zastosowanie
!"#$%& &'# (! &) *%# ""# + &,%# - #"!%
!" #" # " $% "!#&#" # '!#!"#$%& &'# (! &) *%# ""# + &,%# - #"!% &$!"#! "."!"! " %'(%)!*+!"#$%& " # / 0 1223 %% 45!##!# # % %.% #6 " ##7# "#. 1 # ##%# #, 8 " #"# % ## %"" # % " #."#,-%.+/&$#" 3 " "" "%.
Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego
Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 5 Magnetostatyka 3 5.1 Siła Lorentza........................ 3 5.2 Prawo
Skraplacze wyparne. Odpaøovací kondenzátory D 127/3-5 PL/CZ
Skraplacze wyparne (70 do 80 kw) Odpaøovací kondenzátory (70 do 80 kw) INSTRUKCJA DOBORU I DANE TECHNICZNE VÝBÌR A TECHNICKÁ DATA D 7/-5 PL/CZ VCL DANE I PROCEDURA DOBORU VCL DATA PRO VÝBÌR A POSTUP PØI
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta
N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá
Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26
Návod k obsluze 2 Ďäçăßĺň ńţóçň 10 Instrukcja obsugi 18 Kullanma Kýlavuzu 26 9241 ESKY Dkujeme Vám, že jste se rozhodli pro tento výrobek firmy SOEHNLE PROFESSIONAL. Tento výrobek je vybaven všemi znaky
ROBUST January 19, Zdeněk Fabián Ústav informatiky AVČR Praha
ROBUST 2014 Zdeněk Fabián Ústav informatiky AVČR Praha January 19, 2014 Starověk x 1,..., x n data průměry Starověk x 1,..., x n data průměry aritm., geom., harm. Novověk Model F a skórová funkce Ψ F inferenční
Zagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
1 Relacje i odwzorowania
Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X
Dokumentacja techniczna IQ3 Sterownik z dostępem poprzez Internet IQ3 Sterownik z dostępem poprzez Internet Opis Charakterystyka
EWP 106200 W... CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 28
EWP 106200 W...... CS PRAČKA NÁVOD K POUŽITÍ 2 PL PRALKA INSTRUKCJA OBSŁUGI 28 2 electrolux OBSAH Electrolux. Thinking of you. Více o nás naleznete na adrese www.electrolux.com Bezpečnostní informace 2
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016
ggplot2 Efektní vizualizace dat v prostředí jazyka R Martin Golasowski 8. prosince 2016 Jak vizualizovat? Požadované vlastnosti nástroje opakovatelnost, spolehlivost separace formy a obsahu flexibilita,
ECO D58 NÁVOD K POUŽITÍ / NÁVOD NA POUŽITIE INSTRUKCJA OBSŁUGI / INSTRUCTION MANUAL HASZNÁLATI ÚTMUTATÓ / NAVODILA ZA UPORABO
ECO D58 NÁVOD K POUŽITÍ / NÁVOD NA POUŽITIE INSTRUKCJA OBSŁUGI / INSTRUCTION MANUAL HASZNÁLATI ÚTMUTATÓ / NAVODILA ZA UPORABO Robotický vysavač / Robotický vysávač Odkurzacz automatyczny / Robot Vacuum
Příklad 1.2 Nalezněte obsah oblasti ohraničené křivkami y =lnx, y =ln 2 x.
Kpitol Aplikce určitého integrálu. Délk, obsh, objem Příkld. Nlezněte obsh oblsti ohrničené křivkmi xy 4, x + y 5. Návod. Soustv rovnice xy 4,x + y 5mádvěřešení[, 4] [4, ]. (viz obr.) Oblst ohrničená křivkmi
Zastosowanie zespolonego wektora Poyntinga do wyznaczania impedancji
napisał Michał Wierzbicki Zastosowanie zespolonego wektora Poyntinga do wyznaczania impedancji Dla pól elektromagnetycznych harmonicznie zależnych od czasu z czynnikiem e iωt można zdefiniować zespolony
7 Twierdzenie Fubiniego
M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
TVL 22800 UMP2 NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE
TVL 22800 UMP2 NÁVOD K POUŽITÍ NÁVOD NA POUŽITIE 50193148 BAREVNÝ TELEVIZNÍ PŘÍJÍMAČ S DÁLKOVÝM OVLÁDÁNÍM FAREBNÝ TELEVÍZNY PRIJÍMAČ S DIALKOVÝM OVLÁDÁNÍM TELEWIZOR KOLOROWY Z PILOTEM Obsah Obsah balení...
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Instrukcja obs³ugi Serwosilników EZ, EZF, EZH, EZS, EZM firmy STÖBER
Niniejsza instrukcja obs³ugi zawiera informacje dotycz¹ce transportu, ustawienia i uruchomienia serwosilników EZ_ firmy STÖBER jako elementów systemu STÖBER SMS (modu³owego systemu serwonapêdu firmy STÖBER),
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Formálne jazyky Automaty. Formálne jazyky. 1 Automaty. IB110 Podzim
Formálne jazyky 1 Automaty 2 Generatívne výpočtové modely IB110 Podzim 2010 1 Jednosmerné TS alebo konečné automaty TS sú robustné voči modifikáciam existuje modifikácia, ktorá zmení (zmenší) výpočtovú