Základní elektrotechnická terminologie,
|
|
- Daniel Lipiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14
2 1 TERMINOLOGIE Strana 2 / 14 1 Terminologie Maxwellovy rovnice a okrajové podmínky popisují elektromagnetické pole rozložené v prostoru ohraničeném okraji - rozhraními mezi jednotlivými prostředími. Elektrický obvod - zidealizovaný model elektrického zařízení tvořený propojením ideálních součástek.
3 1 TERMINOLOGIE Strana 3 / 14 Prvky elektrických obvodů (ideální součástky) Podle typu energetických interakcí Aktivní (zdroje) Pasivní (spotřebiče a akumulátory energie) Podle počtu svorek Dvojpólové prvky, dvojpóly Vícepólové prvky, n-póly Podle závislosti parametrů na přiloženém napětí nebo protékajícím proudu Lineární (parametry nezávisí na U, I) Nelineární (parametry závisí na U, I)
4 1 TERMINOLOGIE Strana 4 / 14 Obvod je tvořen propojením prvků. Uzel obvodu - místo styku dvou nebo více prvků. Větev obvodu - dvojpól spojující dva uzly Obvodové schéma - grafické zobrazení obvodu, v němž jsou jednotlivé prvky obvodu vyjádřeny smluvenými značkami
5 1 TERMINOLOGIE Strana 5 / 14 Elektrické obvody Elektrický obvod lze jednoznačně popsat matematickým modelem. Matematický model tvoří obvodové rovnice udávající vztahy mezi obvodovými veličinami. Obvodové veličiny - napětí a proudy jednotlivých prvků obvodu. Analýza obvodů - Známe strukturu obvodu a parametry prvků, hledáme neznámé veličiny Syntéza obvodů - Hledáme strukturu obvodu a parametry prvků pro dosažení předepsané funkce.
6 2 VELIČINY Strana 6 / 14 2 Veličiny Potenciál ϕ [V ] v daném bodě je práce potřebná k přemístění jednotkového kladného náboje z nekonečna do daného bodu. Elektrické napětí (na prvku) U záporně vzatý rozdíl potenciálů. [V] je Svorkové napětí je skutečné napětí, které změříme na svorkách zdroje. Elektromotorická síla je práce, kterou vykoná zdroj při oběhu jednotkového kladného náboje po uzavřené dráze od svorky ke svorce +. Jde tedy o svorkové napětí s opačným znaménkem.
7 2 VELIČINY Strana 7 / 14 Elektrický proud (prvkem) I [A] - po přiložení napětí se začnou pohybovat elektrony. Okamžitá hodnota proudu je okamžitá časová změna náboje i(t) = dq(t) dt [A, C, s]. Dohodnutý směr proudu - směr pohybu kladných nábojů od + k (od kladnějšího napětí k zápornějšímu). Ve skutečnosti proud vedou elektrony, které se pohybují od k +. Elektrický odpor (prvku) R [Ω] - podíl napětí na rezistoru u a proudu tímto rezistorem i, jak udává Ohmův zákon. Ohmův zákon: R = U I = u i [Ω, V, A]
8 2 VELIČINY Strana 8 / 14 Odpor rezistoru je R = ρ l S [Ω], kde ρ [Ωm] je rezistivita (měrný odpor) rezistoru, materiálová konstanta, l [m] je délka rezistoru, S [m 2 ] je příčný průřez rezistoru. Vodivost rezistoru je G = γ S l [S], kde γ [S/m] je konuktivita (měrná vodivost) rezistoru, materiálová konstanta, l [m] je délka rezistoru, S [m 2 ] je příčný průřez rezistoru. Platí: R = 1 G [Ω, S] Platí: ρ = 1 γ [Ωm, S/m]
9 2 VELIČINY Strana 9 / 14 Analogie elektrických a neelektrických veličin Elektrické veličiny Hydraulické veličiny Tepelné veličiny Rozdíl el. napětí U [V] Rozdíl tlaků p [Pa] Rozdíl teplot T [K] El. proud I [A] Průtok ṁ [kg/s] Tok tepelného výkonu El. odpor R = U I [Ω] Intuitivně hydraulický odpor q [W/m 2 ] Tepelný odpor R th = T q [K.m 2 /W]
10 2 VELIČINY Strana 10 / 14 Výkon a energie Elektrický výkon p(t) [W] - okamžitá hodnota výkonu dodaného ze zdroje p(t) = u(t) i(t) [W] Dodaná energie: W = t2 t 1 p(t)dt [J] Elektrický výkon p(t) [W] - okamžitá hodnota výkonu zmařeného v rezistoru - určující veličina pro tepelné účinky) Vyvinuté Jouleovo teplo: Q = p(t) = u(t) i(t) = R i 2 (t) = u2 (t) R t2 t 1 p(t)dt [J] [W]
11 3 KIRCHHOFFOVY ZÁKONY Strana 11 / 14 3 Kirchhoffovy zákony Kirchhoffův zákon Mějme uzel, do kterého vede n vodičů. Součet proudů těchto vodičů je roven nule. n i k = 0 k=1 Pozn.: platí při jednotném uvažování směru proudů (tj. bud proudy do uzlu kladné a z uzlu záporné, nebo z uzlu kladné a do uzlu záporné)
12 3 KIRCHHOFFOVY ZÁKONY Strana 12 / Kirchhoffův zákon Mějme uzavřenou smyčku, kterou tvoří n větví. Součet napětí na těchto větvích je roven nule. n u k = 0 k=1 Pozn.: pozn.: platí při jednotném uvažování směru napětí (tj. napětí v jednom směru orientované smyčky kladné a v opačném směru záporné)
13 3 KIRCHHOFFOVY ZÁKONY Strana 13 / 14 Kirchhoffovy zákony lze využít přímo pro kontrolu výsledků analyzovaného el. obvodu 1. Kirchhoffův zákon je základem pro sestavení obvodových rovnic metodou uzlových napětí 2. Kirchhoffův zákon je základem pro sestavení obvodových rovnic metodou smyčkových proudů
14 4 LITERATURA Strana 14 / 14 4 Literatura 1. Havlíček V., Pokorný M., Zemánek I.: Elektrické obvody 1, ČVUT Vysoký P., Malý K., Fábera V.: Základy elektrotechniky, Brno Büscher G.: Elektrotechnik in Bildern, Stuttgart 1943 proudů
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 2. Základní výpočty 1 Orientace obvodových veličin Napětí i proud musíme identifikovat nejen hodnotami
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 4. Výpočty v časové oblasti 1 Laplaceova transformace aplikace v analýze elektrických obvodů Obvodové
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
IEL Přechodové jevy, vedení
Přechodové jevy Vedení IEL/přechodové jevy 1/25 IEL Přechodové jevy, vedení Petr Peringer peringer AT fit.vutbr.cz Vysoké učení technické v Brně, Fakulta informačních technologíı, Božetěchova 2, 61266
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Vytěžování dat Filip Železný Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA) Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Filip Železný (ČVUT) Vytěžování dat 1 / 26
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )
Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Plyny v dynamickém stavu. Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu.
Plyny v dynamickém stavu Jsou-li ve vakuovém systému různé teploty, nebo tlaky dochází k přenosu energie, nebo k proudění plynu. Difuze plynu Mechanismus difuze závisí na podmínkách: molekulární λ L viskózně
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 8. Nelineární obvody nesetrvačné dvojpóly 1 Obvodové veličiny nelineárního dvojpólu 3. 0 i 1 i 1 1.5
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
Mechanika. Použité pojmy a zákony mohou být použity na jakékoliv mechanické stroje.
Mechanika Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Použité pojmy a zákony mohou být použity na jakékoliv mechanické stroje.
prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií
Náhodné vektory prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký,
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 3. Výpočty ve frekvenční oblasti 1 Pro analýzu ve frekvenční oblasti předpokládáme zdroje se sinusovými
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 5 1. Obvody druhého řádu frekvenční a časová analýza Širokopásmový obvod Rezonanční obvod 1 RC obvod
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Skraplacze wyparne. Odpaøovací kondenzátory D 127/3-5 PL/CZ
Skraplacze wyparne (70 do 80 kw) Odpaøovací kondenzátory (70 do 80 kw) INSTRUKCJA DOBORU I DANE TECHNICZNE VÝBÌR A TECHNICKÁ DATA D 7/-5 PL/CZ VCL DANE I PROCEDURA DOBORU VCL DATA PRO VÝBÌR A POSTUP PØI
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
s.r.o. PŘÍRUČKA K INSTRUKCJA UKŁADANIA ZAŘÍZENÍ PRAKTYCZNY PORADNIK SPRÁVNÉMU POSTUPU AKCESORIÓW DO POWŁOK ZAŮÍZENÍ PŮÍSLUŠENSTVÍ
PŘÍRUČKA K INSTRUKCJA UKŁADANIA ZAŘÍZENÍ PRAKTYCZNY PORADNIK PRAKTICKÁ POMŮCKA KE PRAWIDŁOWEGO UŁOŻENIA SPRÁVNÉMU POSTUPU AKCESORIÓW DO POWŁOK ZAŮÍZENÍ PŮÍSLUŠENSTVÍ IMPREGNOWANYCH HYDROIZOLAČNÍCH POVRCHŮ
Co to znamená pro vztah mezi simultánní a marginální hustotou pravděpodobnosti f (x) (pravděpodobnostní funkci p(x))?
Ondřej Pokora M5120 Lineární statistické modely I poznámky do cvičení podzim 2011 1 / 36 12.12.2011 Maximálně věrohodné odhady Náhodný výběr X 1,..., X n rosahu n z rozdělení pravděpodobnosti P: X i P
Matematické modelování elmg. polí 2. kap.: Magnetostatika
Matematické modelování elmg. polí 2. kap.: Magnetostatika Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/ Text byl
Reprezentace dat. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Reprezentace dat BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 9., 11. a 12. října 2017 Obsah Dvojková
Szelki bezpieczeństwa. bezpečnostní postroje Szelki bezpieczeństwa
bezpečnostní postroje 440 VYSVĚTLIVKY WYJASNIENIA - jištění proti pádu - výstup a sestup - zadní připojovací prvek - zachycovač pádu - zabezpieczenie przed upadkiem - wejście i zejście - tylny punkt zaczepowy
Pracovní listy. Stereometrie hlavního textu
v tomto dodatu jsou sebrána zadání všech úloh řešených v aitolách Planimetrie a tereometrie hlavního textu slouží ta jao racovní listy samostatnému rocvičení uvedených úloh Zracoval Jiří Doležal 1 eznam
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.
Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Paralelní implementace a optimalizace metody BDDC
Paralelní implementace a optimalizace metody BDDC J. Šístek, M. Čertíková, P. Burda, S. Pták, J. Novotný, A. Damašek, FS ČVUT, ÚT AVČR 22.1.2007 / SNA 2007 Osnova Metoda BDDC (Balancing Domain Decomposition
Příručka k rychlé instalaci: NWD2105. Základní informace. 1. Instalace softwaru
Příručka k rychlé instalaci: NWD2105 Základní informace NWD2105 je bezdrátový USB adaptér určený pro použití s počítačem. NWD2105 je kompatibilní s technologií WPS (Wi-Fi Protected Setup). A: LED kontrolka
Použití mikrovln v termojaderném
České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Katedra fyziky Použití mikrovln v termojaderném výzkumu Bakalářská práce Autor práce: Michal Kazda Školitel: Ing. František Žáček,
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 10 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Volba kartografického zobrazení olivněna několika faktory: účel mapy uživatel mapy kartografické vlastnosti
Montageanleitung. Instrukcja montażu Návod pro montáž Èíñòðóêöèÿ ïî ìîíòàæó. Duschtempel
Montageanleitung Instrukcja montażu Návod pro montáž Èíñòðóêöèÿ ïî ìîíòàæó Duschtempel Ðóññêèé Česky Polski Duschtempel 5 SL 40 Sensotronic (DT New Line SL) 2927xxx Duschtempel 5 SL 40 Sensotronic (DT
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava
Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 15. září 216 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
PRAZE. Katedra fyziky. PIC simulace interakce intenzivního laserového impulsu s plynným terčem v kódu EPOCH.
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta jaderná a fyzikální inženýrská Katedra fyziky VÝZKUMNÝ ÚKOL PIC simulace interakce intenzivního laserového impulsu s plynným terčem v kódu EPOCH. Autor: Ekaterina
Internet a zdroje. (Zdroje na Internetu) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17.
Internet a zdroje (Zdroje na Internetu) Mgr. Petr Jakubec Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu 12 26. listopadu 2010 (KFC-INTZ) Databáze, citování 26. listopadu 2010
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
HAKA watertech 6/2011
HAKA watertech 6/2011 TEPLÁ UŽITKOVÁ VODA CIEPŁA WODA UŻYTKOWA ÚSTŘEDNÍ TOPENÍ OGRZEWANIE CENTRALNE PODLAHOVÉ VY TÁPĚNÍ OGRZEWANIE PODŁOGOWE Watertech Pohled do čistého ohně skrze velké sklo krbu a vytápění
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12
Logika V. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální
Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
Lineární prostor Lineární kombinace Lineární prostory nad R Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 01A-2018: Lineární
B. Patzák verze 01. Direct Approach to FEM
B. Patzák (borek.patzak@fsv.cvut.cz), verze 0 Úvodní přednáška Direct Approach to FEM Úvod do Metody Konečných Prvků (MKP) Většina fyzikálních jevů může být popsána systémem parciálních diferenciálních
Ústav teorie informace a automatizace. Tato prezentace je k dispozici na:
Aplikace bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obsah přednášky Podmíněná pravděpodobnost,
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Statistika (KMI/PSTAT)
Cvičení sedmé (a asi i osmé a doufám, že ne deváté) aneb Náhodná veličina, rozdělení pravděpodobnosti náhodné veličiny Náhodná veličina Náhodná veličina Studenti skládají písemku sestávající ze tří úloh.
Internetová matematická olympiáda 8. ročník, Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem:
Internetová matematická olympiáda 8. ročník, 24. 11. 2015 1. Baví se student Fakulty strojního inženýrství VUT v Brně (FSI) s kamarádem: Kamarád: Co jsi tak veselý? Něco slavíš? Student FSI: Já přímo ne,
Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2019
Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2019 6. Vedení obvod s nesoustředěnými parametry 1 Obecný impulsní signál základní parametry t r t f u vrchol
Teorii Relativity. My nastoupíme do konkrétní inerciální soustavy a v ní budeme hledat detailnější pochopení významu těchto polních rovnic.
Poznámky k přednášce Klasická elektrodynamika Úvod Fyzikální pole je následníkem principu působení na dálku. V klasické představě zprostředkovává pole vytvářené jedním zdrojem působení na druhý zdroj.
x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].
II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.
David Pejchar - prodej Mobil: ,
6. Příslušenství pro montáž Označení těsnění a spojovacích prvků používaných při montáži sendvičových panelů RPNEL Název Druh výrobku Průřez Vzhled 1 US-01 Profi lované těsnění pod hřeben PE TR-mm/ N 2UE0948
Robotika. 18. února Ing. František Burian
Robotika Snímače v robotice 18. února 2013 Ing. František Burian Proc snı mat velic iny? Snı ma nı v robotice De lenı Internı snı mac e Externı snı mac e Poz adovany stav Algoritmy r ı zenı Akc nı c leny