NOFY026 Klasická elektrodynamika, LS 2019
|
|
- Feliks Wierzbicki
- 5 lat temu
- Przeglądów:
Transkrypt
1 Zápočtový problém č. 1 NOFY06 Klasická elektrodynamika, LS 019 termín odevzdání: Zadání: Uvažujte skalární potenciál elektrického pole v klínu mezi dvěma vodivými uzemněnými polorovinami ohraničenými společnou osou z, svírajícími úhel. Předpokládejte, že žádné veličiny nezávisí na souřadnici z (na souřadnici podél osy. a Metodou separací proměnných v polárních souřadnicích R, ϕ nalezněte systém funkcí řešících Laplaceovu úlohu a splňujících správné okrajové podmínky na hranici oblasti. Předpokládejte přitom regulární chování skalárního potenciálu blízko osy z a libovolné chování daleko od osy. b Napište obecný skalární potenciál φ splňující okrajové podmínky jako superpozici nalezených funkcí. c Určete, který člen v superpozici bude dominantní blízko osy z. Pro tento člen nalezněte elektrickou intenzitu a hustotu náboje indukovanou na vnitřním povrchu vodivých desek. Diskutujte chování intenzity a nábojové hustoty blízko osy z. Rozlište případ konvexního a konkávního úhlu, π. Koeficienty ve vyjádření potenciálu φ závisí na rozložení zdrojů daleko od osy, např. na způsobu uzavření klínu dalším okrajem a na nábojích na tomto okraji. Uvažujte konkrétně, že klín je uzavřen částí vodivé válcové plochy s osou z a o poloměru. Tato plocha je odizolována od obou polorovin a udržována na napětí φ o d Porovnáním obecného potenciálu φ na válcové ploše se zadanými okrajovými podmínkami nalezněte koeficienty ve vyjádření φ. (Podobnou úlohu jsme řešili pro kvádr v kartézských souřadnicích na přednášce. e Nalezené koeficienty dosad te do vztahu pro potenciál φ a sumu sečtěte. (K sumaci můžete použít literaturu či softwarové systémy pro algebraickou manipulaci. Pamatujte, že výsledek má vyjít reálně a softwarové systémy někdy nabízejí zbytečně složité a nevhodné vyjádření používající komplexní čísla. Na stránce přednášky je k dispozici oddíl o Fourieorových sumách ze standardní knihy Gradshteyn & Ryzhik: Table of Integrals, Series, and Products. Bonusová otázka: f Najděte nábojovou hustotu na vnitřním okraji zkoumané oblasti. Diskutujte její chování blízko osy a blízko (nevodivého doteku válcové plochy a polorovin. Geometrie úlohy pro konvexní klín, < π. Geometrie úlohy pro konkávní klín, > π. Poznámka: Ve všech případech nás zajímá úloha pouze uvnitř úhlu mezi vodivými polorovinami, v případě nábojové hustoty pouze náboj na vnitřním povrchu vodičů. Neuvažujte pole vně vodivých polorovin ani za hranicí válcové plochy. Např. si můžete představit, že celá oblast vně polorovin je vyplněna vodičem.
2 Řešení: Ze zadání vyplývá, že žádná z veličin nezávisí na souřadnici z. Jedná se tak efektivně o dvoudimenzionální problém. Skalární potenciál budeme hledat jako superpozici funkcí splňujících Laplaceovu úlohu a příslušné okrajové podmínky. Systém takových funkcí nalezneme metodou separace proměnných. a Hledáme tedy funkci ψ v multiplikativně separovaném tvaru v polárních souřadnicích R, ϕ: ψ(r, ϕ = R(R E(ϕ. (1 Laplaceův operátor v cylindrických souřadnicích má tvar ψ = 1 ( R R R ψ R Užitím (1 Laplaceova úloha vede na R ψ ψ = 1 R R d ( R d dr dr R + 1 E + 1 R ψ ϕ + ψ z. ( d E dϕ = 0. (3 Členy obsahující R a E závisejí na různých proměnných a musejí tak být konstantní. Dostáváme tak separované rovnice R d ( R d dr dr R = k R, kde k je separační konstanta. d E dϕ = k E, (4 Rovnice pro E je rovnice harmonického oscilátoru a její řešení je kombinace sinů a cosinů. Dirichletovy okrajové podmínky pro ϕ = 0 a ϕ = vybírají řešení v podobě ( mπ E = sin ϕ, k = mπ, m N. (5 Rovnice pro R má řešení R R ±k. Požadavek regularity pro malé R vybírá řešení s kladným exponentem, tedy ( R R = mπ. (6 Zde je konstanta daná nějakým charakteristickým rozměrem úlohy zajišt ující bezrozměrnost umocňované veličiny a lze chápat jen jako vhodná normalizace radiální funkce. Funkcí řešících Laplaceovu úlohu s požadovanými okrajovými podmínkami jsou tak číslovány přirozeným číslem m a mají tvar ψ m = ( mπ R ( mπ sin ϕ. (7 Poznámka: Normalizace funkcí ψ m byla zvolena prozatím libovolně. Samozřejmě, že použitá volba předjímá další použití. Faktor / je zvolen pro normalizaci Fourierova systému a konstanta nám zjednoduší výrazy při zkoumání okrajových podmínek na poloměru R = v dalším bodě. Nicméně mohli bychom zvolit jakoukoli jinou normalizaci, např. pouze ψ m = R k sin(kϕ. Koeficienty zavedené v (7 se pak objeví při výpočtu koeficientů c m v rozkladu skalárního potenciálu.
3 b Skalární potenciál φ splňující Laplaceovu úlohu s uvažovanými okrajovými podmínkami lze zapsat pomocí nalezeného systému funkcí jako φ(r, ϕ = m N c m ψ m (R, ϕ. (8 Koeficienty c m závisí na rozložení zdrojů daleko od námi zkoumané oblasti v okolí počátku. Níže, v bodě d, je nalezneme pro zadané okrajové podmínky na R =. c Dominantní člen v blízkosti počátku R = 0 bude člen s nejpomalejším klesáním radiální závislosti, tedy člen m = 1, φ c 1 ( R π sin πϕ. (9 Pro něj dostáváme E = φ = φ R e R 1 φ R ϕ e ϕ = c ( 1 π R π 1 ( sin πϕ e R + cos πϕ e ϕ. (10 Plošná nábojová hustota na vnitřním povrchu vodivých polorovin je dána normálovou složkou elektrické intenzity blízko povrchu. Pro ϕ = 0 je normála n = e ϕ a pro ϕ = máme n = e ϕ. Nábojová hustota v závislosti na vzdálenosti d osy z je tak na obou polorovinách dána σ = c ( 1 π π R 1 R π 1. (11 Vidíme, že chování jak intenzity e, tak nábojové hustoty σ se výrazně liší pro konvexní úhel < π a konkávní úhel > π. Pro konvexní úhel intenzita i nábojová hustota blízko osy z vymizí. Náboj je vytlačen od osy, kde se poloroviny dotýkají. Pro konkávní úhel je exponent v mocnině R záporný a intenzita E v blízkosti osy z diverguje. Podobně náboj je na na vodivých polorovinách koncentrován v místě jejich spojení. V blízkosti ostrého vodivého hřbetu tak vzdálené zdroje způsobí akumulaci náboje a silné elektrické pole což je skutečnost využívaná při ochraně proti bleskům instalováním špičatých nebo v našem případě ostrých bleskosvodů. Pro úhel = π dostáváme přirozeně, že potenciál nezávisí na vzdálenosti od osy. Osa totiž není v tomto případě výjimečná a nemůže tak v dominantním členu hrát roli. Poznámka: Tato diskuze je platná pro generické rozložení nábojů daleko od osy. Ve speciálních případech se může stát, že c 1 = 0 a člen m = 1 není přítomný. Dominantní člen pak je m = (nebo vyšší. V takovém případě máme E R π 1 a intenzita i nábojová hustota v blízkosti osy z vždy vymizí.
4 d Nyní předpokládáme, že oblast kolem osy z je uzavřená válcovou vodivou plochou na poloměru R =. Tento poloměr přirozeně zvolíme jako charakteristický rozměr v v definici funkcí (7. Válcová plocha je udržována na potenciálu φ o. K tomu je potřeba na plochu umístit náboje válcová plocha tak hraje roli vzdálených zdrojů zmiňovaných výše. Vyčíslením našeho potenciálu (8 na poloměru dostaneme podmínku φ o = n N ( nπ c n sin ϕ. (1 Koeficienty c m určíme využitím ortonormality Fouriérova systému funkcí na intervalu 0, π s Dirichletovými pomínkami 0 ( mπ ( nπ sin ϕ sin ϕ dϕ = δ mn. (13 (Funkcionální skalární součin rovnice (1 s funkcí n a dostaneme c m = 0 ( mπ [ φ o sin ϕ dϕ = φ o ( mπ ] mπ cos ϕ = 0 ( sin mπ ϕ tak povede na δ mn, které zruší sumu přes mπ φ o m liché, 0 m sudé. (14 e Užitím tohoto výsledku pro potenciál dostáváme φ = 4 π φ o n N ( (n 1π 1 R sin n 1 ( (n 1π kde jsme položili m = n 1, protože sudé členy nepřispívají. Pro přehlednost zavedeme bezrozměrné přeškálované veličiny ( R R = ϕ, (15 π π 0, 1, ϕ = ϕ 0, π. (16 Pomocí nich lze skalární potenciál zapsat φ = 4 π φ o n N 1 n 1 R n 1 sin ( (n 1 ϕ. (17 Užitím vztahu z tabulek Gradshteyn & Ryzhik zmíněných v zadání dostaneme ( ( φ = φ o π arctan R sin ϕ = φ 1 R o π arctan (RRo π (Ro π (R π sin πϕ. (18 Jelikož sin πϕ > 0 pro relevantní úhly, limita R dává φ φ o π arctan(+ = φ o jak požadujeme. Pro ϕ = 0, je zřejmě φ = 0.
5 f Elektrická intenzita pro potenciál (18 je E = φ = d R φ dr R e R 1 d ϕ φ R dϕ ϕ e ϕ. (19 Po přímočarých úpravách dostaneme E = 4φ o R ( 1 + R R sin ϕ er + ( 1 R R cos ϕ eϕ 1 R cos( ϕ + R 4. (0 Plošná nábojová hustota na vnitřním povrchu vodivých okrajů je dána normálovou složkou intenzity blízko povrchu. Pro ϕ = 0, tj. ϕ = 0, je normála n = e ϕ. Pro ϕ =, tj. ϕ = π, máme n = e ϕ. Pro R =, tj. R = 1, je n = e R. Na jednotlivých okrajích tedy dostáváme σ ϕ=0, = 4φ o R R 1 R = 4φ o (R π R (Ro π (R π σ R=Ro = φ o 1 sin ϕ = φ o 1 sin πϕ., (1 Nábojová hustota na polorovinách v blízkosti osy potvrzuje výsledek nalezený v bodě c pro konvexní úhel je nábo vytěsněn z okolí osy, pro konkávní náboj se zde naopak hromadí. V blízkosti (nevodivého doteku polorovin s válcovou plochou nábojová hustota vždy diverguje, ale na sousedních vodičích s opačným znaménkem na polorovinách je záporná a na válcové ploše kladná (pro φ o > 0. Skalární potenciál, elektrická intenzita a nábojová hustota jsou zobrazeny v následujících grafech.
6 Grafy Ve vs ech grafech nı z e je ignorovana sour adnice z. D grafy odpovı dajı rovine z = konst. Ve 3D grafech horizonta lnı rovina odpovı da rovine z = konst a na vertika lnı osu se vyna s ı zobrazovana velic ina. Vs echny velic iny jsou zobrazeny pro konvexnı u hel < π (vlevo a pro konka vnı u hel > π (vpravo. Ve vs ech diagramech jsou vyznac eny c erne okraje zkoumane oblasti. Skala rnı potencia l φ. Je vide t, z e na okrajı ch spln uje poz adovane okrajove podmı nky Dirichletovy podmı nky na polorovina ch a konstantnı potencia l (modr e na va lcove plos e. (Pro konvexnı u hel jsou zobrazeny pohledy ze dvou stran. ϕ ϕ Ekvipotencia ly skala rnı ho potencia lu φ. Velikost elektricke intenzity E. Pro konvexnı u hel (vlevo je intenzita blı zko osy konec na, pro konka vnı u hel (vpravo intenzita v blı zkosti osy diverguje. V obou pr ı padech intenzita diverguje v blı zkosti (nevodive ho doteku polorovin s va lcovou plochou. (Pro konvexnı u hel jsou zobrazeny pohledy z dvou ru zny ch stran.
7 Radia lnı a tanhgencia lnı sloz ky elektricke intenzity ER a Eϕ. E E ~ Siloc a ry elektricke intenzity E. Na bojova hustota na vnitr nı m povrchu vodivy ch okraju zkoumane oblasti. Pro konvexnı u hel (vlevo je na bojova hustota blı zko osy konec na, pro konka vnı u hel (vpravo na bojova hustota v blı zkosti osy diverguje. V obou pr ı padech na bojova hustota diverguje v blı zkosti (nevodive ho doteku polorovin s va lcovou plochou.
Matematika 2, vzorová písemka 1
Matematika 2, vzorová písemka Pavel Kreml 9.5.20 Přesun mezi obrazovkami Další snímek: nebo Enter. Zpět: nebo Shift + Enter 2 3 4 Doporučení Pokuste se vyřešit zadané úlohy samostatně. Pokud nebudete vědět
Geometrická nelinearita: úvod
Geometrická nelinearita: úvod Opakování: stabilita prutů Eulerovo řešení s využitím teorie 2. řádu) Stabilita prutů Ritzovou metodou Stabilita tenkých desek 1 Geometrická nelinearita Velké deformace průhyby,
Úvodní informace. 18. února 2019
Úvodní informace Funkce více proměnných Cvičení první 18. února 2019 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Úvodní informace. Komunikace: e-mail: olga@majling.eu nebo olga.majlingova@fs.cvut.cz
Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f(b) f(a) b a. Geometricky
Monotónie a extrémy funkce Diferenciální počet - průběh funkce Věta o střední hodnotě (Lagrange) Necht je funkce f spojitá v intervalu a, b a má derivaci v (a, b). Pak existuje bod ξ (a, b) tak, že f (ξ)
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 11 Křivkový integrál Vybrané kapitoly z matematiky 2018-2019 2 / 11 Parametricky zadaná křivka v R 3 :
Jozef Lipták. a 2. i = A i = B 0 i = C 6 a. i = D
Řešení písemné práce z Klasické elektrodnamik Jozef Lipták Úloha Na obrázku je průběh potenciálů Φ A,, Φ D pro čtři sférick smetrické nábojové hustot ρ A,, ρ D Pro r a se všechn potenciál shodují a platí,
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Mocninné řady 1 / 18
Komplexní analýza Mocninné řady Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Mocninné řady 1 / 18 Posloupnosti komplexních čísel opakování
(2) Funkce. Kristýna Kuncová. Matematika B2. Kristýna Kuncová (2) Funkce 1 / 25
(2) Funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (2) Funkce 1 / 25 Sudá a lichá funkce Určete, které funkce jsou sudé a které liché: liché: A, D, E sudé: B Kristýna Kuncová (2) Funkce 2 / 25
Aproximace funkcí 1,00 0,841 1,10 0,864 1,20 0,885. Body proložíme lomenou čarou.
Příklad Známe následující hodnoty funkce Φ: u Φ(u) 1,00 0,841 1,10 0,864 1,20 0,885 Odhadněte přibližně hodnoty Φ(1,02) a Φ(1,16). Možnosti: Vezmeme hodnotu v nejbližším bodě. Body proložíme lomenou čarou.
Numerické metody 8. května FJFI ČVUT v Praze
Obyčejné diferenciální rovnice Numerické metody 8. května 2018 FJFI ČVUT v Praze 1 Úvod Úvod Základní metody Pokročilejší metody Soustava Vyšší řád Program 1 Úvod Úvod - Úloha Základní úloha, kterou řešíme
Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Vzorové otázky 1 / 36
(1) Vzorové otázky Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Vzorové otázky 1 / 36 Limity - úlohy Otázka Určete lim x 0 f (x) A -3 B 0 C 5 D 7 E D Zdroj: Calculus: Single and Multivariable,
(13) Fourierovy řady
(13) Fourierovy řady Kristýna Kuncová Matematika B3 Kristýna Kuncová (13) Fourierovy řady 1 / 22 O sinech a kosinech Lemma (O sinech a kosinech) Pro m, n N 0 : 2π 0 2π 0 2π 0 sin nx dx = sin nx cos mx
Kapitola 4: Soustavy diferenciálních rovnic 1. řádu
Sbírka příkladů Matematika II pro strukturované studium Kapitola 4: Soustavy diferenciálních rovnic 1 řádu Chcete-li ukončit prohlížení stiskněte klávesu Esc Chcete-li pokračovat stiskněte klávesu Enter
(1) Derivace. Kristýna Kuncová. Matematika B2 17/18. Kristýna Kuncová (1) Derivace 1 / 35
(1) Derivace Kristýna Kuncová Matematika B2 17/18 Kristýna Kuncová (1) Derivace 1 / 35 Růst populací Zdroj : https://www.tes.com/lessons/ yjzt-cmnwtvsq/noah-s-ark Kristýna Kuncová (1) Derivace 2 / 35 Růst
5. a 12. prosince 2018
Integrální počet Neurčitý integrál Seminář 9, 0 5. a. prosince 08 Neurčitý integrál Definice. Necht funkce f (x) je definovaná na intervalu I. Funkce F (x) se nazývá primitivní k funkci f (x) na I, jestliže
Co nám prozradí derivace? 21. listopadu 2018
Co nám prozradí derivace? Seminář sedmý 21. listopadu 2018 Derivace základních funkcí Tečna a normála Tečna ke grafu funkce f v bodě dotyku T = [x 0, f (x 0 )]: y f (x 0 ) = f (x 0 )(x x 0 ) Normála: y
Kristýna Kuncová. Matematika B2
(3) Průběh funkce Kristýna Kuncová Matematika B2 Kristýna Kuncová (3) Průběh funkce 1 / 26 Monotonie (x 2 ) = 2x (sin x) = cos x Jak souvisí derivace funkce a fakt, zda je funkce rostoucí nebo klesající?
Funkce zadané implicitně. 4. března 2019
Funkce zadané implicitně 4. března 2019 Parciální derivace druhého řádu Parciální derivace druhého řádu funkce z = f (x, y) jsou definovány: Parciální derivace 2 f 2 = ( ) f 2 f 2 = ( ) f 2 f a 2 f 2 f
Inverzní Z-transformace
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 9. přednáška 11MSP úterý 16. dubna 2019 verze: 2019-04-15 12:25
1 Soustava lineárních rovnic
Soustavy lineárních rovnic Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Soustava lineárních rovnic 2 Řešitelnost soustavy lineárních rovnic 3 Gaussova eliminační metoda 4 Jordanova eliminační
Kristýna Kuncová. Matematika B3
(10) Vícerozměrný integrál II Kristýna Kuncová Matematika B3 Kristýna Kuncová (10) Vícerozměrný integrál II 1 / 30 Transformace Otázka Jaký obrázek znázorňuje čtverec vpravo po transformaci u = x + y a
x2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Kristýna Kuncová. Matematika B2 18/19
(6) Určitý integrál Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (6) Určitý integrál 1 / 28 Newtonův integrál Zdroj: https://kwcalculus.wikispaces.com/integral+applications Kristýna Kuncová (6)
Stavový popis Stabilita spojitých systémů (K611MSAP) Katedra aplikované matematiky Fakulta dopravní ČVUT. čtvrtek 20. dubna 2006
Modelování systémů a procesů (K611MSAP) Přednáška 4 Katedra aplikované matematiky Fakulta dopravní ČVUT Pravidelná přednáška K611MSAP čtvrtek 20. dubna 2006 Obsah 1 Laplaceova transformace Přenosová funkce
Rovnice proudění Slapový model
do oceánského proudění Obsah 1 2 3 Co způsobuje proudění v oceánech? vyrovnávání rozdílů v teplotě, salinitě, tlaku, ρ = ρ(p, T, S) vítr - wind stress F wind = ρ air C D AU 2 10 slapy produkují silné proudy,
MATEMATIKA 3. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATIKA 3 Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Osnova: Komplexní funkce - definice, posloupnosti, řady Vybrané komplexní funkce
kontaktní modely (Winklerův, Pasternakův)
TÉMA 7: Pružný poloprostor, modely podloží pružný poloprostor základní předpoklady pružný poloprostor Boussinesqueovo řešení kontaktní modely (Winklerův, Pasternakův) 1 Pružný poloprostor (1) vychází z
Sb ırka pˇr ıklad u z matematick e anal yzy II Petr Tomiczek
Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah 0 Diferenciální rovnice. řádu 0. Separace proměnných Příklad : Najděte obecné řešení (obecný integrál) diferenciální rovnice y = tg x tg y.
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární
DFT. verze:
Výpočet spektra signálu pomocí DFT kacmarp@fel.cvut.cz verze: 009093 Úvod Signály můžeme rozdělit na signály spojité v čase nebo diskrétní v čase. Další možné dělení je na signály periodické nebo signály
x y (A)dy. a) Určete a načrtněte oblasti, ve kterých je funkce diferencovatelná. b) Napište diferenciál funkce v bodě A = [x 0, y 0 ].
II.4. Totální diferenciál a tečná rovina Značení pro funkci z = f,: totální diferenciál funkce f v bodě A = 0, 0 ]: dfa = A 0+ A 0 Označme d = 0, d = 0. Pak dfa = A d+ A d Příklad91.Je dána funkce f, =.
Elementární funkce. Edita Pelantová. únor FJFI, ČVUT v Praze. katedra matematiky, FJFI, ČVUT v Praze
Elementární funkce Edita Pelantová FJFI, ČVUT v Praze Seminář současné matematiky katedra matematiky, FJFI, ČVUT v Praze únor 2013 c Edita Pelantová (FJFI) Elementární funkce únor 2013 1 / 19 Polynomiální
Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, parciální a směrové derivace, diferenciál Michal Bulant Masarykova univerzita Fakulta informatiky 29. 9. 2010 Obsah přednášky 1 Literatura
Numerické metody minimalizace
Numerické metody minimalizace Než vám klesnou víčka - Stříbrnice 2011 12.2. 16.2.2011 Emu (Brkos 2011) Numerické metody minimalizace 12.2. 16.2.2011 1 / 19 Obsah 1 Úvod 2 Základní pojmy 3 Princip minimalizace
Energetické principy a variační metody ve stavební mechanice
Energetické principy a variační metody ve stavební mechanice Přetvárná práce vnějších sil Přetvárná práce vnitřních sil Potenciální energie Lagrangeův princip Variační metody Ritzova metoda 1 Přetvárná
Teorii Relativity. My nastoupíme do konkrétní inerciální soustavy a v ní budeme hledat detailnější pochopení významu těchto polních rovnic.
Poznámky k přednášce Klasická elektrodynamika Úvod Fyzikální pole je následníkem principu působení na dálku. V klasické představě zprostředkovává pole vytvářené jedním zdrojem působení na druhý zdroj.
Určitý (Riemannův) integrál a aplikace. Nevlastní integrál. 19. prosince 2018
Určitý (Riemnnův) integrál plikce. Nevlstní integrál Seminář 9. prosince 28 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv
Obsah. 1.2 Integrály typu ( ) R x, s αx+β
Sbírka úloh z matematické analýzy. Čížek Jiří Kubr Milan. prosince 006 Obsah Neurčitý integrál.. Základní integrály...................................... Integrály typu ) R, s α+β γ+δ d...........................
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky bakalářská práce vícebodové okrajové úlohy Plzeň, 18 Hana Levá Prohlášení Prohlašuji, že jsem tuto bakalářskou práci vypracovala
Komplexní analýza. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Martin Bohata Komplexní analýza Úvod 1 / 32
Komplexní analýza Úvod Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Úvod 1 / 32 Základní informace Stránky předmětu: http://math.feld.cvut.cz/bohata/kan.html
Diferenciální rovnice základní pojmy. Rovnice se
Diferenciální rovnice základní pojmy. Rovnice se separovanými proměnnými. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více
5 Diferenciální počet funkcí více proměnných Průvodce studiem V této kapitole se budeme zabývat diferenciálním počtem pro funkce více proměnných, především budeme pracovat s funkcemi dvou proměnných Ukážeme
Stochastické modelování v ekonomii a financích Konzistence odhadu LWS. konzistence OLS odhadu. Předpoklady pro konzistenci LWS
Whitův pro heteroskedasticitě pro heteroskedasticitě Stochastické modelování v ekonomii a financích 7. 12. 2009 Obsah Whitův pro heteroskedasticitě pro heteroskedasticitě 1 Whitův 2 pro 3 heteroskedasticitě
Obsah. Zobrazení na osmistěn. 1 Zobrazení sféry po částech - obecné vlastnosti 2 Zobrazení na pravidelný konvexní mnohostěn
Obsah 1 2 3 Použití Zobrazení rozsáhlého území, ale hodnoty zkreslení nesmí přesáhnout určitou hodnotu Rozdělením území na menší části a ty pak zobrazíme zvlášť Nevýhodou jsou však samostatné souřadnicové
Operace s funkcemi [MA1-18:P2.1] funkční hodnota... y = f(x) (x argument)
KAPITOLA : Funkce - úvod [MA-8:P.] reálná funkce (jedné) reálné proměnné... f : A R...... zobrazení množin A R do množin reálných čísel R funkční hodnota... = f() ( argument) ( tj. reálná funkce f : A
Teorie plasticity. Varianty teorie plasticity. Pružnoplastická matice tuhosti materiálu
Teorie plasticity Varianty teorie plasticity Teorie plastického tečení Přehled základních vztahů Pružnoplastická matice tuhosti materiálu 1 Pružnoplastické chování materiálu (1) Pracovní diagram pro případ
Základní elektrotechnická terminologie,
Přednáška č. 1: Základní elektrotechnická terminologie, veličiny a zákony Obsah 1 Terminologie 2 2 Veličiny 6 3 Kirchhoffovy zákony 11 4 Literatura 14 OBSAH Strana 1 / 14 1 TERMINOLOGIE Strana 2 / 14 1
Referenční plochy. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Souřadnice na elipsoidu Zeměpisné souřadnice Kartografické souřadnice Izometrické (symetrické) souřadnice Pravoúhlé a polární souřadnice 3 Ortodroma Loxodroma
GEM a soustavy lineárních rovnic, část 2
GEM a soustavy lineárních rovnic, část Odpřednesenou látku naleznete v kapitole 6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B0LAG 8.3.09: GEM a soustavy, část / Minulá přednáška Gaussova
Funkce více proměnných: limita, spojitost, derivace
Matematika III 2. přednáška Funkce více proměnných: limita, spojitost, derivace Michal Bulant Masarykova univerzita Fakulta informatiky 22. 9. 2014 Obsah přednášky 1 Literatura 2 Zobrazení a funkce více
Linea rnı (ne)za vislost
[1] Lineární (ne)závislost Skupiny, resp. množiny, vektorů mohou být lineárně závislé nebo lineárně nezávislé... a) zavislost, 3, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010,
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 28 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad 25 bodů Nechť {x n } je posloupnost, f : R R
Matematika III Stechiometrie stručný
Matematika III Stechiometrie stručný matematický úvod Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Zápis chemické reakce 2 umožňuje jednotný přístup
Laplaceova transformace
Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP 219 verze: 219-3-17
Teorie. kuncova/ Definice 1. Necht f je reálná funkce a a R. Jestliže existuje.
8. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje h 0 fa + h) fa), h pak tuto itu nazýváme derivací funkce f v bodě
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 187 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah 1 2 Obsah 1 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref. plocha je rovina - souřadnice X, Y, případně ρ, ɛ Zobrazovaná ref. plocha je eliposid
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text
7. Aplikace derivace
7. Aplikace derivace 7A. Taylorův polynom 7. Aplikace derivace Verze 20. července 207 Derivace funkce se využívá při řešení úloh technické prae i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce,
Petr Beremlijski, Marie Sadowská
Počítačová cvičení Petr Beremlijski, Marie Sadowská Katedra aplikované matematiky Fakulta elektrotechniky a informatiky VŠB - Technická univerzita Ostrava Cvičení : Matlab nástroj pro matematické modelování
Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava
Lineární algebra 8. přednáška: Kvadratické formy Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen
Periodický pohyb obecného oscilátoru ve dvou dimenzích
Periodický pohyb obecného ve dvou dimenzích Autor: Šárka Petříčková (A05221, sarpet@students.zcu.cz) Vedoucí: Ing. Petr Nečesal, Ph.D. Matematické metody v aplikovaných vědách a ve vzdělávání, Fakulta
Robotika. Kinematika 13. dubna 2017 Ing. František Burian Ph.D.
Robotika Kinematika 13. dubna 2017 Ing. František Burian Ph.D., Řízení stacionárních robotů P P z q = f 1 (P) q z Pøímá úloha q U ROBOT q P R q = h(u) P = f (q) DH: Denavit-Hartenberg (4DOF/kloub) A i
Anna Kratochvílová Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu / 17
Parciální diferenciální rovnice ve zpracování obrazu Anna Kratochvílová FJFI ČVUT 10. 6. 2009 Anna Kratochvílová (FJFI ČVUT) PDR ve zpracování obrazu 10. 6. 2009 1 / 17 Obsah 1 Motivace 2 Vyšetření pomocí
Cauchyova úloha pro obyčejnou diferenciální rovnici
Řešení ODR v MATLABu Přednáška 3 15. října 2018 Cauchyova úloha pro obyčejnou diferenciální rovnici y = f (x, y), y(x 0 ) = y 0 Víme, že v intervalu a, b existuje jediné řešení. (f (x, y) a f y jsou spojité
Kapitola 2. Nelineární rovnice
Kapitola. Nelineární rovnice Formulace: Je dána funkce f : R! R definovaná na intervalu ha; bi. Hledáme x ha; bi tak, aby f(x) = 0. (x... kořen rovnice) Poznámka: Najít přesné řešení analyticky je možné
Speciální funkce, Fourierovy řady a Fourierova transformace
1 Speciální funkce, Fourierovy řady a Fourierova transformace Při studiu mnoha přírodních jevů se setkáváme s veličinami, které jsou všude nulové s výjimkou malého časového intervalu I, ale jejich celková
2 Sférická trigonometrie. Obsah. 1 Základní pojmy. Kosinová věta pro stranu. Podpořeno z projektu FRVŠ 584/2011.
Obsah 1 2 Kosinová věta pro úhel Pravoúhlý sférický trojúhelník Podpořeno z projektu FRVŠ 584/2011. Referenční plochy, souřadnicové soustavy Důležité křivky - loxodroma, ortodroma Kartografická zobrazení,
Kombinatorika a grafy I
Kombinatorika a grafy I Martin Balko 1. přednáška 19. února 2019 Základní informace Základní informace úvodní kurs, kde jsou probrány základy kombinatoriky a teorie grafů ( pokračování diskrétní matematiky
FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKUTA STAVEBNÍ Stavební statika Pohyblivé zatížení Jiří Brožovský Kancelář: P H 406/3 Telefon: 597 32 32 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast0.vsb.cz/brozovsky
Tvarová optimalizace pro 3D kontaktní problém
Tvarová optimalizace pro 3D kontaktní problém s Coulombovým třením Petr Beremlijski, Jaroslav Haslinger, Michal Kočvara, Radek Kučera a Jiří V. Outrata Katedra aplikované matematik Fakulta elektrotechnik
fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu (reg. č. CZ.1.07/2.2.00/28.
Extrémy Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného
Matematické modelování elmg. polí 2. kap.: Magnetostatika
Matematické modelování elmg. polí 2. kap.: Magnetostatika Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/ Text byl
Powyższe reguły to tylko jedna z wersji gry. Istnieje wiele innych wariantów, można też ustalać własne zasady. Miłej zabawy!
Krykiet W krykieta może grać od 2 do 4 osób, którzy albo grają każdy przeciw każdemu, albo dzielą się na dwie drużyny. Bramki oraz palik startowy i powrotne umieszcza się tak, jak pokazano na rysunku.
Okrajový problém podmínky nejsou zadány v jednom bodu nejčastěji jsou podmínky zadány ve 2 bodech na okrajích, ale mohou být
Obyčejné diferenciální rovnice 1 Úvod Obyčejnou diferenciální rovnici N-tého řádu f ( x,y,y,y,...,y (N)) = g(x) převádíme na soustavu N diferenciálních rovnic 1. řádu. Provedeme substituce y z 1 y z 2...
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU
Obsah. Limita posloupnosti a funkce. Petr Hasil. Limita posloupnosti. Pro a R definujeme: Je-li a < 0, pak a =, a ( ) =. vlastní body.
Obsah a funkce Petr Hasil Přednáška z Matematické analýzy I Úvod 2 c Petr Hasil (MUNI) a funkce Matematická analýza / 90 c Petr Hasil (MUNI) a funkce Matematická analýza 2 / 90 Úvod Úvod Pro a R definujeme:
K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI. asta
N O V I N K A K SAMOSTATNÉ MODULOVÉ SCHODY MONTÁŽI asta MODULOVÉ SCHODY asta...jsou nejnovějším výrobkem švédsko-polského koncernu, který se již 10 let specializuje na výrobu schodů různého typu. Jednoduchá
Edita Pelantová, katedra matematiky / 16
Edita Pelantová, katedra matematiky seminář současné matematiky, září 2010 Axiomy reálných čísel Axiomy tělesa Axiom 1. x + y = y + x a xy = yx (komutativní zákon). Axiom 2. x + (y + z) = (x + y) + z a
podle přednášky doc. Eduarda Fuchse 16. prosince 2010
Jak souvisí plochá dráha a konečná geometrie? L ubomíra Balková podle přednášky doc. Eduarda Fuchse Trendy současné matematiky 16. prosince 2010 (FJFI ČVUT v Praze) Konečná geometrie 16. prosince 2010
Statistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení deváté aneb Důležitá rozdělení pravděpodobnosti spojité náhodné veličiny Statistika (KMI/PSTAT) 1 / 15 Spojitá náhodná veličina Spojitá náhodná veličina Spojitá náhodná veličina
Komplexní analýza. Příklad Body. Nepište obyčejnou tužkou ani červeně, jinak písemka nebude přijata. Soupis vybraných vzorců. 4a.
Komplexí aalýa Písemá část koušky (XX.XX.XXXX) Jméo a příjmeí:... Podpis:... Příklad.. 3.. 5. Body Před ahájeím práce Vyplňte čitelě rubriku Jméo a příjmeí a podepište se. Během písemé koušky smíte mít
Matematická analýza 2. Kubr Milan
Matematická analýza. Kubr Milan. února 008 Obsah Vektorové funkce jedné reálné proměnné. 3. Základní pojmy...................................... 3. Křivky v R n........................................
Obsah. 1 Konstrukce (definice) Riemannova integrálu Výpočet Newtonova Leibnizova věta Aplikace výpočet objemů a obsahů 30
Určitý integrál Robert Mřík 6. září 8 Obsh 1 Konstrukce (definice) Riemnnov integrálu. Výpočet Newtonov Leibnizov vět. 18 3 Numerický odhd Lichoběžníkové prvidlo 19 4 Aplikce výpočet objemů obshů 3 c Robert
Obecná orientace (obvykle. Makroskopická anizotropie ( velmi mnoho kluzných rovin )
Fyzikální zdůvodnění plasticity (1) Změny v krystalické mřížce Schmidtův zákon : τ τ τ max (1) Dosažení napětí τ max vede ke změnám v krystalické mřížce Deformace krystalické mřížky pružná deformace Změny
III. Dvojný a trojný integrál
III. vojný a trojný integrál III.. Eistence Necht je měřitelná v Jordanově smslu množina v E resp. E a funkce f je omezená na. Necht množina bodů nespojitosti funkce f v má míru. Potom f je integrovatelná
Lineární algebra - iterační metody
Lineární algebra - iterační metody Numerické metody 7. dubna 2018 FJFI ČVUT v Praze 1 Úvod Úvod Rozdělení Metody Zastavení SOR Programy 1 Úvod Úvod - LAR Mějme základní úlohu A x = b, (1) kde A R n,n je
1 Předmluva Značení... 3
Sbírka příkladů k předmětu Lineární systémy Jan Krejčí, korektura Martin Goubej 07 Obsah Předmluva. Značení..................................... 3 Lineární obyčejné diferenciální rovnice s konstantními
studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava
Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 15. září 216 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................
Rozvíjení matematických talentů. kolektiv autorů. Praha 2019
Rozvíjení matematických talentů na středních školách I kolektiv autorů Praha 2019 Publikace byla vydána v rámci Operačního programu Výzkum, vývoj a vzdělávání (OP VVV) a jeho projektu Zvyšování kvality
Whirlpool Serie 300. Pharo Whirlpool. Pharo Whirlpool Moneva 300 R
Pharo Whirlpool Whirlpool Serie 300 Pharo Whirlpool Moneva 300 L Pharo Whirlpool Moneva 300 R Pharo Whirlpool Iseo Twin 320 Pharo Whirlpool Victoria Twin 325 Pharo Whirlpool Teslin 330 Pharo Whirlpool
Univerzita Palackého v Olomouci
Počítačová grafika - 5. cvičení Radek Janoštík Univerzita Palackého v Olomouci 22.10.2018 Radek Janoštík (Univerzita Palackého v Olomouci) Počítačová grafika - 5. cvičení 22.10.2018 1 / 10 Reakce na úkoly
Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných
Příklad k procvičení : Průřeové charakteristik Zadání: Vpočítejte hlavní moment setrvačnosti a vkreslete elipsu setrvačnosti na adaných obracích. Příklad. Zadání: Rokreslení na jednoduché obrace: 500 T
(a). Pak f. (a) pro i j a 2 f
Připomeň: 1. Necht K R n. Pak 1. Funkce více proměnných II 1.1. Parciální derivace vyšších řádů K je kompaktní K je omezená a uzavřená. 2. Necht K R n je kompaktní a f : K R je spojitá. Pak f nabývá na
Pharo Whirlpool Serie 200
M o n t a g e a n l e i t u n g Instrukcja montażu Návod k montáži Ðóêîâîäñòâî ïî ìîíòàæó Pharo Whirlpool Serie 200 Pharo Whirlpool 200 Links 2270xxx Pharo Whirlpool 200 Rechts 22702xxx Pharo Whirlpool
Matematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Elektrodynamika. 1 Elektrické a magnetické veličiny, jednotky SI
Elektrodynamika Elektriké a magnetiké veličiny, jednotky SI Elektriký proud I je v systému SI základní veličina, jednotka je Ampere A. Definie: Stejné proudy ve rovnoběžnýh dráteh ve vzdalenosti m mají
studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava
Matematické modelování studijní text Jaroslav Vlček Katedra matematiky a deskriptivní geometrie VŠB-TU Ostrava 2. února 2018 Obsah 1 Principy matematického modelování 3 1.1 Motivační úlohy.....................................