Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Wielkość: px
Rozpocząć pokaz od strony:

Download "Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński"

Transkrypt

1 czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015

2 Przykład (opis problemu) Kim jesteśmy? Poważną firmą (nazywamy się Poważna Firma). Czym się zajmujemy? Wieloma rzeczami, w tym emisją instrumentów pochodnych, np. opcji na akcję. Zagadnienie Jeśli opcję opłaca się wykonać, to ponosimy (całkiem sporą) stratę. Musimy się jakoś przed tym bronić i zabezpieczyć opcję, czyli stworzyć portfel złożony z akcji i ewentualnie innych instrumentów finansowych.

3 Nasze opcje Figure 1:Payoffy opcji europejskich - krótka pozycja Zajmiemy się opcjami europejskimi, które mogą być zrealizowane tylko w terminie wygaśnięcia opcji. Cena aktywa dzisiaj wynosi S 0, a strike opcji wynosi K.

4 Delta hedging Delta hedging Metoda oparta na replikacji, tzn. budujemy portfel inwestycji, którego wartość w momencie wykonania jest równa wypłacie opcji. Π = V + S + B = 0 Dynamiczny delta hedging jednak jest kosztowny. Co zrobić, gdy nie stać nas na pełną replikację lub gdy nie chcemy wydać takiej kwoty?

5 Figure 2:Hans Föllmer i Peter Leukert W artykule z 1998 roku Hans Föllmer i Peter Leukert zaproponowali kilka sposóbów zabezpieczania instrumentu pochodnego i wyznaczyli strategie dla kilku modeli.

6 Tańsze zabezpieczenie - intuicje Mamy dwie możliwości: Ustalamy prawdopodobieństwo P udanego zabezpieczenia, a następnie wyznaczamy najtańszy portfel, który zabezpiecza instrument z tym prawdopodobieństwem. Ustalamy kwotę V zabezpieczenia, a następnie spośród portfeli, których wartość nie przekacza tej sumy, wybieramy ten, który maksymalizuje prawdopodobieństwo.

7 - świat matematyczny (1) Jak to w świecie matematycznym bywa: (Ω, F, P), (F t ) t [0,T ], X = (X t ) t [0,T ] Zakładamy brak arbitrażu i zupełność rynku, tzn. istnieje dokładnie jedna równoważna miara martyngałowa P Rozważamy nieujemne roszczenie warunkowe: H L 1 (P ), H 0, H F t mierzalne

8 - świat matematyczny (2) Perfect hedge strategia samofinansująca ξ H taka, że: t t [0,T ] E [H F t ] = H 0 + ξs H dx s 0 Jej koszt to: H 0 = E [H] A co, gdy chcemy coś tańszego?

9 - świat matematyczny (3) Podstawowy problem optymalizacyjny Szukamy strategii (V 0, ξ) takiej, że: pod warunkiem: Zbiór sukcesu P [ V 0 + T 0 ξ s dx s H V 0 Ṽ 0 ] = max Zbiór {V T H} będziemy nazywać "zbiorem sukcesu" odpowiadającym strategii (V 0, ξ)

10 - świat matematyczny (4) Lemat Niech à F T przy ograniczeniu będzie rozwiązaniem problemu P[A] = max E [H1 A ] Ṽ 0 Wtedy strategia (Ṽ 0, ξ) będąca perfect hedge dla opcji barierowej H = H1à rozwiązuje nasz problem optymalizacyjny i odpowiadający jej zbiór sukcesu pokrywa się prawie wszędzie z Ã

11 Jak znaleźć zbiór sukcesu Ã? (1) Zdefiniujmy miarę Q następująco: dq dp = H H 0, wtedy warunek przyjmuje postać: E [H1 A ] Ṽ 0 Q [A] α := Ṽ0 H 0.

12 Jak znaleźć zbiór sukcesu Ã? (2) Przyjmując oznaczenia: ã = inf { [ ] } dp a : Q dp > a H α, mamy: à := { dp dp > ã H }, Twierdzenie Załóżmy, że zbiór à spełnia Q [Ã] = α. Wtedy jest on szukanym zbiorem sukcesu w naszym problemie optymalizacyjnym.

13 Jak na to patrzeć?

14 w świecie Blacka-Scholesa W standardowym modelu BS proces ceny aktywa będzie zadany przez geometryczny ruch Browna: dx t = mx t dt + σx t dw t Z wartością początkową X 0 = x 0. Dla uproszczenia: r = 0. Miara martyngałowa dana będzie wzorem: dp ( dp = exp m σ W T 1 ( ) ) m 2 T 2 σ Proces W t = W t + m σ t jest procesem Wienera w mierze P.

15 w świecie Blacka-Scholesa (2) Proces ceny, przy użyciu lematu Ito, ma następującą postać: X T = x 0 exp(σw T + (m 1 2 σ2 )T ) = x 0 exp(σw T 1 2 σ2 T ) Możemy więc zapisać: dp dp = const X m/σ2 T

16 w świecie Blacka-Scholesa (3) Z twierdzenia wiemy, że optymalną strategią będzie replikacja opcji barierowej H1 A, gdzie zbiór A jest postaci: A = { dp dp > const H } Używając oznaczeń z poprzedniego slajdu: A = {X m/σ2 T > λ(x T K) +} gdzie stała λ jest wybrana tak, aby: E [H1 A ] = V 0.

17 Zbiór sukcesu - przypadek pierwszy m σ 2 Wtedy funkcja f (x) = x m/σ2 jest wklęsła i przecina się z prawą stroną nierówności w jednym miejscu, dla opcji call i put. Figure 3:Zabezpieczany obszar payoffu - opcja call

18 Zbiór sukcesu - przypadek drugi m > σ 2 Funkcja jest wypukła, w przypadku opcji call dzieli to zabezpieczany obszar na dwa. Figure 4:Zabezpieczany obszar payoffu - opcja call

19 Opcja barierowa w praktyce - call Parametry: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: Prawdopodobieństwo: 99% Cena procentowo: 98%

20 Opcja barierowa w praktyce - call Parametry: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 9.34 Prawdopodobieństwo: 95% Cena procentowo: 90%

21 Opcja barierowa w praktyce - call Parametry: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 8.28 Prawdopodobieństwo: 90% Cena procentowo: 79%

22 Opcja barierowa w praktyce - call Parametry: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 5.35 Prawdopodobieństwo: 75% Cena procentowo: 51%

23 Opcja barierowa w praktyce - call Parametry: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 1.57 Prawdopodobieństwo: 50% Cena procentowo: 15%

24 Opcja barierowa w praktyce - put Parametry: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: Prawdopodobieństwo: 99% Cena procentowo: 95%

25 Opcja barierowa w praktyce - put Parametry: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: Prawdopodobieństwo: 95% Cena procentowo: 79%

26 Opcja barierowa w praktyce - put Parametry: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 8.29 Prawdopodobieństwo: 90% Cena procentowo: 63%

27 Opcja barierowa w praktyce - put Parametry: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 3.51 Prawdopodobieństwo: 75% Cena procentowo: 27%

28 Opcja barierowa w praktyce - put Parametry: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100 Cena pełnego zabezpieczenia: Cena zabezpieczenia z zadanym prawdopodobieństwem: 0.06 Prawdopodobieństwo: 50% Cena procentowo: <1%

29 Koszt hedgingu w zależności od prawdopodobieństwa Opcja call o parametrach: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100

30 Koszt hedgingu w zależności od prawdopodobieństwa Opcja put o parametrach: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100

31 Hedging - histogram strat Opcja call o parametrach: m = 0.15, r = 0.05, σ = 0.2, S = 100, K = 100 Prawdopodobieństwo zabezpieczenia: 90%, liczba symulacji: 10000

32 Hedging - histogram strat Opcja put o parametrach: m = 0.05, r = 0.05, σ = 0.4, S = 100, K = 100 Prawdopodobieństwo zabezpieczenia: 90%, liczba symulacji: 10000

33 Co dalej? Dla strategii (V 0, ξ) możemy zdefiniować stratę S = (H V T ) +. Pokazana metoda maksymalizuje prawdopodobieństwo tego, że strata S jest równa 0. Kontrolowanie rozmiaru straty Przykładowo, dla funkcji straty l(x) = x możemy minimalizować expected shortfall E[S] = E[(H V T ) + ] Funkcja straty będzie określać nasze podejście do ryzyka.

34 Bibliografia Föllmer H., Leukert P.,, /PDF/13.pdf Föllmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time.

35 Dziękujemy za uwagę!

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -

Bardziej szczegółowo

Strategie zabezpieczaj ce

Strategie zabezpieczaj ce 04062008 Plan prezentacji Model binarny Model Black Scholesa Bismut- Elworthy -Li formuła Model binarny i opcja call Niech cena akcji w chwili pocz tkowej wynosi S 0 = 21 Zaªó»my,»e ceny akcji po trzech

Bardziej szczegółowo

Współczynniki Greckie

Współczynniki Greckie Wojciech Antniak 05.0.008r. Wstęp Współczynniki greckie określają ryzyko opcji europejskiej na zmiany rynku. ażdy z nich określa w jaki sposób wpłynie zmiana jakiegoś czynnika na cenę akcji. W dalszej

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Model Blacka-Scholesa

Model Blacka-Scholesa WYCENA OPCJI EUROPEJSKIEJ I AMERYKAŃSKIEJ W MODELACH DWUMIANOWYCH I TRÓJMIANOWYCH COXA-ROSSA-RUBINSTEINA I JARROWA-RUDDA Joanna Karska W modelach dyskretnych wyceny opcji losowość wyrażana jest poprzez

Bardziej szczegółowo

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu

ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania

Bardziej szczegółowo

Rynek, opcje i równania SDE

Rynek, opcje i równania SDE Rynek, opcje i równania SDE Adam Majewski Uniwersytet Gdański kwiecień 2009 Adam Majewski (Uniwersytet Gdański) Rynek, opcje i równania SDE kwiecień 2009 1 / 16 1 Rynek, portfel inwestycyjny, arbitraż

Bardziej szczegółowo

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Opcje podstawowe własności.

Opcje podstawowe własności. Opcje podstawowe własności. Opcja jest to rodzaj umowy między dwoma podmiotami i jednocześnie instrument finansowy. Opcje kupna (call) dają posiadaczowi prawo do kupienia określonego w umowie aktywa (bazowego)

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne

Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Opcje Strategie opcyjne 1 Współczynniki greckie Współczynniki greckie określają o ile zmieni się kurs opcji w wyniku zmiany wartości poszczególnych

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym

Zarządzanie portfelem inwestycyjnym Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska Strategie opcyjne Opcje egzotyczne 2 Współczynniki greckie Współczynniki greckie określają, o ile zmieni się kurs opcji w wyniku zmiany wartości

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

Informacja o przestrzeniach Sobolewa

Informacja o przestrzeniach Sobolewa Wykład 11 Informacja o przestrzeniach Sobolewa 11.1 Definicja przestrzeni Sobolewa Niech R n będzie zbiorem mierzalnym. Rozważmy przestrzeń Hilberta X = L 2 () z iloczynem skalarnym zdefiniowanym równością

Bardziej szczegółowo

Stochastyczne równania różniczkowe, model Blacka-Scholesa

Stochastyczne równania różniczkowe, model Blacka-Scholesa Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

Modelowanie ryzyka kredytowego Zadania 1.

Modelowanie ryzyka kredytowego Zadania 1. 1 Ex-dividend prices Modelowanie ryzyka kredytowego Zadania 1. Mariusz Niewęgłowski 19 października 2014 Definicja 1. Dla każdego t [0, T ] cena ex-dividend wypłaty (X, A, X, Z, τ) ( ) S t := B t E Q Bu

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ.

r u du. Proces wartości aktywów firmy V. Proces bariery v wykorzystywany do zdefiniowania defaultu. moment defaultu τ. Wprowadzenie Mamy ustalone T > 0 horyzont, (Ω, F, P) z F filtracja, F = {F t } t [0,T ] oraz Proces chwilowej stopy procentowej r = (r t ) t [0,T ], tzn. rachunek bankowy spełnia ODE: db t = B t r t dt,

Bardziej szczegółowo

Opcje walutowe. Strategie inwestycyjne i zabezpieczające

Opcje walutowe. Strategie inwestycyjne i zabezpieczające Opcje walutowe Strategie inwestycyjne i zabezpieczające Praktyczne zastosowanie opcji Tomasz Uściński X-Trade Brokers Dom Maklerski S.A. Uniwersytet Warszawski, 8 grudnia 2006 r. www.xtb.pl 1 Przykład

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE Listopad 2014 r. Warszawa, Szkoła Główna Handlowa Opcje - typy Opcja jest asymetrycznym instrumentem. Opcja (standardowa, prosta,

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Inżynieria Finansowa: 5. Opcje

Inżynieria Finansowa: 5. Opcje Inżynieria Finansowa: 5. Opcje Piotr Bańbuła atedra Ekonomii Ilościowej, AE wiecień 2017 r. Warszawa, Szkoła Główna Handlowa Amounts outstanding of assets and derivatives Derivatives Derivatives Note:

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Zarządzanie ryzykiem finansowym

Zarządzanie ryzykiem finansowym Zarządzanie projektami Wrocław, 30 października 2013 Spis treści Motywacja Rachunek prawdopodobieństwa Koherentne miary ryzyka Przykłady zastosowań Podsumowanie Po co analizować ryzyko na rynkach finansowych?

Bardziej szczegółowo

Kiedy opcja jest bezpieczna?

Kiedy opcja jest bezpieczna? Kiedy opcja jest bezpieczna? Jacek Podlewski Koło Naukowe Modelowania Finansowego AGH Kraków Toruń, 8 grudnia 2012 Wprowadzenie Plan prezentacji 1 Krótki wstęp do opcji 2 Problem wyceny i osłony 3 Delta

Bardziej szczegółowo

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,

Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH, Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:

Bardziej szczegółowo

Metody redukcji wariancji

Metody redukcji wariancji Metody redukcji wariancji Michał Kołodziejczyk 26 maja 2009 Spis treści 1 Przedstawienie problemu 1 2 Metody redukcji - opis teoretyczny 2 2.1 Metoda Antithetic Variates...............................

Bardziej szczegółowo

Ekonomia matematyczna - 1.2

Ekonomia matematyczna - 1.2 Ekonomia matematyczna - 1.2 6. Popyt Marshalla, a popyt Hicksa. Poruszać się będziemy w tzw. standardowym polu preferencji X,, gdzie X R n i jest relacją preferencji, która jest: a) rosnąca (tzn. x y x

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe

Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA HAZARDU cz. II: CDS y - swapy kredytowe Modelowanie ryzyka kredytowego MODELOWANIE ZA POMOCA FUNKCJI HAZARDU cz. II: CDS y - swapy kredytowe Mariusz Niewęgłowski Wydział Matematyki i Nauk Informacyjnych, Politechniki Warszawskiej Warszawa 2014

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Spis treści. Wstęp...

Spis treści. Wstęp... Wstęp... XI Rozdział 1. Podstawy zarządzania ryzykiem... 1 1.1. Ryzyko rynkowe... 1 1.2. Charakterystyka instrumentów pochodnych... 12 1.2.1. Forward... 13 1.2.2. Futures... 14 1.2.3. Swap... 16 1.2.4.

Bardziej szczegółowo

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu

Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu Opcje giełdowe Wprowadzenie teoretyczne oraz zasady obrotu NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny (kontrakt opcyjny), Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach

Bardziej szczegółowo

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego

Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie

Bardziej szczegółowo

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW

Opcje Giełdowe. Filip Duszczyk Dział Rynku Terminowego GPW Opcje Giełdowe Filip Duszczyk Dział Rynku Terminowego GPW Warszawa, 7 maja 2014 Czym są opcje indeksowe (1) Kupno opcji Koszt nabycia Zysk Strata Prawo, lecz nie obligacja, do kupna lub sprzedaży instrumentu

Bardziej szczegółowo

Modele rynku, kontrakty terminowe, spekulacje

Modele rynku, kontrakty terminowe, spekulacje Modele rynku, kontrakty terminowe, spekulacje Marcin Abram WFAIS UJ w Krakowie 9 marca 2009 Założenia modelu Cena rozpatrywanego obiektu zmienia się skokowo co czas δt. Bezwzględna wartość zmiany ceny

Bardziej szczegółowo

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski Dokumentacja Portal Mathfinance Wycena opcji paryskich metoda PDE Wiktor Madejski Spis treści 1 Wstęp 2 2 Opcje paryskie 2 2.1 Układ PDE dla opcji paryskich..................... 2 2.2 Schemat numeryczny..........................

Bardziej szczegółowo

Problem walutowych instrumentów pochodnych

Problem walutowych instrumentów pochodnych Problem walutowych instrumentów pochodnych (diagnoza, terapia, rekonwalescencja) Dr Andrzej Stopczyński Dyrektor Zrządzający Pionem Nadzoru Bankowego w UKNF 1. Fowardy, swapy, opcje,...? 2. Dlaczego zabezpieczenie

Bardziej szczegółowo

Programowanie matematyczne

Programowanie matematyczne dr Adam Sojda Badania Operacyjne Wykład Politechnika Śląska Programowanie matematyczne Programowanie matematyczne, to problem optymalizacyjny w postaci: f ( x) max przy warunkach g( x) 0 h( x) = 0 x X

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Kupno opcji Profil wypłaty dla nabywcy opcji kupna. Z/S Premia (P) np. 100 Kurs wykonania opcji (X) np. 2500 Punkt opłacalności X + P 2500+100=2600 WIG20 2 Kupno opcji Profil wypłaty dla

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

OPCJE MIESIĘCZNE NA INDEKS WIG20

OPCJE MIESIĘCZNE NA INDEKS WIG20 OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973

Bardziej szczegółowo

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE

INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

Zasada maksimum Pontriagina

Zasada maksimum Pontriagina 25.04.2015 Abstrakt Wiele zagadnień praktycznych dotyczących układów dynamicznych wymaga optymalizacji pewnych wielkości. Jednakże zwykła teoria gładkich układów dynamicznych zajmuje się jednak tylko opisem

Bardziej szczegółowo

Strategie opcyjne Opcje egzotyczne. Dr Renata Karkowska; Wydział Zarządzania UW

Strategie opcyjne Opcje egzotyczne. Dr Renata Karkowska; Wydział Zarządzania UW Strategie opcyjne Opcje egzotyczne 1 Współczynniki greckie Współczynniki greckie określają, o ile zmieni się kurs opcji w wyniku zmiany wartości poszczególnych czynników wpływających na jego kurs. Informują

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Dokumentacja. Opcje europejskie PDE. Michał Grzelak

Dokumentacja. Opcje europejskie PDE. Michał Grzelak Dokumentacja Opcje europejskie PDE Michał Grzelak Spis treści 1 Ceny opcji z local volatility 2 1.1 Opcje plain vanilla z local volatility................. 2 1.2 Parametry greckie..........................

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka

Bardziej szczegółowo

Zatem, jest wartością portfela (wealth) w chwili,. j=1

Zatem, jest wartością portfela (wealth) w chwili,. j=1 Model Rynku z czasem dyskretnym n = 0,1,2, S 1 (n), S 2,, S m (n) - czas - ceny m aktywów obciążanych ryzykiem (akcji) w momencie : dodatnie zmienne losowe. - cena aktywa wolnego od ryzyka (obligacji)

Bardziej szczegółowo

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy

Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives

Bardziej szczegółowo

Część IX Hedging. Filip Duszczyk Dział Rozwoju Rynku Terminowego

Część IX Hedging. Filip Duszczyk Dział Rozwoju Rynku Terminowego Część IX Hedging Filip Duszczyk Dział Rozwoju Rynku Terminowego Zadanie Domowe Z jakim oprocentowaniem (w skali roku) możemy zaciągnąć pożyczkę w wysokości 10,000 PLN na trzy miesiące, do 18 września (3

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Przedmowa 11 1. Wprowadzenie 15 1.1. Początki rynków finansowych 15 1.2. Konferencja w Bretton Woods 17 1.3. Początki matematyki finansowej 19 1.4. Inżynieria finansowa 23 1.5. Nobel'97 z ekonomii 26 1.6.

Bardziej szczegółowo

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej

Bardziej szczegółowo

Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego

Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego Problem wyboru optymalnej dywidendy z paryskim opóźnieniem dla spektralnie ujemnych procesów Lévy ego Zbigniew Palmowski Wspólna praca z I. Czarna Zagadnienia aktuarialne: teoria i praktyka, Wrocław Ekonomiczny

Bardziej szczegółowo

Rynek opcji walutowych. dr Piotr Mielus

Rynek opcji walutowych. dr Piotr Mielus Rynek opcji walutowych dr Piotr Mielus Rynek walutowy a rynek opcji Geneza rynku opcji walutowych Charakterystyka rynku opcji Specyfika rynku polskiego jako rynku wschodzącego 2 Geneza rynku opcji walutowych

Bardziej szczegółowo

Analiza instrumentów pochodnych

Analiza instrumentów pochodnych Analiza instrumentów pochodnych Dr Wioletta Nowak Wykład 6 trategie opcyjne trategie bez pokrycia trategie z pokryciem trategie rozpiętościowe trategie kombinowane trategie bez pokrycia (uncovered) Zakup

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII

ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII Streszczenie W artykule przedstawiono

Bardziej szczegółowo

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004

OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 CO TO JEST OPCJA, RODZAJE OPCJI Opcja - prawo do kupna, lub sprzedaży instrumentu bazowego po

Bardziej szczegółowo

Wykorzystanie pakietu simecoldo modelowania zachorowań na grypę.

Wykorzystanie pakietu simecoldo modelowania zachorowań na grypę. Wykorzystanie pakietu simecoldo modelowania zachorowań na grypę. Marta Markiewicz, Anna Sikora, Katarzyna Zajączkowska, Michał Balcerek, Piotr Kupczyk (PWr) Runda 1 zawirusowane dane NAPOTKANE PROBLEMY

Bardziej szczegółowo

Opcje (2) delta hedging strategie opcyjne

Opcje (2) delta hedging strategie opcyjne Opcje (2) delta hedging strategie opcyjne 1 Co robi market-maker wystawiający opcje? Najchętniej zawiera transakcję przeciwstawną. Ale jeśli nie może, to ją replikuje. Dealer wystawił opcję call, więc

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu

1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu Przykład 1 Przedsiębiorca będący importerem podpisał kontrakt na zakup materiałów (surowców) o wartości 1 000 000 euro z datą płatności za 3 miesiące. Bieżący kurs 3,7750. Pozostałe koszty produkcji (wynagrodzenia,

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20

Krzysztof Piontek Weryfikacja modeli Blacka-Scholesa dla opcji na WIG20 Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informayki Kaedra Inwesycji Finansowych i Zarządzania Ryzykiem Krzyszof Pionek Weryfikacja modeli Blacka-Scholesa oraz AR-GARCH

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Podaż firmy. Zakładamy, że firmy maksymalizują zyski

Podaż firmy. Zakładamy, że firmy maksymalizują zyski odaż firmy Zakładamy, że firmy maksymalizują zyski Inne cele działalności firm: Maksymalizacja przychodów Maksymalizacja dywidendy Maksymalizacja zysków w krótkim okresie Maksymalizacja udziału w rynku

Bardziej szczegółowo

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK

OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży

Bardziej szczegółowo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo 1. Opis problemu Celem pracy jest policzenie jednodniowej wartości narażonej na ryzyko (Value-at- Risk) portfela składającego

Bardziej szczegółowo

Wzory matematyka finansowa

Wzory matematyka finansowa Wzory matematyka finansowa MaciejRomaniuk 29 września 29 K(t) funkcjaopisującaakumulacjęwchwiliczasut,k() kapitał,i stopazyskuwchwilit: i= K(t) K() (1) K() K kapitał,i stałastopaprocentowadlaustalonegookresuczasut,

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Maciej Drwal maciej.drwal@pwr.wroc.pl 1 Problem programowania liniowego min x c T x (1) Ax b, (2) x 0. (3) gdzie A R m n, c R n, b R m. Oznaczmy przez x rozwiązanie optymalne, tzn.

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Walutowe transakcje terminowe 1 FORWARD-KUPNO/SPRZEDAŻ WALUTY NA TERMIN...

Walutowe transakcje terminowe 1 FORWARD-KUPNO/SPRZEDAŻ WALUTY NA TERMIN... Walutowe transakcje terminowe 1 FORWARD-KUPNO/SPRZEDAŻ WALUTY NA TERMIN... 4 Walutowe transakcje pochodne 2 OPCJE PLAIN VANILLA... 8 2.1 ZAKUP OPCJI CALL I PUT... 8 2.2 SPRZEDAŻ OPCJI CALL I PUT... 10

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

OPCJE - PODSTAWY TEORETYCZNE cz.1

OPCJE - PODSTAWY TEORETYCZNE cz.1 OPCJE - PODSTAWY TEORETYCZNE cz.1 Opcja to prawo do kupna instrumentu bazowego po cenie, która jest z góry określona - głosi definicja opcji. Owa cena, które jest z góry określona to tzw. cena wykonania

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Analiza portfelowa w czasie ciagłym dla ogólnych cen zakupu i sp. ze stałymi kosztami za transakcje

Analiza portfelowa w czasie ciagłym dla ogólnych cen zakupu i sp. ze stałymi kosztami za transakcje Analiza portfelowa w czasie ciagłym dla ogólnych cen zakupu i sprzedaży ze stałymi kosztami za transakcje Instytut Matematyczny PAN Problem bez stałych kosztów za transakcje (Ω, F, (F t ), P) przestrzeń

Bardziej szczegółowo

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA

ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Rozdziaª 9: Wycena opcji

Rozdziaª 9: Wycena opcji Rozdziaª 9: Wycena opcji MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (rozdz. 9) Wycena opcji 1 / 23 Denicja opcji. Opcja nansowa:. Warunkowy kontrakt terminowy na sprzeda» lub kupno instrumentu bazowego,

Bardziej szczegółowo

Teoria opcji 2018/19. Instytut Matematyki Uniwersytet Gdański. (IM UG) Teoria opcji 1 / 49

Teoria opcji 2018/19. Instytut Matematyki Uniwersytet Gdański. (IM UG) Teoria opcji 1 / 49 Teoria opcji Instytut Matematyki Uniwersytet Gdański 2018/19 (IM UG) Teoria opcji 1 / 49 Sprawy organizacyjne Kontakt i strona E-mail: mwrzosek@mat.ug.edu.pl Konsultacje: środa, 12 14, p.323 Materiały:

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

OPCJE II FINANSE II ROBERT ŚLEPACZUK. Opcje II

OPCJE II FINANSE II ROBERT ŚLEPACZUK. Opcje II Opcje II W obrocie opcjami stosuje się różnego rodzaju strategie. Stosują je zarówno nabywcy, jak i wystawiający opcje. Na poprzednich ćwiczeniach poznaliśmy cztery podstawowe strategie, nazywane również

Bardziej szczegółowo

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe

istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Opcje istota transakcji opcyjnych, rodzaje opcji, czynniki wpływające na wartość opcji (premii). Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

Wykorzystanie opcji w zarządzaniu ryzykiem finansowym

Wykorzystanie opcji w zarządzaniu ryzykiem finansowym Prof. UJ dr hab. Andrzej Szopa Instytut Spraw Publicznych Uniwersytet Jagielloński Wykorzystanie opcji w zarządzaniu ryzykiem finansowym Ryzyko finansowe rozumiane jest na ogół jako zjawisko rozmijania

Bardziej szczegółowo