4. Ubezpieczenie Życiowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. Ubezpieczenie Życiowe"

Transkrypt

1 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego w zależności od aktualnego wieku (oraz innych czynników). 3. Pozostałe koszty (administracja, podatki itp.) Rozważamy tylko pierwsze dwa rodzaje czynników i określamy tak zwaną składkę netto. 1 / 38

2 Tabelka Umieralności Rozkład czasu do śmierci jest oszacowany za pomocą tabelek umerialności. Tabelki te są oparte na próbę jednostek urodzonych w danym okresie czasu, czyli na tak zwanej kohorcie. Najbardziej przydatna informacja w tych tabelkach jest intensywność zgonów w wieku t (jednostką czasu jest zwykle rok). Intensywność zgonów w wieku t równa się prawdopodobieństwu tego że osoba umiera przed wiekiem t + 1 przy warunku że jeszcze żyje w wieku t. 2 / 38

3 Tabelka Umieralności Niech N t będzie liczbą osób w kohorcie, które jeszcze żyją w wieku t. Wtedy liczba osób, która umiera przed wiekiem t + 1 przy warunku że jeszcze żyją w wieku t wynosi M t, gdzie M t = N t N t+1 Dzieląc przez liczbę osób jeszcze żyjących w wieku t, otrzymujemy estymator intensywności zgonów w wieku t. m t = N t N t+1 N t. Przeżywalność w wieku t, s t, wyraża się wzorem s t = 1 m t. 3 / 38

4 Tabelka Umieralności Wiek Rozmiar kohorty Liczba zgonów Intensywność zgonów = 0, = 0, = 0, = 0, = 0, = 0, / 38

5 Tabelka Umieralności Estymator prawdopodobieństwa tego że osoba przeżyje do wieku t + k przy warunku że żyje do wieku t, σ t,t+k, równa się proporcji osób, które przeżyją do wieku t, które przeżyją do wieku t + k. Więc σ t,t+k = N t+k N t. Wynika z tego że prawdopodobieństwo zgonu między wiekami t a t + k wynosi µ t,t+k, gdzie µ t,t+k = 1 σ t,t+k. 5 / 38

6 Tabelka Umieralności Należy zauważyć że obecnie intensywności zgonów są niższe niż w przeszłości, więc estymatory oparte na tabelkach umieralności ogólnie przeszacują intensywności zgonów aktualnych kohort. Wynika z tego że opdowiednie składki też są przeszacowane. Firmy ubezpieczeniowe często biorą pod uwagę trendy w intensywnościach zgonów aby oszacować intensywności zgonów aktualnej kohorty (nie rozważamy tych metod tutaj). Należy zauważyć że gdy firma ubezpiecza osoby dopiero po badaniach medycznych, wtedy intensywność zgonów u nowoubezpieczonych jest niższa niż u tych, którzy się ubezpieczyli jakiś czas temu. 6 / 38

7 Składka jednorazowa Rozważamy polisę, przy której firma wypłaci daną kwotę nominalną po śmierci ubezpieczonego, o ile umrze w danym okresie czsasu. Cena netto takiej polisy równa się kwocie, którą należy od razu zainwestować żeby pokrywać oczekiwane koszty wypłaty w wypadku śmierci ubezpieczonego. Zakładamy że termin składki jest na początku roku, a wypłata zajdzie pod koniec roku śmierci. Z powodu awersji do ryzyka, firma ubezpieczeniowa zakłada że stopa procentowa będzie dosyć niska. Gdy stopa ta jest wyższa, firma zyksuje. 7 / 38

8 Ubezpieczenie na jeden rok Zakładamy że osoba jest w wieku t, kwota do wypłacenia po śmierci ubezpieczonego wynosi K a stopa procentowa jest 100R%. Odpowiednia składka, P jest K P = Km t 1 + R. Należy zauważyć że 1+R jest kwota, którą należy od razu zainwestować aby pokryć wypłatę w wypadku śmierci, a m t jest prawdopodobieństwem śmierci. 8 / 38

9 Przykład 4.1 Zakładamy że osoba w wieku 40 chce się ubezpieczyć na rok. Wypłata w wypadku śmierci ma być $ Roczna stopa procentowa jest 4% a intensywność zgonów należy oszacować za pomocą tablicy umeralności (zob. powyżej). Wyznaczyć odpowiednią składkę jednorazową. 9 / 38

10 Przykład / 38

11 Jednorazowa składka na dłuższy okres czasu Zakładamy że ubezpieczony jest w wieku t, wtedy prawdopodobieństwo tego że umrze w i-tym roku polisy, p i (i 2) wyraża się p i = σ t,t+i 1 m t+i 1. Uwaga: Wynika to z faktu że gdy ubezpieczony umiera w i-tym roku polisy (czyli między wiekami t + i 1 a t + i), osoba ta musi przeżyć do wieku t + i 1 a umrzeć w ciągu następnego roku. Zakładamy że prawdopodobieństwo zgonu w pierwszym roku polisy, p 1, równa się m t. 11 / 38

12 Jednorazowa składka na dłuższy okres czasu Zakładamy że ubezpieczony jest w wieku t, suma wypłacona w wypadku śmierci wynosi K i stopa procentowa jest 100R%. Polisa ma trwać k lat. Odpowiednia składka jest sumą k składowych, V 1, V 1,..., V k, gdzie V i = Kp i (1 + R) i. Uwaga: Należy zauważyć że V i jest częścią składki, która pokrywa oczekiwane koszty wynikające z możliwości śmierci w i-tym roku polisy. 12 / 38

13 Przykład 4.2 Zakładamy że osoba w wieku 40 chce ubezpieczenie życiowe na nastęne 5 lat. Wypłata w wypadku śmierci wynosi $ Roczna stopa procentowa wynosi 4% i należy oszacować intensywność zgonów za pomocą tabeli podanej powyżej. Wyznaczyć i) prawdopodobieństwo śmierci w każdym roku polisy ii) odpowiednią składkę jednorazową. 13 / 38

14 Przykład / 38

15 Przykład / 38

16 Przykład / 38

17 Przykład / 38

18 Przykład / 38

19 Składka przy jednostajnej intensywności zgonów W niektórych przypadkach można założyć że intensywność zgonów w trakcie polisy jest stała. Zakładamy że roczna intensywność zgonów (czyli prawdopobieństwo tego że ktoś umrze przed wiekiem t + 1 lat przy warunku że jeszcze żyje w wieku t lat) wynosi λ. Wynika z tego że prawdopodobieństwo tego że osoba umrze w i-tym roku polisy jest p i = (1 λ) i 1 λ. Odpowiednia kwota do inwestycji w tym wypadku wynosi K (1+R) i. Pierwszy wyraz określa prawdopodobieństwo że osoba przeżyje pierwsze i 1 lat, drugi jest prawdopodobieństwem tego że osoba wtedy umiera w i-tym roku polisy. 19 / 38

20 Składka przy jednostajnej intensywności zgonów W tym wypadku, składka jednorazowa wyraża się następującym wzorem: k p i K k (1 λ) i 1 λk P = (1 + R) i = (1 + R) i Więc i=1 P = λk 1 λ k i=1 i=1 ( ) 1 λ i 1 + R 20 / 38

21 Składka przy jednostajnej intensywności zgonów Jest to szereg geometryczny, gdzie pierwszy element, c, spełnia c = λk 1+R. Iloraz r spełnia r = 1 λ 1+R, a liczba elementów w sumie wynosi k. Wynika z tego że P = λk 1 + R 1 r k 1 r, 21 / 38

22 Przykład 4.3 Wyznaczyć odpowiednią składkę jednorazową dla polisy z przykładu 4.2 przy założeniu że intensywność zgonów jest stała w okresie polisy i wynosi / 38

23 Przykład / 38

24 Przykład / 38

25 Mieszane polisy Można zdefiniować polisy, które określają wypłaty w wypadku śmierci lub przejścia na emeryturę w wieku T. W tym wypadku, z założenia intensywność zgonów (wypłat) w wieku T 1 wynosi 1, skoro gdy ubezpieczony przeżyje do wieku T 1 wypłata zawsze zajdzie w wieku T. Dla wygody, zakładamy że aż do emerytury intensywność zgonów jest stała. 25 / 38

26 Mieszane polisy Zakładamy że ubezpieczony ma przejść na emeryturę za T lat. Wypłata zajdzie za T lat wtedy i tylko wtedy gdy ubezpieczony przeżyje pierwsze T 1 lat polisy. W tym wypadku, inwestycja wstępna, która pokrywa tę wypłatę K (1+R) T i prawdopodobieństwo tego zdarzenia wynosi (1 λ) T 1. W pozostałych wypadkach, prawdopodobieństwo wypłaty w i-tym roku jest p i = (1 λ) i 1 λ, i = 1, 2,... T 1, a odpowiednia inwestycja wynosi (tak jak w poprzednim modelu). K (1+R) i 26 / 38

27 Mieszane polisy Więc składka jednorazowa za taką polisę wynosi P = gdzie r = 1 λ 1+R. λk 1 + R 1 r T 1 K(1 λ)t r (1 + R) T, Pierwsza składowa pokrywa koszty ubezpeczenia życiowego. Druga składka pokrywa wypłatę przy przejściu na emeryturę. 27 / 38

28 Przykład 4.4 Osoba w wieku 40 lat chce kupić polisę, która gwarantuje kwotę $ po śmierci ubezpieczonego lub przy przejściu na emeryturę (w wieku 65 lat). Zakładając że intensywność zgonów wynosi a stopa procentowa jest 3%, wyznaczyć odpowiednią składkę jednorazową. 28 / 38

29 Przykład / 38

30 Przykład / 38

31 Składki bieżące Tutaj, zakładamy że ubezpieczenie ma trwać T lat, intensywność zgonów jest stała i wynosi λ i stopa procentowa jest 100R%. Składki się płaci na początku roku. Wypłata po śmierci ubezpieczonego wynosi K i zajdzie pod koniec roku. Skoro założenie są niezbyt realne, wzór określający odpowiednią składkę jest zbyt prosty, ale metoda ta ilustruje ogólne podejście do tego problemu. 31 / 38

32 Podstawowe Równanie Ubezpieczenia Życiowego Podstawowe równanie ubezpieczenia życiowego jest postaci Oczekiwana wartość aktualna składek = Oczekiwana wartość aktualna wypłaty. Oczekiwana wartość aktualna wypłaty przy tych żałożeniach już została wprowadzona powyżej. V C = T i=1 p i K (1 + R) i = λk 1 + R ( ) 1 r k, 1 r gdzie p i jest prawdopodobieństwem śmierci w roku i oraz r = 1 λ 1+R. 32 / 38

33 Podstawowe Równanie Ubezpieczenia Życiowego Składka P się płaci na początku każdego roku dopóki ubezpieczony żyje (aż do roku T ). Ubezpieczony jeszcze żyje na początku roku i z prawdopodbieństwem (1 λ) i 1 (prawdopodobieństwo tego że przeżyje pierwsze i 1 lat). Aktualna wartość składki spłaconej na początku roku i wynosi P (1+R) i / 38

34 Podstawowe Równanie Ubezpieczenia Życiowego Wynika z tego że aktualna wartość sumy składek wynosi V P = T P i=1 ( 1 λ 1 + R ) ( ) i 1 1 r k = P. 1 r Z podstawowego równania ubezpieczenia życiowego V P = V C P = λk 1 + R. 34 / 38

35 Podstawowe Równanie Ubezpieczenia Życiowego Jest to równe składce jednorazowej w przypadku ubezpieczenia jednorocznego gdy λ = m t. Ma to sens, bo gdy składki są bieżące przy stałej umieralności jest to rodzaj ciągu polis jednakowych. W rzeczywistości składki są stałe, ale intensywność zgonów ogólnie rośnie wraz z wiekiem. Składka wyznaczona w ten sposób jest na początku większa niż ta odpowiadająca intensywności zgonów na początku. W późniejszych latach składka jest mniejsza niż by wynikało z tego wzoru. 35 / 38

36 Przykład 4.5 Wyznaczyć odpowiednią składkę roczną gdy intensywność zgonów wynosi, stopa procentowa jest 5% i polisa ma wypłacić $ po śmierci ubezpeczonego. 36 / 38

37 Przykład / 38

38 Przykład / 38

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k 2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty poniesione

Bardziej szczegółowo

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH

REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH REZERWY UBEZPIECZEŃ I RENT ŻYCIOWYCH M. BIENIEK Przypomnijmy, że dla dowolnego wektora przepływów c rezerwę w chwili k względem funkcji dyskonta v zdefiniowaliśmy jako k(c; v) = Val k ( k c; v), k = 0,

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.

Bardziej szczegółowo

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

UBEZPIECZENIA NA ŻYCIE

UBEZPIECZENIA NA ŻYCIE UBEZPIECZENIA NA ŻYCIE M BIENIEK Ubezpieczenie na życie jest to kontrakt pomiędzy ubezpieczycielem a ubezpieczonym gwarantujący, że ubezpieczyciel w zamian za opłacanie składek, wypłaci z góry ustaloną

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. 1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. . W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi

Bardziej szczegółowo

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r. 1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza

Bardziej szczegółowo

XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: = . Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność

Bardziej szczegółowo

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci 1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1 1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza

Bardziej szczegółowo

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28

Bardziej szczegółowo

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

7. Podatki Podstawowe pojęcia

7. Podatki Podstawowe pojęcia 7. Podatki - 7.1 Podstawowe pojęcia Podatki są poddzielone na dwie kategorie: 1. Bezpośrednie - nałożone bezpośrednio na dochód z pracy. 2. Pośrednie - nałożone na wydatki, np. na różne towary. 1 / 35

Bardziej szczegółowo

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r.

XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Komisja Egzaminacyjna dla Aktuariuszy XXXX Egzamin dla Aktuariuszy z 9 października 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 6: SKŁADKI OKRESOWE Składki okresowe netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową

Bardziej szczegółowo

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA

UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA KARIERA MATEMATYKĄ KREŚLONA UBEZPIECZ SIĘ, NAJLEPIEJ U MATEMATYKA Ryzyko i ubezpieczenie Możliwość zajścia niechcianego zdarzenia nazywamy ryzykiem. Ryzyko prawie zawsze wiąże się ze stratą. Ryzyko i ubezpieczenie

Bardziej szczegółowo

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

Składki i rezerwy netto

Składki i rezerwy netto ROZDZIAŁ 6 Składki i rezerwy netto 1 Składki netto Umowę pomiędzy ubezpieczycielem a ubezpieczonym dotyczącą ubezpieczenia na życie nazywa się polisą ubezpieczeniową Polisa taka zawiera szczegółowe warunki

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy

Bardziej szczegółowo

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Przyjmijmy, że funkcja przeżycia s(x) = ax + b dla 0 x ω. Znaleźć medianę zmiennej X, jeśli wiadomo, że wartość oczekiwana E(X) = 60. Zadanie 1.2 Mając funkcje

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Matematyka ubezpieczeń na życie Life Insurance

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

ROZDZIAŁ 5. Renty życiowe

ROZDZIAŁ 5. Renty życiowe ROZDZIAŁ 5 Renty życiowe Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy czy osoba której przyszły czas

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r. Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.

Bardziej szczegółowo

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie

Bardziej szczegółowo

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS X OGÓLNOPOLSKA KONFERENCJA AKTUARIALNA ZAGADNIENIA AKTUARIALNE TEORIA I PRAKTYKA WARSZAWA,

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r.

XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudniaa 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

OGÓLNE RENTY ŻYCIOWE

OGÓLNE RENTY ŻYCIOWE OGÓLNE RENTY ŻYCIOWE M. BIENIEK Rentą życiową nazywamy kontrakt między ubezpieczycielem a ubezpieczonym, w którym ubezpieczony w zamian za określoną opłatę, zwaną składką, otrzymuje ciąg z góry określonych

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Terminowe Ubezpieczenie na Życie MONO

Terminowe Ubezpieczenie na Życie MONO Terminowe Ubezpieczenie na Życie MONO 1. Dla kogo jest ta polisa indywidualna? 2. Co to jest ubezpieczenie terminowe MONO? 3. Korzyści dla Ubezpieczonego 4. Cechy ubezpieczenia 5. Suma ubezpieczenia i

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Ubez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a

Ubez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a Ubezpieczenie Uniwersalne Diamentowa Strategia 17 październik 2012 Diamentowa Strategia pozwoli Ci zabezpieczyć finansowo rodzinę przed utratą głównych dochodów w przypadku: inwalidztwa, poważnego zachorowania,

Bardziej szczegółowo

Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA

Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA 1. Opis i charakter produktu Ubezpieczenie bezterminowe o charakterze ochronno-inwestycyjnym łączące szeroki zakres ochrony ubezpieczeniowej

Bardziej szczegółowo

Ubezpieczenia na życie

Ubezpieczenia na życie ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Matematyka Ekonomiczna

Matematyka Ekonomiczna Matematyka Ekonomiczna Dr. hab. David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Wtorek 11-13, Czwartek 11-13 28 września

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Ubezpieczenia życiowe Kierunek: Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: Wykład i seminarium Matematyka Poziom kwalifikacji:

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji kojarzącej się w sposób losowy, w loci o dwóch allelach A i a 36% osobników tej populacji ma genotyp aa. (a) Jaka cześć

Bardziej szczegółowo

MUMIO Lab 6 (składki, kontrakt stop-loss)

MUMIO Lab 6 (składki, kontrakt stop-loss) MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku

Bardziej szczegółowo

DOKUMENT ZAWIERAJĄCY INFORMACJE O PRODUKCIE UBEZPIECZENIOWYM I OGÓLNE WARUNKI DODATKOWEGO GRUPOWEGO UBEZPIECZENIA NA WYPADEK ŚMIERCI MAŁŻONKA ALBO

DOKUMENT ZAWIERAJĄCY INFORMACJE O PRODUKCIE UBEZPIECZENIOWYM I OGÓLNE WARUNKI DODATKOWEGO GRUPOWEGO UBEZPIECZENIA NA WYPADEK ŚMIERCI MAŁŻONKA ALBO DOKUMENT ZAWIERAJĄCY INFORMACJE O PRODUKCIE UBEZPIECZENIOWYM I OGÓLNE WARUNKI DODATKOWEGO GRUPOWEGO UBEZPIECZENIA NA WYPADEK ŚMIERCI MAŁŻONKA ALBO PARTNERA ŻYCIOWEGO Dokument zawierający informacje o produkcie

Bardziej szczegółowo

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008

Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 Przemysław Klusik Instytut Matematyczny, Uniwersytet Wrocławski Ogólnopolska Konferencja Naukowa Zagadnienia Aktuarialne - Teoria i praktyka Warszawa, 9 11 czerwca 2008 (UWr) Zagadnienia Aktuarialne -

Bardziej szczegółowo

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life Aktuariat i matematyka finansowa Metody kalkulacji składki w ubezpieczeniach typu non - life Budowa składki ubezpieczeniowej Składka ubezpieczeniowa cena jaką ubezpieczający płaci za ochronę ubezpieczeniowa

Bardziej szczegółowo

UMOWA UBEZPIECZENIA OSOBOWEGO

UMOWA UBEZPIECZENIA OSOBOWEGO UMOWA UBEZPIECZENIA OSOBOWEGO zawarta w dniu... w..., pomiędzy: 1....... zwanym dalej Ubezpieczycielem a, 2....... zwanym dalej Ubezpieczającym, w dalszej części łącznie nazywani Stronami o następującej

Bardziej szczegółowo

WZÓR OBLICZANIA RZECZYWISTEJ ROCZNEJ STOPY OPROCENTOWANIA (RRSO)

WZÓR OBLICZANIA RZECZYWISTEJ ROCZNEJ STOPY OPROCENTOWANIA (RRSO) Załącznik Nr 3 WZÓR OBLICZANIA RZECZYWISTEJ ROCZNEJ STOPY OPROCENTOWANIA (RRSO) 1. Rzeczywistą roczną stopę oprocentowania stanowiącą całkowity koszt kredytu hipotecznego ponoszony przez konsumenta, wyrażony

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo