Laboratorium: Sztuczna inteligencja w medycynie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Laboratorium: Sztuczna inteligencja w medycynie"

Transkrypt

1 KATEDRA SYSTEMÓW MULTIMEDIALNYCH Lortorum: Sztuzn ntelgenj w medyyne Ćwzene nr : Projektowne prostyh systemów logk rozmytej Oprowne: dr nż. Potr Suhomsk. Cel ćwzen Celem ćwzen jest zpoznne studentów z podstwowym zgdnenm projektown systemów logk rozmytej. 2. Podstwy fuzzy log Klsyzne wnoskowne oprte n dwuwrtośowej loge Arystoteles orz n klsyznej defnj zoru według Cntor, stwrz wele prolemów zwłszz w proese projektown systemów sterown, przetwrzjąyh zęsto nejednoznzne wzjemne wykluzjąe sę rzezywste prmetry. W klsyznej teor zorów stopeń przynleżnoś dnego elementu do zoru możn określć z pomoą jednej z dwóh wrtoś: gdy element ne nleży do dnego zoru gdy element nleży do dnego zoru. W tym przypdku trudny do jednoznznego określen jest stopeń przynleżnoś w przypdku wrtoś prmetrów rzezywstyh, znjdująyh w polżu grny sąsednh zorów [6]. Rozwnęem dwuwrtośowej logk jest logk welowrtośow, zproponown w 965 roku przez Zdeh jko tzw. logk rozmyt (ng. fuzzy log) [8]. Logk rozmyt znlzł szeroke zstosowne w szeroko rozumnej tehne, zwłszz w systemh sterown [3][6]. Systemy logk rozmytej hrkteryzują sę dużą prostotą elstyznośą struktury, zhowują wysoką skutezność. Intuyjn, lngwstyzn struktur opsu przetwrznego zjwsk, prost z reguł oprt o formuły typu IF... THEN znzne uprszz proes projektown [][5][7]. W teor zorów rozmytyh element może nleżeć zęśowo do pewnego zoru. Stopeń przynleżnoś elementów do dnego zoru rozmytego opsuje funkj przynleżnoś ():U[,] (ng. memershp funton, zleżność (2.)).

2 f ( ), X ( ) (2.) X X U, Zory z funkją przynleżnoś określoną n podstwe zleżnoś 8.5 dl zwrtyh w nh elementów są nzywne zorm rozmytym (ng. fuzzy sets). Dw zory rozmyte X, X 2 U są soe równe, gdy spełnon jest zleżność 2.2. ) ( ) (2.2) U X( X 2 Nośnkem zoru rozmytego (ng. support) jest zór elementów, któryh stopeń przynleżnoś do dnego zoru jest różny od. Punktem rozgrnzjąym zoru rozmytego jest tk element zoru, dl którego wrtość funkj przynleżnoś ()=/2. Zór rozmyty może ne posdć punktu rozgrnzjąego lu może posdć jeden punkt wele punktów rozgrnzjąyh. Jądrem zoru rozmytego ker(a) (ng. kernel) jest zór tyh elementów, któryh stopeń przynleżnoś do dnego zoru rozmytego A wynos. W przypdku, gdy tylko jeden element nleży do jądr zoru, to element ten nzywny jest wrtośą szzytową zoru. Wysokość zoru rozmytego A określ supremum wrtoś funkj przynleżnoś hgt(a) = sup A (). Gdy wysokość zoru wynos, to jest to zór rozmyty normlny. Często w proese projektown systemów logk rozmytej dokonuje sę normlzj zorów rozmytyh poprzez dzelene wrtoś funkj przynleżnoś dnego zoru przez jego wysokość. Z punktu wdzen przetwrzn rozmytego njwżnejsze są nstępująe operje n zorh rozmytyh: sum zorów rozmytyh A B n tym smym unwersum U jest zór rozmyty A B określony funkją przynleżnoś (2.3) AB () = m( A (), B ()) (2.3) lozyn zorów rozmytyh A B n tym smym unwersum U jest zór rozmyty A B określony funkją przynleżnoś (2.4). AB () = mn( A (), B ()) (2.4) dopełnenem zoru rozmytego A n unwersum U jest zór rozmyty A A () = - A () (2.5) Ksztłt zkres funkj przynleżnoś może yć określon lo rtrlne przez ekspert, lo n drodze nlzy sttystyznej pomrów rzezywstyh wrtoś dnego

3 prmetru [4][5]. W prktyznyh zstosownh logk rozmytej zęsto korzyst sę z klku rodzjów ksztłtów funkj przynleżnoś [6]: funkje klsy (zleżność (2,6), rys. 2.); dl dl dl ) (, (2,6) Rys. 2. Funkj klsy funkje klsy L (zleżność (2.7), rys. 2.2); L dl dl dl ) (, (2.7) Rys. 2.2 Funkj klsy L funkje klsy, zwne równeż trójkątnym (zleżność (2.8), rys. 2.3);

4 dl dl dl ) (,, (2.8) Rys Funkj klsy funkje klsy, zwne równeż trpezowym (zleżność (2.9), rys. 2.4); d d d d d dl dl dl dl ) (,,, (2.9) Rys Funkj klsy

5 funkje klsy s (zleżność (2.), rys. 2.5); dl 2 2 dl 2, ( ) (2.) 2 2 dl 2 dl s Rys Funkj klsy s funkje klsy (zleżność (2.), rys. 2.6); s, ( ) dl, ( ) (2.) s, ( ) dl Rys Funkj klsy Przetwrzne dnyh w typowym systeme logk rozmytej przeeg w nstępująyh krokh:. przetwrzne wstępne (ng. preproessng); 2. rozmywne (ng. fuzzyfton); 3. nterpretj reguł; 4. wyostrzne (ng. defuzzyfton); 5. przetwrzne końowe.

6 Celem przetwrzn wstępnego jest konwersj dnyh, doprowdznyh n wejśe systemu wnoskown, do formtu keptownego przez ten system. Anlogzne, przetwrzne końowe konwertuje wynk systemu logk rozmytej do formtu keptownego przez zewnętrzne moduły podłązone do tego systemu. System logk rozmytej ozekuje n wejśu prmetrów w post lz rzezywstyh zwr wynk równeż w post lz rzezywstyh (ng. rsp vlue). Perwszym etpem przetwrzn rozmytego jest proes rozmywn, w lterturze zęsto z język ngelskego nzywny proesem fuzyfkj [3][6]. Proes ten poleg n wyznzenu wrtoś poszzególnyh zmennyh lngwstyznyh w opru o wrtość poszzególnyh funkj przynleżnoś dl rzezywstej wrtoś określonego prmetru wejśowego. Zsdnzym krokem w przetwrznu rozmytym jest proes nterpretj reguł. Typow reguł w loge rozmytej m postć wyrżen (2.2). Interpretj reguł przeeg w dwóh fzh. W perwszej fze olz sę mo reguły (ng. rule evluton). W tym elu w mejse przesłnek podstw sę wrtoś, odpowdjąyh m zmennyh lngwstyznyh. Ponewż w loge rozmytej operj AND równowżn jest funkj mnmum, dltego mo dnej reguły olz sę jko mnmum wrtoś przesłnek, występująyh w tej regule. Jeżel mo reguły jest zerow, to reguł t jest uznwn z nektywną. Jednoześne wyznzny jest wynkowy zór rozmyty. Kżdemu rodzjow deyzj odpowd jeden wynkowy zór rozmyty, który posd określoną funkję przynleżnoś. Mo dnej reguły wskzuje elementy wynkowego zoru rozmytego, które rne są pod uwgę w dlszyh olzenh (są to elementy, któryh stopeń przynleżnoś jest mnejszy ądź równy moy dnej reguły). Po wyznzenu moy wszystkh reguł nstępuje fz gregj reguł (ng. rule ggregton). Agregj reguł poleg n sumownu wszystkh wynkowyh zorów rozmytyh, reprezentująyh poszzególne reguły [6][8]. IF przesłnk AND przesłnk 2 AND... AND przesłnk n THEN deyzj (2.2) Kedy wynkowy zór rozmyty jest już wyznzony nstępuje osttn etp przetwrzn rozmytego, zwny wyostrznem lu z język ngelskego defuzyfkją. Proes wyostrzn jest odwrotny do proesu rozmywn, jego zdnem jest trnsformj wynku przetwrzn rozmytego z dzedzny zorów rozmytyh do dzedzny lz rzezywstyh. Proes wyostrzn możn przeprowdzć n klk sposoów:

7 Metod njwększej wrtoś funkj przynleżnoś (ng. men of mmum). Wynkem tego typu wyostrzn jest wrtość punktu, ędąego środkem przedzłu, w którym wyznzon funkj przynleżnoś przyjmuje mksymlną wrtość (2.7). Jest to njprostszy sposó defuzyfkj, sprowdz sę on do wyoru tej reguły, której mo ył njwększ. Wdą tego rozwązn jest neuwzględnne pozostłyh reguł. Metod entrowego środk ężkoś (ng. enter verge). Wrtość wyjśową olz sę według zleżnoś (2.3) (rys. 2.7). Wrtość określ środek przedzłu, dl którego -t funkj przynleżnoś () przyjmuje wrtość mksymlną. Prmetr N określ lzę wszystkh wyjśowyh zorów rozmytyh. W metodze tej rne są pod uwgę wszystke ktywowne reguły. Wdą tej metody jest neuwzględnne nformj o ksztłe funkj przynleżnoś. N N ( ) ( ) (2.3) metod wyznzn środk ężkoś (ng. enter of grvty). Wrtość wyjśow olz sę według zleżnoś (2.4) (rys. 2.7). Metod t jest njrdzej elstyzn, uwzględn zrówno wszystke ktywne reguły orz ksztłt funkj przynleżnoś. Wdą tej metody jest stosunkowo duż złożoność olzenow. X ( ) d X ( ) d (2.4)

8 Rys Ilustrj metod wyostrzn: ) metod njwększej wrtoś funkj przynleżnoś, ) metod entrowego środk ężkoś, ) metod wyznzn środk ężkoś [2] Teor prwdopodoeństw teor zorów rozmytyh pozorne są do see podone, jednk w rzezywstoś w stotny sposó różną sę od see. Zrówno prwdopodoeństwo jk rozmytość przyjmują wrtoś lz rzezywstyh z domknętego zkresu [,]. Prwdopodoeństwo jest zwązne ze zdrzenm, tym smym nepewność w tym przypdku dotyzy przypdkowoś pojwn sę tyh zdrzeń. Ntomst rozmytość to nepewność zwązn z określenem przynleżnoś dnego elementu do zoru rozmytego. Prwdopodoeństwo jest mrą, któr spełn wrunek ddytywnoś, pondto jest mrą unormowną, o oznz, że sum możlwoś mus wyneść. Z kole rozmytość to oen, któr ne mus spełnć n wrunku ddytywnoś n unormown. Ogólne rzez orą różne mędzy prwdopodoeństwem rozmytośą dotyzą zrówno ntury rozwżnyh pojęć, jk h włsnoś formlnyh [][4][6] 3. Przykłdowe zdne sterown zrszzem ogrodowym Zdne poleg n zprojektownu systemu logk rozmytej, który ędze sterowł prostym zrszzem ogrodowym. Zrszz posd tylko jeden prmetr, którym możn sterowć. Prmetr ten nzwny zostł roozo ntensywność zrszn, zkres jego zmennoś jest od do % przy zym % oznz wyłązene zrszn wrtość % oznz mksymlne otwre zrszz zyl ntensywne zrszne (mksymlny strumeń wody). Zrszz wyposżony jest równeż w termometr, który merzy temperturę powetrz w zkrese od do 8 stopn Celsjusz orz hgrometr merząy wlgotność gley w zkrese od do %. Stąd wynk, że w projektownym systeme sterown ntensywność zrszn ędze zleżn od tempertury powetrz wlgotnoś gley. W perwszym kroku dentyfkujemy etykety zorów rozmytyh opsująyh temperturę powetrz orz etykety zorów rozmytyh opsująyh wlgotność gley. Złóżmy, że temperturę powetrz ędzemy opsywć z pomoą trzeh etyket: hłodno, epło, gorąo,

9 ntomst wlgotność opszemy z pomoą etyket: mł, średn, duż. Jeżel hodz o prmetr wyjśowy ntensywność zrszn, opsująy sposó zrszn możemy opsć z pomoą nstępująyh etyket: słe, średne, ntensywne. Nstępne defnujemy funkje przynleżnoś dl poszzególnyh zorów rozmytyh. tempertur powetrz,9,8,7,6,5,4,3,2, hłodno epło gorąo C wlgotność gley,9,8,7,6,5,4,3,2, mł średn duż % ntensywność zrszn,9,8,7,6,5,4,3,2, słe średne ntensywne % Kolejny etp projektown systemu logk rozmytej to defnowne reguł rozmytyh. Przykłdow reguł systemu sterown zrszzem może yć nstępują:

10 IF tempertur s gorąo AND wlgotność s mł THEN zrszne = ntensywne W przypdku prostyh systemów, gdze są tylko dw prmetry wejśowe, proes tworzene reguł możn soe uprość tworzą telę, w której wersze odpowdją etyketom perwszego prmetru wejśowego kolumny reprezentują etykety drugego prmetru. tempertur hłodno epło Gorąo wlgotność mł średne ntensywne Intensywne średn słe średne Intensywne duż słe słe Słe Osttnm etpem projektown systemu logk rozmytej jest określene sposou wyostrzn zyl defuzzyfkj. N ogół wyer sę jedną z trzeh znnyh metod wyostrzn. Ponewż w opsywnym zdnu prmetr wyjśowy może yć płynne regulowny, zkres regulj pokrywją trzy wyjśowe funkje przynleżnoś dltego wydje sę yć sensowne wyrne metody wyostrzn oprtej n metodze środk ężkoś, któr erze pod uwgę wszystke ktywowne reguły orz uwzględn ksztłt funkj przynleżnoś.. Wrtość środk ężkoś wyznzonej wyjśowej funkj przynleżnoś ędze określł ntensywność zrszn w skl od do %. Sprwdźmy jk ędze rekj zprojektownego systemu przetwrzn rozmytego jeśl n wejśu systemu zostne podn wrtość zmerzonej tempertury równ 25C orz wrtość wlgotnoś równ 3%. W perwszej kolejnoś przeprowdźmy rozmywne zmerzonyh prmetrów wejśowyh. Według funkj przynleżnoś opsująyh temperturę możn odzytć, że wrtość 25C nleży do zoru oznzonego etyketą hłodno ze stopnem przynleżnoś równym.2, ntomst do zoru rozmytego oznzonego etyketą epło ze stopnem przynleżnoś równym.8. Ntomst prmetr wlgotnoś o wrtoś 3% nleży do zoru rozmytego oznzonego etyketą mł orz do zoru oznzonego etyketą średn ze stopnem przynleżnoś równym.5. Jeśl wynk fuzzyfkj wprowdzmy do zy reguł to zuwżymy, że ktywowne zostną nstępująe reguły: IF tempertur s hłodno{,2} AND wlgotność s mł{,5} THEN zrszne = średne IF tempertur s epło{,8} AND wlgotność s mł{,5} THEN zrszne = ntensywne

11 IF tempertur s hłodno{,2} AND wlgotność s średn{,5} THEN zrszne = słe IF tempertur s epło{,8} AND wlgotność s średn{,5} THEN zrszne = średne W nstępnym kroku olzmy mo poszzególnyh reguł pmętją, że operj AND nterpretown jest jko wrtość mnmum z poszzególnyh przesłnek. tempertur hłodno epło Gorąo wlgotność mł Średne mo =,2 Intensywne mo =,5 Intensywne średn Słe mo =,2 Średne mo =,5 Intensywne duż słe słe Słe Po olzenu moy reguł dokonujemy gregj reguł. Tym rzem dl reguł zwąznyh z tą smą deyzją wyermy wrtość mksymlną moy reguł. W przypdku deyzj dotyząej zrszne średnego mmy dwe reguły jedn o moy równej,2 drug o moy,5. W proese wyznzn wyjśowego zoru rozmytego pod uwgę erzemy wrtość mksymlną zyl,5. Wyjśowy zór rozmyty możn wyznzyć grfzne. N wykrese odpowednh wyjśowyh funkj przynleżnoś odznzmy moe reguł. Złązene powerzhn powstłyh po zznzenu moy reguł tworzą wyjśową fgurę, której środek ężkoś wyznz wrtość regulj stopn zrszn. Dl nlzownyh dnyh wejśowyh zprojektowny system ustw stopeń zrszn równy ok. 57,2. ntensywność zrszn,9,8,7,6,5,4,3,2, słe średne ntensywne wyjśowy zór rozmyty % 57,2

12 4. Zdn Zproponowć proste zdne do relzj z pomoą systemu logk rozmytej (lu wykonć projekt zdny przez prowdząego lortorum). System pownen meć przynjmnej dw prmetry wejśowe. Kżdy prmetr wejśowy pownen yć opsny z pomoą o njmnej pęu etyket. Projekt systemu możn wykonć wykorzystują dostępne w lortorum nrzędz MS Offe lu Mtl. 5. Oprowne Sprwozdne pownno zwerć: treść rozwązywnego zdn, defnję prmetrów wejśowyh wyjśowyh projektownego systemu, wykresy funkj przynleżnoś, zę reguł z krótkm wyjśnenem sposou konstrukj, uzsdnene wyoru sposou wyostrzn przykłdy lustrująe dzłn zprojektownego systemu (mnmum trzy przykłdy, reprezentująe zróżnowne prmetrów wejśowyh, wnosk. 6. Ltertur [] Czogł E., Pedryz W., Elementy metody teor zorów rozmytyh, PWN, Wrszw 982. [2] Czyżewsk A., Dźwęk yfrowy. Podstwy teoretyzne, tehnolog, zstosown, Akdemk Ofyn Wydwnz, Wrszw, 998. [3] Drnkov D., Hellendoom H., Renfrnk M., Wprowdzene do sterown rozmytego, WNT, Wrszw, 996. [4] Kosko B., Fuzzy Engneerng, Prente-Hll, 997. [5] Kostek B., Soft Computng n Aousts, Appltons of Neurl Networks, Fuzzy Log nd Rough Sets to Musl Aousts, Studes n Fuzzness nd Soft Computng, Phys Verlg, Heldererg, New York, 999. [6] Łhw A., Rozmyty śwt zorów, lz, relj, fktów, reguł I deyzj, Akdemk Ofyn Wydwnz, Wrszw, 2. [7] Mendel J.M., Fuzzy Log Systems for Engneerng: A Tutorl, IEEE, 995. [8] Zdeh L.A., Fuzzy Sets, Informton nd ontrol, pp , 965.

Środek masy i geometryczne momenty bezwładności figur płaskich 1

Środek masy i geometryczne momenty bezwładności figur płaskich 1 Środek ms geometrzne moment bezwłdnoś fgur płskh Środek ms fgur płskej Zleżnoś n współrzędne środk ms, fgur płskej złożonej z fgur regulrnh rs.. możem zpsć w nstępują sposób: gdze:. pole powerzhn -tej

Bardziej szczegółowo

Metoda prądów obwodowych

Metoda prądów obwodowych Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń

Bardziej szczegółowo

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A

Sformułowanie zagadnienia. c c. Analiza zagadnienia dla przypadku m = 4 i n = 3. B 2. c A. c A ZGDNIENIE TRNSPORTOWE Sformułowne zgdnen Przypuśćmy, że z m punktów odprwy,, K, m m być wysłny w lośh,, K, m ednorodny produkt do n punktów przyęć,, K, n. odboru przymuą produkt w lośh b, b, K, bn. Kżdy

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Mtemtyzne G i m n z j l i s t ó w 1. Lizy,, spełniją wrunki: (1) ++ = 0, 1 () + + 1 + + 1 + = 1 4. Olizyć wrtość wyrżeni w = + + Rozwiąznie Stowrzyszenie n rzez Edukji Mtemtyznej Zestw 7 szkie rozwizń

Bardziej szczegółowo

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH

DOBÓR LINIOWO-ŁAMANEGO ROZDZIAŁU SIŁ HAMUJĄCYCH W SAMOCHODACH DOSTAWCZYCH Zgnew Kmńsk DOBÓ INIOWO-ŁMNEO OZDZIŁU SIŁ HMUJĄCYCH W SMOCHODCH DOSTWCZYCH Streszczene. W rtykule opsno sposoy dooru lnowo-łmnego rozdzłu sł mującyc w smocodc dostwczyc według wymgń egulmnu 3 ECE. Przedstwono

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.

( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu. Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Poltechnk Gdńsk Wydzł Elektrotechnk Automtyk Ktedr Inżyner Systemów Sterown Teor sterown Podstwy lgebry mcerzy Mterły pomocncze do ćwczeń lbortoryjnych 1 Część 3 Oprcowne: Kzmerz Duznkewcz, dr hb. nż.

Bardziej szczegółowo

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty Kodownie licz Kodownie stłopozycyjne licz cłkowitych Niech licz cłkowit m w systemie dwójkowym postć: nn 0 Wtedy może yć on przedstwion w postci ( n+)-itowej przy pomocy trzech niżej zdefiniownych kodów

Bardziej szczegółowo

TEORIA WAGNERA UTLENIANIA METALI

TEORIA WAGNERA UTLENIANIA METALI TEORIA WAGNERA UTLENIANIA METALI PROCES POWSTAWANIA ZGORZELIN W/G TAMANN A (90) Utlenz tl Utlenz Zgorzeln tl + SCHEMAT KLASYCZNEGO DOŚWIADCZENIA PFEILA (99) Powetrze Powetrze SO Zgorzeln SO Fe Fe TEORIA

Bardziej szczegółowo

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego

Raport Przeliczenie punktów osnowy wysokościowej III, IV i V klasy z układu Kronsztadt60 do układu Kronsztadt86 na obszarze powiatu krakowskiego Rport Przelczene punktów osnowy wysokoścowej III, IV V klsy z ukłdu Kronsztdt60 do ukłdu Kronsztdt86 n oszrze powtu krkowskego Wykonł: dr h. nż. Potr Bnsk dr nż. Jcek Kudrys dr nż. Mrcn Lgs dr nż. Bogdn

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Zbiory rozmyte. logika rozmyta

Zbiory rozmyte. logika rozmyta Ziory rozmyte logik rozmyt Rozwiąznie Fuzzy Set Theory L. Zdeh (965) Logik rozmyt i reguły rozmyte Informj którą przetwrzją ludzie zęsto (zwsze) jest niepreyzyjn, mimo to potrfimy poprwnie wnioskowć! Np.

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana

ZESZYTY NAUKOWE NR 11(83) AKADEMII MORSKIEJ W SZCZECINIE. Fuzja danych nawigacyjnych w przestrzeni filtru Kalmana ISSN 733-867 ZESZ NAUKOWE NR (83) AKADEMII MORSKIEJ W SZCZECINIE IV MIĘDZNARODOWA KONFERENCJA NAUKOWO-ECHNICZNA E X L O - S H I 6 Andrzej Stteczny, Andrzej Lsj, Chfn Mohmmd Fzj dnych nwgcyjnych w przestrzen

Bardziej szczegółowo

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA.

FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Oprownie: Elżiet Mlnowsk FUNKCJA KWADRATOWA. RÓWNANIA I NIERÓWNOŚCI DRUGIEGO STOPNIA. Określeni podstwowe: Jeżeli kżdej lizie x z pewnego zioru lizowego X przporządkown jest dokłdnie jedn liz, to mówim,

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA.

EKONOMIA MENEDŻERSKA. Wykład 2 Analiza popytu. Optymalna polityka cenowa. 1 ANALIZA POPYTU. OPTYMALNA POLITYKA CENOWA. Wykłd Anlz popytu. Optymln poltyk cenow. 1 ANALIZA OYTU. OTYMALNA OLITYKA CENOWA. rzedmotem wykłdu jest prolem zrządzn zyskem poprzez oprcowne wdrożene odpowednej strteg różncown cen, wykorzystując do

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Sprawozdanie z zajęć laboratoryjnych z Miernictwa Elektronicznego

Sprawozdanie z zajęć laboratoryjnych z Miernictwa Elektronicznego Sprwozde z zjęć lortoryjyh z Mertw Elektrozego Dt wyko pomru: 08.05.008 rowdząy: dr ż. J Juszkewz Sprwozde wykoł: Tomsz Wtk Sttystyz oe wyków pomrów rzyrząd pomrowy: Suwmrk z wyśwetlzem elektrozym; L =0,0mm

Bardziej szczegółowo

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych).

Metoda sił jest sposobem rozwiązywania układów statycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Metod sił jest sposoem rozwiązywni ukłdów sttycznie niewyznczlnych, czyli ukłdów o ndliczowych więzch (zewnętrznych i wewnętrznych). Sprowdz się on do rozwiązni ukłdu sttycznie wyznczlnego (ukłd potwowy

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Kls drug A, B, C, D, E, G, H zkres podstwowy 1. FUNKCJA LINIOWA rozpoznje funkcję liniową n podstwie wzoru lub wykresu rysuje

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy

Semantyka i Weryfikacja Programów - Laboratorium 2 Działania na ułamkach, krotki i rekordy Semntyk i Weryfikj Progrmów - Lortorium Dziłni n ułmkh, krotki i rekory Cz. I. Dziłni n ułmkh Prolem. Oprowć zestw funkji o ziłń rytmetyznyh n ułmkh zwykłyh posti q, gzie, są lizmi łkowitymi i 0. Rozwiąznie

Bardziej szczegółowo

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy

ω a, ω - prędkości kątowe członów czynnego a i biernego b przy Prekłne Mechncne PRZEKŁADNIE MECHANICZNE Prekłne mechncne są wykle mechnmm kołowym prenconym o prenesen npęu o włu slnk wykonuącego ruch orotowy o cłonu npęowego msyny rooce, mechnmu wykonwcego lu wprost

Bardziej szczegółowo

1. Zestaw do oznaczania BZT i ChZT

1. Zestaw do oznaczania BZT i ChZT Sprw Nr RAP.272. 85. 2014 złąznik nr 6.1 do SIWZ PARAMETRY TECHNICZNE PRZEDMIOTU ZAMÓWIENIA Nzw i dres Wykonwy:... Nzw i typ (produent) oferownego urządzeni:... Nzw przedmiotu zmówieni : 1. Zestw do oznzni

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Rozwiązania maj 2017r. Zadania zamknięte

Rozwiązania maj 2017r. Zadania zamknięte Rozwiązni mj 2017r. Zdni zmknięte Zd 1. 5 16 5 2 5 2 Zd 2. 5 2 27 2 23 2 2 2 2 Zd 3. 2log 3 2log 5log 3 log 5 log 9 log 25log Zd. 120% 8910 1,2 8910 2,2 8910 $%, 050 Zd 5. Njłtwiej jest zuwżyć że dl 1

Bardziej szczegółowo

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych PODSTAWY BAZ DANYCH Wykłd 3 2. Pojęcie Relcyjnej Bzy Dnych 2005/2006 Wykłd "Podstwy z dnych" 1 Rozkłdlno dlność schemtów w relcyjnych Przykłd. Relcj EGZ(U), U := { I, N, P, O }, gdzie I 10 10 11 N f f

Bardziej szczegółowo

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1 Rchunek mcierzowy Mcierzą A nzywmy funkcję 2-zmiennych, któr prze liczb nturlnych (i,j) gdzie i = 1,2,3,4.,m; j = 1,2,3,4,n przyporządkowuje dokłdnie jeden element ij. 11 21 A = m1 12 22 m2 1n 2n mn Wymirem

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 7

Semantyka i Weryfikacja Programów - Laboratorium 7 Semntyk i Weryfikj Progrmów - Lortorium 7 Weryfikj twierdzeń logiznyh Cel. Celem ćwizeni jest zpoznnie się z metodą utomtyznego dowodzeni twierdzeń, tzn. weryfikji, zy dne twierdzenie jest tutologią (twierdzenie

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ

ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ ZADANIA Z ZAKRESU SZKOŁY PODSTAWOWEJ, GIMNAZJUM I SZKOŁY ŚREDNIEJ Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + Nrsowć wkres funkji: f() = + + Dl jkih wrtośi A, B zhodzi równość: + +5+6 = A

Bardziej szczegółowo

µ (T ) - oznacza standardowy molowy potencjał chemiczny składnika czystego i pod

µ (T ) - oznacza standardowy molowy potencjał chemiczny składnika czystego i pod WYZNACZANIE AKTYWNOŚCI ROZPUSZCZALNIKA WSTĘP Aktywność Dl roztworów doskonłyh rwdzwy jest nstęująy zwązek otenjłu hemznego skłdnk ze stęŝenem: µ + RT ln x (1) = µ gdze µ oznz stndrdowy otenjł hemzny skłdnk

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja

Materiały pomocnicze do ćwiczeń z przedmiotu: Ogrzewnictwo, wentylacja i klimatyzacja II. Klimatyzacja Mteriły pomocnicze do ćwiczeń z przedmiotu: Orzewnictwo, wentylcj i klimtyzcj II. Klimtyzcj Rozdził 1 Podstwowe włsności powietrz jko nośnik ciepł mr inż. Anieszk Sdłowsk-Słę Mteriły pomocnicze do klimtyzcji.

Bardziej szczegółowo

ZBIORY ROZMYTE. METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 I WNIOSKOWANIE PRZYBLIŻONE. sets

ZBIORY ROZMYTE. METODY INTELIGENCJI OBLICZENIOWEJ wykład 6 I WNIOSKOWANIE PRZYBLIŻONE. sets METODY INTELIGENCJI OBLICZENIOWEJ wykłd 6 ZBIORY ROZMYTE I WNIOSKOWNIE PRZYBLIŻONE 965 Lotfi. Zdeh: : Fuzzy sets Metod reprezentcji wiedzy wyrżonej w języku nturlnym: Tempertur wynosi 9 o C informcj liczow

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań KONKURS MATEMATYCZNY dl uczniów gimnzjów w roku szkolnym 0/ II etp zwodów (rejonowy) 0 listopd 0 r. Propozycj punktowni rozwiązń zdń Uwg: Z kżde poprwne rozwiąznie inne niż przewidzine w propozycji punktowni

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

Cyfrowe przetwarzanie i kompresja danych

Cyfrowe przetwarzanie i kompresja danych Cyfrowe przetwarzane kompresja danyh dr nż.. Wojeh Zają Wykład 4. Dyskretna transformata kosnusowa Shemat przetwarzana danyh w systeme yfrowym Cyfryzaja danyh Dekorelaja kwantyzaja ompresja FEC + przeplot

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna lger Bool i podstwy systemów liczowych. Ćwiczeni z Teorii Ukłdów Logicznych, dr inż. Ernest Jmro. System dwójkowy reprezentcj inrn Ukłdy logiczne operują tylko n dwóch stnch ozncznymi jko zero (stn npięci

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych

Modelowanie sił skrawania występujących przy obróbce gniazd zaworowych Scentfc Journls Mrtme Unversty of Szczecn Zeszyty ukowe Akdem Morsk w Szczecne 29, 7(89) pp. 63 67 29, 7(89) s. 63 67 Modelowne sł skrwn występujących przy obróbce gnzd zworowych Cuttng forces modelng

Bardziej szczegółowo

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier

MODELE TEORII GIER. Modelowanie matematyczne. dr inż. Zbigniew Tarapata Wykład nr 5: Modele teorii gier MODELE TEORII GIER Podejmowne decyzj nwestycyjnych często jest dokonywne w sytucjch, w których ne wdomo, jk będze stn otoczen lub też, jką decyzję podejmą nn decydenc, mjący wpływ n wynk decyzj przez ns

Bardziej szczegółowo

4. RACHUNEK WEKTOROWY

4. RACHUNEK WEKTOROWY 4. RACHUNEK WEKTOROWY 4.1. Wektor zczepiony i wektor swoodny Uporządkowną prę punktów (A B) wyznczjącą skierowny odcinek o początku w punkcie A i końcu w punkcie B nzywmy wektorem zczepionym w punkcie

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 9. ZBIORY ROZMYTE Częstochow 204 Dr hb. inż. Grzegorz Dudek Wydził Elektryczny Politechnik Częstochowsk ZBIORY ROZMYTE Klsyczne pojęcie zbioru związne jest z logiką dwuwrtościową

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 01/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A, A6, A7) GRUDZIEŃ 01 Klucz odpowiedzi do zdń zmkniętych Nr zdni 1 5 Odpowiedź

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Minimalizacja automatu

Minimalizacja automatu Minimlizj utomtu Minimlizj utomtu to minimlizj lizy stnów. Jest to trnsformj utomtu o nej tliy przejśćwyjść n równowżny mu (po wzglęem przetwrzni sygnłów yfrowyh) utomt o mniejszej lizie stnów wewnętrznyh.

Bardziej szczegółowo

1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych

1. Wstęp. Pojęcie grafu przepływowego. Niech pewien system liniowy będzie opisany układem liniowych równań algebraicznych Owody i Ukłdy Anliz ukłdów z pomoą grfów przepływowy Mteriły Pomonize. Wstęp. Pojęie grfu przepływowego. Nie pewien system liniowy ędzie opisny ukłdem liniowy równń lgerizny x + x x + x gdzie: x, x - zmienne

Bardziej szczegółowo

TEORIA FAL ELLIOTTA - szczegółowy opis tej metody analizy technicznej

TEORIA FAL ELLIOTTA - szczegółowy opis tej metody analizy technicznej - szzegółowy ops tej metody nlzy tehnznej WPROWDZENIE Teor fl Ellott zostł oprown w lth trzydzestyh XX weku przez Rlph Nelson Ellott. Ten merykńsk ksęgowy oserwowł nlzowł zhowne sę en kj n nowojorskej

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LII Egzamin dla Aktuariuszy z 15 marca 2010 r. Część I Matematyka finansowa Mtemtyk finnsow 15.0.010 r. Komisj Egzmincyjn dl Akturiuszy LII Egzmin dl Akturiuszy z 15 mrc 010 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoy egzminownej:... Czs egzminu: 100 minut 1

Bardziej szczegółowo

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją

Bardziej szczegółowo

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI

STANDARDOWE FUNKCJE PRZYNALEŻNOŚCI INTELIGENTNE TECHNIKI KOMPUTEROWE wkłd STNDRDOWE FUNKCJE PRZYNLEŻNOŚCI GUSSOWSK F. PRZYNLEŻNOŚCI ' μ ( ; ', ) ep μ().5 ' środek; określ szerokość krzwej.5 3 F. PRZYNLEŻNOŚCI KLSY s dl - dl c- sc ( ;,,

Bardziej szczegółowo

Z INFORMATYKI RAPORT

Z INFORMATYKI RAPORT OKRĘGOWA KOMISJA EGZAMINACYJNA W POZNANIU WYNIKI EGZAMINU MATURALNEGO Z INFORMATYKI RAPORT WOJEWÓDZTWA LUBUSKIE*WIELKOPOLSKIE*ZACHODNIOPOMORSKIE 2 Egzmin mturlny z informtyki zostł przeprowdzony w łym

Bardziej szczegółowo

Minimalizacja funkcji jednej lub wielu zmiennych

Minimalizacja funkcji jednej lub wielu zmiennych Mnmlzj funj jednej lu welu zmennyh Otymlzj wyznzene mnmum funj rzezywstej welu zmennyh w dnym oszrze (wrz z untem w tórym to mnmum wystęuje). Jeśl funj jest nelnow zwer wele mnmów lolnyh zdne jest trudne

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc

Bardziej szczegółowo

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2)

Połączenie (1) Optymalizacja poleceń SQL Część 3. Algorytm nested loops. Połączenie (2) Połązenie () Optymlizj poleeń SQL zęść. Metody połązeń, metody sortowni, wskzówki Operj inrn zwsze udził iorą dwie tele, jedn zostje nzwn telą zewnętrzną, drug telą wewnętrzną. W przypdku poleeni łąząego

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część I Matematyka finansowa Mtemtyk finnsow 12.03.2012 r. Komisj Egzmincyjn dl Akturiuszy LIX Egzmin dl Akturiuszy z 12 mrc 2012 r. Część I Mtemtyk finnsow WERSJA TESTU A Imię i nzwisko osoby egzminownej:... Czs egzminu: 100 minut

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnazjum nr 2 im. ks. Stanisława Konarskiego nr 2 w Łukowie I. ZASADY OGÓLNE PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKÓW OBCYCH w Gimnzjum nr 2 im. ks. Stnisłw Konrskiego nr 2 w Łukowie 1. W Gimnzjum nr 2 w Łukowie nuczne są: język ngielski - etp educyjny III.1 język

Bardziej szczegółowo

TESTOWANIE HIPOTEZY O KOMPLETNOŚCI ZBIORU ARGUMENTÓW

TESTOWANIE HIPOTEZY O KOMPLETNOŚCI ZBIORU ARGUMENTÓW TESTOWANIE HIPOTEY O KOMPLETNOŚCI BIORU ARGUMENTÓW Pweł Szołysek RELACJA PODOBIEŃSTWA I TESTOWANIE KOMPLETNOŚCI BIORU ARGUMENTÓW RELACJA PODOBIEŃSTWA - AŁOŻENIA Proces es opsny z poocą funkc wyrowe wyrowo

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

ULTRADŹWIĘKOWE BADANIE ODLEWÓW STALIWNYCH WYMAGANIA NORMY EN 12680-1

ULTRADŹWIĘKOWE BADANIE ODLEWÓW STALIWNYCH WYMAGANIA NORMY EN 12680-1 Dr inż. MAREK ŚLIWOWSKI NDTEST Sp. z o.o. Wrszw WSTĘP W rmch prc Komitetu Technicznego CEN/TC 190 Wyroy odlewne we współprcy z CEN/TC 190/WG4.10 Wdy wewnętrzne oprcowywne są nstępujące normy wyrou: EN

Bardziej szczegółowo

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak

Autor: Zbigniew Tuzimek Opracowanie wersji elektronicznej: Tomasz Wdowiak DNIE UKŁDÓW LOKD UTOMTYCZNYCH uor: Zigniew Tuzimek Oprcownie wersji elekronicznej: Tomsz Wdowik 1. Cel i zkres ćwiczeni Celem ćwiczeni jes zpoznnie sudenów z udową orz dziłniem zezpieczeń i lokd sosownych

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Technikum Nr 2 im. gen. Mieczysłw Smorwińskiego w Zespole Szkół Ekonomicznych w Kliszu Wymgni edukcyjne niezbędne do uzyskni poszczególnych śródrocznych i rocznych ocen klsyfikcyjnych z obowiązkowych zjęć

Bardziej szczegółowo

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy KOMPENDIUM MATURZYSTY Mtemtyk poziom podstwowy Publikcj dystrybuown bezpłtnie Dostępn n stronie: Kompendium do pobrni n stronie: SPIS TREŚCI. Potęgi i pierwistki... W tym:. Wykorzystnie wzorów;. Przeksztłcnie

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A

MXZ INVERTER SERIA. Jedna jednostka zewnętrzna może obsługiwać do 8 pomieszczeń. Ograniczenie poboru prądu. Efektywność energetyczna: klasa A INVERTER SERIA MXZ Typoszereg MXZ gwrntuje cicy, wysokowydjny i elstyczny system, spełnijący wszystkie wymgni w zkresie klimtyzcji powietrz. 6 MXZ-2C30VA MXZ-2C40VA MXZ-2C52VA MXZ-3C54VA MXZ-3C68VA MXZ-4C71VA

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

zestaw DO ĆWICZEŃ z matematyki

zestaw DO ĆWICZEŃ z matematyki zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy

Bardziej szczegółowo

Zkaład Elektroanalizy i Elektrochemii Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź

Zkaład Elektroanalizy i Elektrochemii Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź Zkłd Elektronlzy Elektrohem tedr Chem Neorgnznej Anltyznej Unwersytet Łódzk l.tmk 9-403 Łódź Dr Pweł rzyzmonk Łódź mrze 04 P wykłd Wstę - sensory z detekją otenjometryzną Elektrody Rodzje membrn Potenjł

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo

Ochrona przed przepięciami w sieciach ISDN

Ochrona przed przepięciami w sieciach ISDN OGANICZANIE PZEPIĘĆ W YEMACH PZEYŁ YGNAŁÓW Ochron przed przepięcimi w siecich IDN Andrzej ow Wstęp Wzrost zpotrzeowni n usługi odiegjące od klsycznego przekzu telefonicznego spowodowł gwłtowny rozwój sieci

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Analiza wariancji klasyfikacja prosta

Analiza wariancji klasyfikacja prosta Anlz wrnc Oprcowno n podstwe: Łomnck A. 003. Wprowdzene do sttystyk dl przyrodnków. PW Wrszw. Anlz wrnc klsyfkc prost Dne o przeżywlnośc chrząszczy hodownych hodowlnych n czterech różnych pożywkch. Kżd

Bardziej szczegółowo

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM

KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Konkusy w województwie podkpkim w oku szkolnym 0/0 KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM Kluz odpowiedzi do ETAPU WOJEWÓDZKIEGO Akusz zwie tylko zdni otwte, któe nleży oenić według zmieszzonego poniżej

Bardziej szczegółowo

Metoda List łańcuchowych

Metoda List łańcuchowych Metod List łńuhowyh Zkłdnie krtoteki wyszukiwwzej: Zkłdmy iż znny jest system wyszukiwni S wię zbiór obiektów X trybutów A wrtośi tyh trybutów V orz funkj informji : X A V. Obiekty opisne są ilozynem odpowiednih

Bardziej szczegółowo

Zkaład Elektroanalizy i Elektrochemii Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź. Dr Paweł Krzyczmonik

Zkaład Elektroanalizy i Elektrochemii Katedra Chemii Nieorganicznej i Analitycznej Uniwersytet Łódzki ul.tamka 12, Łódź. Dr Paweł Krzyczmonik Zkłd Elektronlzy Elektrohem tedr Chem Neorgnznej Anltyznej Unwersytet Łódzk l.tmk 9-403 Łódź r Pweł rzyzmonk Łódź mrze 05 P wykłd Wstę - sensory z detekją otenjometryzną Elektrody Rodzje membrn Potenjł

Bardziej szczegółowo

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa. 1. Pirmidiotologi. W obfitej literturze przedmiotu podje się, że pirmid Ceops, lub też z ngielsk Wielk Pirmid (te Gret Pyrmid), zwier w swej konstrukcji pełną i szczegółową istorię rodzju ludzkiego od

Bardziej szczegółowo

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego

Ćwiczenie 3. Dobór mikrosilnika prądu stałego do układu pozycjonującego - projektownie Ćwiczenie 3 Dobór ikrosilnik prądu stłego do ukłdu pozycjonującego Instrukcj Człowiek - njlepsz inwestycj Projekt współfinnsowny przez Unię Europejską w rch Europejskiego Funduszu Społecznego

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo