LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA.

Wielkość: px
Rozpocząć pokaz od strony:

Download "LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA."

Transkrypt

1 1. Wprowadzenie LABORATORIUM PODSTAW METROLOGII M-T Ćwiczenie nr 5 BADANIE CZUJNIKÓW CIŚNIENIA. W przemyśle (także w praktyce laboratoryjnej) pomiary ciśnienia oprócz pomiarów temperatury należą do najczęściej wykonywanych pomiarów w procesach produkcyjnych. Pomiary te dotyczą zarówno ciśnień statycznych jak i dynamicznych cieczy i gazów, przy czym pomiary zmiennych ciśnień dokonywane są rzadziej. Do pomiaru ciśnień wykorzystuje się różnorodne zjawiska fizyczne zachodzące w gazach, cieczach lub ciałach stałych w wyniku zmian ciśnienia, należą do nich np. rozszerzalność, zmiany temperatury, odkształcenie, zmiany częstotliwości drgań, zmiany przewodnictwa w półprzewodnikach, właściwości propagacji fal akustycznych lub optycznych itp. Z różnorodności tych zjawisk wynika mnogość konstrukcji i właściwości manometrów. Ze względu na prostotę konstrukcji, dużą niezawodność i praktycznie liniową zależność wskazań od mierzonego ciśnienia rozpowszechnione są manometry, w których wykorzystuje się odkształcenie elementu sprężystego. Elementem sprężystym może być specjalnie zwinięta spłaszczona rurka metalowa (rurką Bourdona), membrana, mieszek lub inna bardziej skomplikowana konstrukcja. Manometry te pozwalają mierzyć ciśnienia statyczne z niepewnością (0,1 5)% ich zakresu, a ich konstrukcja pozwala w łatwy sposób przetwarzać odkształcenie rurki na sygnał elektryczny przy pomocy rezystancyjnego lub indukcyjnościowego czujnika przemieszczenia. Ma to istotne znaczenie w automatyzacji procesów przemysłowych.. 2. Manometry sprężyste. W manometrach sprężystych wykorzystuje się zależność odkształcenia sprężystego s od mierzonego ciśnienia p dobierając kształt elementu sprężystego tak aby uzyskać możliwie dużą liniowość charakterystyki manometru. Zależność tę można z dostateczną dla praktyki dokładnością przedstawić w postaci: ( ) se = k p = k p p 0 (1) k k a przy czym s - odkształcenie E moduł Younga materiału elementu sprężystego, k k współczynnik zależny od kształtu elementu sprężystego ( zawiła funkcja wymiarów geometrycznych, rodzaju materiału i kształtu), p a ciśnienie panujące w komorze pomiarowej manometru, p 0 ciśnienie otoczenia. Manometry sprężyste cechuje duża zdolność wykonania pracy Q (możliwość przemieszczania zewnętrznych elementów współpracujących z manometrem), którą można określić zależnością: η Q= A s pmax (2) 2 gdzie: η sprawność elementu sprężystego, p max górna granica zakresu pomiarowego. Manometry sprężyste mają najczęściej konstrukcje w postaci rurek Bourdona, puszek lub mieszków sprężystych. W przypadku manometrów z rurką Bourdona odkształcenie s rurki jest MT ćw. 5 Badanie czujników ciśnienia 1

2 mechanicznie przetworzone na kąt wychylenia Y = α(p.). za pomocą przekładni lub przetwarzane na sygnał elektryczny Y = U(p.) za pomocą czujników indukcyjnościowych. W manometrach o budowie puszkowej odkształcenie s elementu sprężystego (zwykle o bardzo małej wartości) przetwarza się na sygnał elektryczny za pomocą czujników tensometrycznych metalowych lub półprzewodnikowych, piezoelektrycznych, pojemnościowych lub magnetosprężystych. Przykłady konstrukcji manometrów sprężystych pokazano w sposób uproszczony na rys.1. Rys.1. Szkic konstrukcji różnych manometrów sprężystych: a) manometr z rurką Bourdona, manometr puszkowy tensometryczny, c) manometr różnicowy piezoelektryczny. Oznaczono; T+,T- tensometry, 1 komora ciśnieniowa (obudowa), 2 piezoelektryk, 3 elektroda, 4 membrana. Dokładność manometrów sprężystych w znacznym stopniu zależy od temperatury i procesów starzeniowych, gdyż zmieniają się parametry sprężystości elementu sprężystego manometru (moduł Younga). Wpływ temperatury ϑ na wartość modułu Younga E z dostatecznym przybliżeniem podaje zależność: p E [ ] ( ϑ) = E + α( ϑ ) 0 1 ϑ 0 (3) s s max s Rys.2. Wpływ histerezy na wskazanie manometru; obieg odnosi się do obciążenia krótkotrwałego, obieg dla obciążenia długotrwałego. stąd błąd temperaturowy δ ϑ manometru wyznaczony z uwzględnieniem odkształcenia s elementu sprężystego w temperaturze różnej od temperatury odniesienia ϑ 0 jest równy: ( ϑ) s( ϑ ) δ = s 0 ϑ = αϑ ( ϑ s( ϑ ) 0 ) (4) MT ćw. 5 Badanie czujników ciśnienia 2

3 przy czym α współczynnik temperaturowy sprężystości ( dla stopów miedzi wynosi ok. (-3,5-4,5) / C). Ponadto materiały sprężyste ulegają procesom starzeniowym i zjawisku pełzania co ujawnia się występowaniem histerezy wskazań manometru sprężystego w wyniku krótkotrwałych i długotrwałych obciążeń manometru. Wpływ histerezy na wskazania (odkształcenie s) manometru przedstawiono na rys.2. Wpływ histerezy określa wskaźnik histerezy γ dla obciążeń długotrwałych (24 godziny): γ = s s max 100% (5) Dla przeciętnych elementów sprężystych γ = (0,2 2)%. Współcześnie rozpowszechnione są miniaturowe czujniki sprężyste typu puszkowego do pomiaru ciśnienia działające na omawianej zasadzie. Element sprężysty w tych czujnikach stanowi podłoże ceramiczne lub z dwutlenku krzemu na, którym naniesione są struktury piezorezystorów półprzewodnikowych zwykle w układzie mostka rezystancyjnego (często wraz ze wzmacniaczem). Czujniki tego rodzaju charakteryzują się bardzo małymi wymiarami, zwartą i wytrzymałą konstrukcją, dużą czułością przy dobrych właściwościach temperaturowych, krótkim czasem odpowiedzi, brakiem dodatkowych elementów mechanicznych oraz pomijalnie małą histerezą. Sygnałem wyjściowym tych czujników zwykle jest napięcie elektryczne, prąd rzadziej częstotliwość napięcia generowanego w układzie czujnika (układy scalone). Małe rozmiary scalonych czujników ciśnienia, duża sztywność elementu sprężystego i bardzo małe odkształcenia pozwalają budować czujniki o zakresach pomiarowych mniejszych od 0,01MPa, a także przekraczających 100MPa. Na rys.3 pokazano przykład konstrukcji monolitycznego scalonego piezorezystancyjnego czujnika ciśnienia (przetwornik sprężysty) Rys.3. Szkic konstrukcji piezorezystancyjnego czujnika ciśnienia a), układy połączeń elektrycznych piezorezystorów czujnika b) układ pomiarowy, c) (dołączenie odpowiednio dobranych rezystorów R P1, R P2, R S1, R S2, R Z pozwala linearyzować układ czujnika ciśnienia i przesunąć początek jego charakterystyki do wartości ciśnienia odniesienia). MT ćw. 5 Badanie czujników ciśnienia 3

4 3. Wzorcowanie manometrów Do sprawdzania i wzorcowania manometrów używa się manometru wagowo-tłokowego jak na rys.4. W manometrach tego rodzaju wytwarzane jest ciśnienie w ich obwodach hydraulicznych za pomocą określonych z odpowiednią dokładnością ciężarków naciskających bezpośrednio na tłok manometru. Ciężarki Manometr 1 Manometr 2 Tłok Zawór Naczynie wyrównawcze Pompa olejowa Rys.4. Wzorcowy manometr wagowo-tłokowy. Rys.5. Schemat stanowiska laboratoryjnego do badania czujników ciśnienia; oznaczono: M 1 manometr wzorcowy, M 2, M 3, M 4, M 5 manometry badane, Z 1,2,3 zawory odcinające, NW naczynie wyrównawcze, WMT wzmacniacz mostka tensometrycznego, VC woltomierz cyfrowy, PR pompa pneumatyczna (ręczna). MT ćw. 5 Badanie czujników ciśnienia 4

5 W manometrze pokazanym na rys.8 ciężarki o masie m wywierają nacisk na tłok o polu przekroju A wskutek czego w przewodach panuje ciśnienie: mg p = + p A b (6) gdzie: g lokalne przyśpieszenie ziemskie, p b ciśnienie barometryczne. Badanie właściwości statycznych czujników ciśnienia można przeprowadzić na stanowisku laboratoryjnym jak na rys Program ćwiczenia. 1. Dokonać identyfikacji manometrów na stanowisku badawczym. 2. Przygotować układ jak na rys.9a do pracy i ustalić wskazania początkowe poszczególnych manometrów. 3. Wykonać pomiary charakterystyki: Y= f(p) (wskazanie manometru jako funkcja mierzonego ciśnienia) dla ciśnień wzrastających i malejących.. 4. Sporządzić wykresy zależności: Y=f(p),czułości S=f(p), i błędu nieliniowości δ nl =f(p). 5. Obciążyć manometr wzorcowy maksymalnym naciskiem oraz odczytać wskazania manometrów i zanotować czas chwili odczytu, a następnie dokonać odczytu wskazań po czasie ok.(0,5 1) godziny, oszacować wskaźnik histerezy γ dla obciążeń długotrwałych (24 godziny). 6. W czasie realizacji punktu 5 instrukcji przeprowadzić pomiary jak p.2.,p.3, p.4 dla czujnika monolitycznego w układzie pokazanym na rys.9b. 7. Sporządzić odnośne wykresy i wyznaczyć podstawowe parametry statyczne czujnika. 8. Wnioski z przeprowadzonych pomiarów. 5. Pytania kontrolne. 1.Czym różni się manometr różnicowy od manometru do pomiaru ciśnienia bezwzględnego? 2.Wymienić i scharakteryzować rodzaje manometrów elektrycznych. 3.Omówić zasadę działania i budowę manometru do wzorcowania manometrów przemysłowych. 4.Dlaczego manometry z rurką Bourdona są najczęściej wykorzystywane w praktyce? 5.Co to jest histereza manometru i na czym polega? 6.Które manometry nadają się do pomiaru ciśnień szybkozmiennych? 7.Jak są zbudowane i jak działają manometry monolityczne? 8.Które manometry mają dużą czułość i od czego ona zależy? 9.Jak wpływa temperatura otoczenia na parametry różnych typów manometrów? MT ćw. 5 Badanie czujników ciśnienia 5

PRZETWORNIKI CIŚNIENIA. ( )

PRZETWORNIKI CIŚNIENIA. ( ) PRZETWORNIKI CIŚNIENIA. 1. Wprowadzenie Pomiary ciśnień należą do najczęściej wykonywanych pomiarów wraz z pomiarami temperatury zarówno w przemyśle wytwórczym jak i w badaniach laboratoryjnych. Pomiary

Bardziej szczegółowo

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE

WAT - WYDZIAŁ ELEKTRONIKI INSTYTUT SYSTEMÓW ELEKTRONICZNYCH. Przedmiot: CZUJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Grupa: WAT - WYDZIAŁ ELEKTRONIKI INSTYTT SYSTEMÓW ELEKTRONICZNYCH Przedmiot: CZJNIKI I PRZETWORNIKI Ćwiczenie nr 1 PROTOKÓŁ / SPRAWOZDANIE Temat: Przetworniki tensometryczne /POMIARY SIŁ I CIŚNIEŃ PRZY

Bardziej szczegółowo

Metrologia cieplna i przepływowa

Metrologia cieplna i przepływowa Metrologia cieplna i przepływowa Systemy Maszyny i Urządzenia Energetyczne IV rok Badanie manometru z wykorzystaniem piezoelektrycznego przetwornika ciśnienia Instrukcja do ćwiczenia Katedra Systemów Energetycznych

Bardziej szczegółowo

Metrologia cieplna i przepływowa

Metrologia cieplna i przepływowa Metrologia cieplna i przepływowa Systemy Maszyny i Urządzenia Energetyczne IV rok Badanie manometru z wykorzystaniem tensometrycznego przetwornika ciśnienia Instrukcja do ćwiczenia Katedra Systemów Energetycznych

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

POMIARY TEMPERATURY I

POMIARY TEMPERATURY I Cel ćwiczenia Ćwiczenie 5 POMIARY TEMPERATURY I Celem ćwiczenia jest poznanie budowy i zasady działania rezystancyjnych czujników temperatury, układów połączeń czujnika z elektrycznymi układami przetwarzającymi

Bardziej szczegółowo

Metrologia cieplna i przepływowa

Metrologia cieplna i przepływowa Metrologia cieplna i przepływowa Systemy Maszyny i Urządzenia Energetyczne IV rok Badanie manometru z wykorzystaniem wzorca grawitacyjnego Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń

Bardziej szczegółowo

Temat: POMIAR SIŁ SKRAWANIA

Temat: POMIAR SIŁ SKRAWANIA AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:

Bardziej szczegółowo

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011

POMIARY CIEPLNE KARTY ĆWICZEŃ LABORATORYJNYCH V. 2011 ĆWICZENIE 1: Pomiary temperatury 1. Wymagane wiadomości 1.1. Podział metod pomiaru temperatury 1.2. Zasada działania czujników termorezystancyjnych 1.3. Zasada działania czujników termoelektrycznych 1.4.

Bardziej szczegółowo

Metrologia cieplna i przepływowa

Metrologia cieplna i przepływowa Metrologia cieplna i przepływowa Systemy Maszyny i Urządzenia Energetyczne IV rok Badanie manometru w różnych pozycjach pracy Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony

Bardziej szczegółowo

Podstawy Badań Eksperymentalnych

Podstawy Badań Eksperymentalnych Podstawy Badań Eksperymentalnych Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Instrukcja do ćwiczenia. Temat 01 Pomiar siły z wykorzystaniem czujnika tensometrycznego Instrukcję

Bardziej szczegółowo

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości.

Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i prędkości. Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E3 - protokół Pomiar wielkości nieelektrycznych: temperatury, przemieszczenia i

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz.

Zakład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I. Grupa. Nr ćwicz. Laboratorium Metrologii I Politechnika zeszowska akład Metrologii i Systemów Pomiarowych Laboratorium Metrologii I Mostki niezrównoważone prądu stałego I Grupa Nr ćwicz. 12 1... kierownik 2... 3... 4...

Bardziej szczegółowo

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA

Bardziej szczegółowo

(zwane również sensorami)

(zwane również sensorami) Czujniki (zwane również sensorami) Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11

POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11 POLITECHNIKA WROCŁAWSKA KATEDRA INŻYNIERII BIOMEDYCZNEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH K-7/W11 Ćwiczenie nr 3. CZUJNIKI DO POMIARÓW CIŚNIENIA Cel ćwiczenia: Celem ćwiczenia

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM CZUJNIKÓW I POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21 Ćwiczenie nr 3. CZUJNIKI DO POMIARÓW CIŚNIENIA 1. Cel ćwiczenia

Bardziej szczegółowo

Instrukcja obsługi. Model

Instrukcja obsługi. Model Instrukcja obsługi Model 311.10 Ciśnieniomierze do pomiarów wzorcowych i testowych ciśnienia cieczy i gazów chemicznie obojętnych na stopy miedzi i nie powodujących zatorów w układach ciśnienia. Instrukcja

Bardziej szczegółowo

Meraserw-5 s.c Szczecin, ul.gen.j.bema 5, tel.(91) , fax (91) ,

Meraserw-5 s.c Szczecin, ul.gen.j.bema 5, tel.(91) , fax (91) , Meraserw-5 s.c. 70-312 Szczecin, ul.gen.j.bema 5, tel.(91)484-21-55, fax (91)484-09-86, e-mail: handel@meraserw5.pl, www.meraserw.szczecin.pl 311.10.160 Ciśnieniomierze do pomiarów wzorcowych i testowych

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 13. Czujniki ciśnienia

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNEJ D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 13. Czujniki ciśnienia Cel ćwiczenia: Celem ćwiczenia jest poznanie niektórych czujników ciśnienia, ich parametrów metrologicznych oraz możliwości zastosowania w aparaturze pomiarowej. Program ćwiczenia: 1. Przeczytać instrukcję

Bardziej szczegółowo

PRZETWORNIKI POMIAROWE

PRZETWORNIKI POMIAROWE PRZETWORNIKI POMIAROWE PRZETWORNIK POMIAROWY element systemu pomiarowego, który dokonuje fizycznego przetworzenia z określoną dokładnością i według określonego prawa mierzonej wielkości na inną wielkość

Bardziej szczegółowo

VIGOTOR VPT-13. Elektroniczny przetwornik ciśnienia 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan

VIGOTOR VPT-13. Elektroniczny przetwornik ciśnienia 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan Elektroniczny przetwornik ciśnienia W przetwornikach VPT 13 ciśnienie medium pomiarowego (gazu lub cieczy) o wielkości do 2.5 MPa mierzone w odniesieniu do ciśnienia atmosferycznego jest przetwarzane na

Bardziej szczegółowo

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7

Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Pomiary Elektryczne Wielkości Nieelektrycznych Ćw. 7 Ćw. 7. Kondycjonowanie sygnałów pomiarowych Problemy teoretyczne: Moduły kondycjonujące serii 5B (5B34) podstawowa charakterystyka Moduł kondycjonowania

Bardziej szczegółowo

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. Ćwiczenie nr 1 Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. 1. Cel ćwiczenia Celem ćwiczenia jest analiza wpływów i sposobów włączania przyrządów pomiarowych do obwodu elektrycznego

Bardziej szczegółowo

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2

Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 Pracownia Automatyki Katedry Tworzyw Drzewnych Ćwiczenie 2 str. 1/7 ĆWICZENIE 2 WYBRANE ELEKTRYCZNE CZUJNIKI-PRZETWORNIKI PRZESUNIĘĆ LINIOWYCH I KĄTOWYCH 1.CEL ĆWICZENIA: zapoznanie się z podstawowymi

Bardziej szczegółowo

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel

Technika sensorowa. Czujniki piezorezystancyjne. dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel Technika sensorowa Czujniki piezorezystancyjne dr inż. Wojciech Maziarz Katedra Elektroniki C-1, p.301, tel. 12 617 30 39 Wojciech.Maziarz@agh.edu.pl 1 Czujniki działające w oparciu o efekt Tensometry,

Bardziej szczegółowo

VIGOTOR VPT-12. Elektroniczne przetworniki ciśnienia VPT 12 stosuje się w 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan

VIGOTOR VPT-12. Elektroniczne przetworniki ciśnienia VPT 12 stosuje się w 1. ZASTOSOWANIA. J+J AUTOMATYCY Janusz Mazan Elektroniczny przetwornik ciśnienia W przetwornikach VPT 12 ciśnienie medium pomiarowego (gazu lub cieczy) o wielkości do 10 MPa mierzone w odniesieniu do ciśnienia atmosferycznego jest przetwarzane na

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH

WYZNACZENIE CHARAKTERYSTYK STATYCZNYCH PRZETWORNIKÓW POMIAROWYCH Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 4 60-96 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Instrukcja obsługi. Model

Instrukcja obsługi. Model Instrukcja obsługi Model 111.22 Ciśnieniomierze do pomiaru ciśnienia cieczy obojętnych na stopy miedzi i niepowodujących zatorów w układach ciśnienia, do temperatury max. 200 C Instrukcja obsługi modelu

Bardziej szczegółowo

Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław

Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław Automatyka przemysłowa na wybranych obiektach mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław 2 Cele prezentacji Celem prezentacji jest przybliżenie automatyki przemysłowej

Bardziej szczegółowo

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E

Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R 0,05, umownej granicy plastyczności R 0,2 oraz modułu sprężystości podłużnej E Temat 3 (2 godziny) : Wyznaczanie umownej granicy sprężystości R,5, umownej granicy plastyczności R,2 oraz modułu sprężystości podłużnej E 3.1. Wstęp Nie wszystkie materiały posiadają wyraźną granicę plastyczności

Bardziej szczegółowo

Pomiary elektryczne wielkości nieelektrycznych

Pomiary elektryczne wielkości nieelektrycznych Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych Laboratorium Przetwarzania i Analizy Sygnałów Elektrycznych (bud A5, sala 31) I Instrukcja dla studentów kierunku Elektrotechnika do

Bardziej szczegółowo

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH

PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI. Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH PODSTAWY AUTOMATYKI I. URZĄDZENIA POMIAROWE W UKŁADACH AUTOMATYCZNEJ REGULACJI Ćwiczenie nr 1 WYZNACZANIE CHARAKTERYSTYK STATYCZNYCH I DYNAMICZNYCH Rzeszów 2001 2 1. WPROWADZENIE 1.1. Ogólna charakterystyka

Bardziej szczegółowo

Pomiar przemieszczeń i prędkości liniowych i kątowych

Pomiar przemieszczeń i prędkości liniowych i kątowych POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA TRANSPORTU SZYNOWEGO LABORATORIUM DIAGNOSTYKI POJAZDÓW SZYNOWYCH ĆWICZENIE 11 Pomiar przemieszczeń i prędkości liniowych i kątowych Katowice, 2009.10.01 1.

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 13. Czujniki ciśnienia

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 13. Czujniki ciśnienia Cel ćwiczenia: Celem ćwiczenia jest poznanie niektórych czujników ciśnienia, ich parametrów metrologicznych oraz możliwości zastosowania w aparaturze pomiarowej. Program ćwiczenia: 1. Przeczytać instrukcję

Bardziej szczegółowo

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych MIROSYSTEMY - LABRATORIUM Ćwiczenie nr 2 Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych Charakterystyka badanego elementu: Odporny na korozję czujnik ciśnienia został opracowany w

Bardziej szczegółowo

Pomiar rezystancji metodą techniczną

Pomiar rezystancji metodą techniczną Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja

Bardziej szczegółowo

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych

LABORATORIUM ELEKTRONICZNYCH UKŁADÓW POMIAROWYCH I WYKONAWCZYCH. Badanie detektorów szczytowych LABORATORIM ELEKTRONICZNYCH KŁADÓW POMIAROWYCH I WYKONAWCZYCH Badanie detektorów szczytoch Cel ćwiczenia Poznanie zasady działania i właściwości detektorów szczytoch Wyznaczane parametry Wzmocnienie detektora

Bardziej szczegółowo

Wzmacniacze różnicowe

Wzmacniacze różnicowe Wzmacniacze różnicowe 1. Cel ćwiczenia : Zapoznanie się z podstawowymi układami wzmacniaczy różnicowych zbudowanych z wykorzystaniem wzmacniaczy operacyjnych. 2. Wprowadzenie Wzmacniacze różnicowe są naj

Bardziej szczegółowo

Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych

Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Centrum Kształcenia Zawodowego 2000 Wykaz ćwiczeń realizowanych w Pracowni Urządzeń Mechatronicznych Nr ćwiczenia Temat Wiadomości i umiejętności wymagane do realizacji ćwiczenia na pracowni 1 Badanie

Bardziej szczegółowo

Sensoryka i pomiary przemysłowe Kod przedmiotu

Sensoryka i pomiary przemysłowe Kod przedmiotu Sensoryka i pomiary przemysłowe - opis przedmiotu Informacje ogólne Nazwa przedmiotu Sensoryka i pomiary przemysłowe Kod przedmiotu 06.0-WE-AiRD-SiPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM Ćw. 4 BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM WYBRANA METODA BADAŃ. Badania hydrodynamicznego łoŝyska ślizgowego, realizowane na stanowisku

Bardziej szczegółowo

do neutralnych i lekko agresywnych czynników ciekłych i gazowych

do neutralnych i lekko agresywnych czynników ciekłych i gazowych 1909P01 Czujnik ciśnienia do neutralnych i lekko agresywnych czynników ciekłych i gazowych Wysoka precyzja pomiaru Zakres pomiarowy od 0 do 60 bar ciśnienia względnego Napięcie zasilania 24 V AC / 12...33

Bardziej szczegółowo

PRZEMYSŁOWY POMIAR PRZEPŁYWU CIECZY

PRZEMYSŁOWY POMIAR PRZEPŁYWU CIECZY PRZEYSŁOWY POIAR PRZEPŁYWU CIECZY. Wprowadzenie. Pomiar przepływu płynów ( cieczy, zawiesin, par i gazów ) ma istotne znaczenie w wielu procesach przemysłowych i innych gałęziach życia. Polega on na określeniu

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych

Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych MIKROMASZYNY I MIKRONAPĘDY DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH Laboratorium nr 1 Odporny na korozję czujnik ciśnienia dla mikroreaktorów chemicznych Charakterystyka badanego elementu: Odporny na korozję

Bardziej szczegółowo

Instrukcja obsługi. Model

Instrukcja obsługi. Model Instrukcja obsługi Model 111.20 Ciśnieniomierze do pomiaru ciśnienia cieczy i gazów obojętnych na stopy miedzi i niepowodujących zatorów w układach ciśnienia Instrukcja obsługi modelu 111.20 10/2013 Strona

Bardziej szczegółowo

Instrukcja obsługi. Model

Instrukcja obsługi. Model Instrukcja obsługi Model 113.53 Ciśnieniomierze do pomiaru ciśnienia gazów i cieczy chemicznie obojętnych na stopy miedzi w miejscach narażonych na wstrząsy i wibracje Instrukcja obsługi modelu 113.53

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

Pomiary małych rezystancji

Pomiary małych rezystancji Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Miernictwa Elektronicznego Pomiary małych rezystancji Grupa Nr ćwicz. 2 1... kierownik 2... 3... 4... Data Ocena I. C

Bardziej szczegółowo

Meraserw-5 s.c. 70-312 Szczecin, ul.gen.j.bema 5, tel.(91)484-21-55, fax (91)484-09-86, e-mail: handel@meraserw5.pl, www.meraserw.szczecin.pl 111.20.100 111.20.160 Ciśnieniomierze do pomiaru ciśnienia

Bardziej szczegółowo

ĆWICZENIE 6 POMIARY REZYSTANCJI

ĆWICZENIE 6 POMIARY REZYSTANCJI ĆWICZENIE 6 POMIAY EZYSTANCJI Opracowała: E. Dziuban I. Cel ćwiczenia Celem ćwiczenia jest wdrożenie umiejętności poprawnego wyboru metody pomiaru w zależności od wartości mierzonej rezystancji oraz postulowanej

Bardziej szczegółowo

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY

KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY IŃSTYTUT INFORMATYKI STOSOWANEJ POLITECHNIKI ŁÓDZKIEJ Ćwiczenie Nr1 KONDUKCYJNA WYMIANA CIEPŁA - STYKOWY POMIAR TEMPERATURY 1.WPROWADZENIE Przewodzenie ciepła (kondukcja) jest to wymiana ciepła między

Bardziej szczegółowo

Meraserw-5 s.c Szczecin, ul.gen.j.bema 5, tel.(91) , fax (91) ,

Meraserw-5 s.c Szczecin, ul.gen.j.bema 5, tel.(91) , fax (91) , Meraserw-5 s.c. 70-312 Szczecin, ul.gen.j.bema 5, tel.(91)484-21-55, fax (91)484-09-86, e-mail: handel@meraserw5.pl, www.meraserw.szczecin.pl 113.53.XXX Ciśnieniomierze do pomiaru ciśnienia gazów i cieczy

Bardziej szczegółowo

Pomiar prędkości obrotowej

Pomiar prędkości obrotowej 2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (../..) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych

WYDZIAŁ PPT / KATEDRA INŻYNIERII BIOMEDYCZNE D-1 LABORATORIUM Z MIERNICTWA I AUTOMATYKI Ćwiczenie nr 14. Pomiary przemieszczeń liniowych Cel ćwiczenia: Poznanie zasady działania czujników dławikowych i transformatorowych, w typowych układach pracy, określenie ich podstawowych parametrów statycznych oraz zbadanie ich podatności na zmiany

Bardziej szczegółowo

POMIAR NATĘŻENIA PRZEPŁYWU

POMIAR NATĘŻENIA PRZEPŁYWU POMIAR NATĘŻENIA PRZEPŁYWU Określenie ilości płynu (objętościowego lub masowego natężenia przepływu) jeden z najpowszechniejszych rodzajów pomiaru w gospodarce przemysłowej produkcja światowa w 1979 ropa

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy

Bardziej szczegółowo

2. Pomiar drgań maszyny

2. Pomiar drgań maszyny 2. Pomiar drgań maszyny Stanowisko laboratoryjne tworzą: zestaw akcelerometrów, przedwzmacniaczy i wzmacniaczy pomiarowych z oprzyrządowaniem (komputery osobiste wyposażone w karty pomiarowe), dwa wzorcowe

Bardziej szczegółowo

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2.

ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA. 1. Protokół próby rozciągania Rodzaj badanego materiału. 1.2. Ocena Laboratorium Dydaktyczne Zakład Wytrzymałości Materiałów, W2/Z7 Dzień i godzina ćw. Imię i Nazwisko ĆWICZENIE 1 STATYCZNA PRÓBA ROZCIĄGANIA METALI - UPROSZCZONA 1. Protokół próby rozciągania 1.1.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku: Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK

Bardziej szczegółowo

Wyznaczenie reakcji belki statycznie niewyznaczalnej

Wyznaczenie reakcji belki statycznie niewyznaczalnej Wyznaczenie reakcji belki statycznie niewyznaczalnej Opracował : dr inż. Konrad Konowalski Szczecin 2015 r *) opracowano na podstawie skryptu [1] 1. Cel ćwiczenia Celem ćwiczenia jest sprawdzenie doświadczalne

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiIB Kierunek: Imię i nazwisko (e mail): Rok: Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych II Celem

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC

Wybrane elementy elektroniczne. Rezystory NTC. Rezystory NTC Wybrane elementy elektroniczne Rezystory NTC Czujniki temperatury Rezystancja nominalna 20Ω 40MΩ (typ 2kΩ 40kΩ) Współczynnik temperaturowy -2-5% [%/K] Max temperatura pracy 120 200 (350) [ºC] Współczynnik

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr 1 EKSPERYMENTALNE WYZNACZANIE ZASTĘPCZEGO MODUŁU SPREŻYSTOŚCI OBJETOŚCIOWEJ EC+P CIECZY I PRZEWODU, ORAZ ZASTĘPCZEGO WSPÓŁCZYNNIKA

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 6 Temat: Pomiar zależności oporu półprzewodników

Bardziej szczegółowo

Pomiary wielkości nieelektrycznych Kod przedmiotu

Pomiary wielkości nieelektrycznych Kod przedmiotu Pomiary wielkości nieelektrycznych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Pomiary wielkości nieelektrycznych Kod przedmiotu 06.2-WE-ED-PWN Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Termodynamika techniczna

Termodynamika techniczna Termodynamika techniczna Wydział Geologii, Geofizyki i Ochrony Środowiska Ekologiczne Źródła Energii II rok Pomiar ciśnienia Instrukcja do ćwiczenia Katedra Systemów Energetycznych i Urządzeń Ochrony Środowiska

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 2 OBWODY NIELINIOWE PRĄDU

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI. Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI FAZY SKONDENSOWANEJ Ćwiczenie 9 Temperaturowa zależność statycznych i dynamicznych charakterystyk złącza p-n Cel ćwiczenia Celem ćwiczenia jest poznanie

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Ćwiczenie nr 1 Wyznaczanie charakterystyki statycznej termostatycznego zaworu rozprężnego

Ćwiczenie nr 1 Wyznaczanie charakterystyki statycznej termostatycznego zaworu rozprężnego Andrzej Grzebielec 2005-03-01 Laboratorium specjalnościowe Ćwiczenie nr 1 Wyznaczanie charakterystyki statycznej termostatycznego zaworu rozprężnego 1 1 Wyznaczanie charakterystyki statycznej termostatycznego

Bardziej szczegółowo

SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii

SYLABUS. Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy Centrum Mikroelektroniki i Nanotechnologii SYLABUS Nazwa Wprowadzenie do metrologii Nazwa jednostki prowadzącej Wydział Matematyczno Przyrodniczy przedmiot Centrum Mikroelektroniki i Nanotechnologii Kod Studia Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

ZASADY DOKUMENTACJI procesu pomiarowego

ZASADY DOKUMENTACJI procesu pomiarowego Laboratorium Podstaw Miernictwa Laboratorium Podstaw Elektrotechniki i Pomiarów ZASADY DOKUMENTACJI procesu pomiarowego Przykład PROTOKÓŁU POMIAROWEGO Opracowali : dr inż. Jacek Dusza mgr inż. Sławomir

Bardziej szczegółowo

Badanie diody półprzewodnikowej

Badanie diody półprzewodnikowej Instytut Fizyki ul Wielkopolska 5 70-45 Szczecin 2 Pracownia Elektroniki Badanie diody półprzewodnikowej Zakres materiału obowiązujący do ćwiczenia: (Oprac dr Radosław Gąsowski) półprzewodniki samoistne

Bardziej szczegółowo

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia

ĆWICZENIE 5. POMIARY NAPIĘĆ I PRĄDÓW STAŁYCH Opracowała: E. Dziuban. I. Cel ćwiczenia ĆWICZEIE 5 I. Cel ćwiczenia POMIAY APIĘĆ I PĄDÓW STAŁYCH Opracowała: E. Dziuban Celem ćwiczenia jest zaznajomienie z przyrządami do pomiaru napięcia i prądu stałego: poznanie budowy woltomierza i amperomierza

Bardziej szczegółowo

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Pomiary elektryczne wielkości nieelektrycznych Electrical measurements

Bardziej szczegółowo

Elementy oporowe tensometryczne

Elementy oporowe tensometryczne Elementy oporowe tensometryczne Tensometrem oporowym nazywamy element rezystancyjny, w którym zmiana rezystancji następuje pod wpływem oddziaływań zewnętrznych rozciągających lub ściskających. Tensometr

Bardziej szczegółowo

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-05 Temat: Pomiar parametrów przepływu gazu. Opracował: dr inż.

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Katedra Technik Wytwarzania i Automatyzacji WYDZIAŁ BUDOWY MASZYN I LOTNICTWA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot: DIAGNOSTYKA I NADZOROWANIE SYSTEMÓW OBRÓBKOWYCH Temat: Pomiar charakterystyk

Bardziej szczegółowo

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz.

Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II. 2013/14. Grupa: Nr. Ćwicz. Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Metrologii II WYZNACZANIE WŁAŚCIWOŚCI STATYCZNYCH I DYNAMICZNYCH PRZETWORNIKÓW Grupa: Nr. Ćwicz. 9 1... kierownik 2...

Bardziej szczegółowo

Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII

Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Pomiary przemysłowe Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Efekty kształcenia: Ma uporządkowaną i pogłębioną wiedzę z zakresu metod pomiarów wielkości fizycznych w przemyśle. Zna

Bardziej szczegółowo

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny

Ćw. 32. Wyznaczanie stałej sprężystości sprężyny 0/0/ : / Ćw.. Wyznaczanie stałej sprężystości sprężyny Ćw.. Wyznaczanie stałej sprężystości sprężyny. Cel ćwiczenia Sprawdzenie doświadczalne wzoru na siłę sprężystą $F = -kx$ i wyznaczenie stałej sprężystości

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia III Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia Sonda poboru ciśnienia Sonda poboru ciśnienia (Rys. ) jest to urządzenie

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEKTRONIKA EKS1A300024 BADANIE TRANZYSTORÓW BIAŁYSTOK 2015 1. CEL I ZAKRES

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6b

Instrukcja do ćwiczenia laboratoryjnego nr 6b Instrukcja do ćwiczenia laboratoryjnego nr 6b Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności statycznych siłowników pneumatycznych Ćwiczenie

Bardziej szczegółowo

Prof. Eugeniusz RATAJCZYK. Czujniki pomiarowe

Prof. Eugeniusz RATAJCZYK. Czujniki pomiarowe Prof. Eugeniusz RATAJCZYK Czujniki pomiarowe Podział czujników wg rodzajów przetworników Czujniki pomiarowe Mechaniczne Mechaniczno Indukcyjne Pojemno- Pneumatyczne Optelektroniczne Optoelektroniczne -optyczne

Bardziej szczegółowo

CZUJNIKI I UKŁADY POMIAROWE

CZUJNIKI I UKŁADY POMIAROWE POLITECHNIKA WARSZAWSKA Wydział Mechaniczny Energetyki i Lotnictwa Instytut Techniki Lotniczej i Mechaniki Stosowanej Zakład Automatyki i Osprzętu Lotniczego CZUJNIKI I UKŁADY POMIAROWE Czujniki przykładowe

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania

Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania Spis treści Wstęp Rozdział 1. Metrologia przedmiot i zadania 1.1. Przedmiot metrologii 1.2. Rola i zadania metrologii współczesnej w procesach produkcyjnych 1.3. Główny Urząd Miar i inne instytucje ważne

Bardziej szczegółowo