, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
|
|
- Emilia Nawrocka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4, dla Polski B odpowiednio n 2 = 60 oraz RB 2 = 0.7. Wiadomo również, że wariancja konsumpcji w Polsce A jest 3 razy większa niż w Polsce B Po przeprowadzeniu obliczeń zorientował się że przypadkowo pominął jedną obserwację dla Polski B. Pasuje ona do prostej regresji, po jej dołączeniu całkowita suma kwadratów rośnie o 2%. (a) Jak dodanie obserwacji wpłynie na wielkość R 2 oraz R 2 (b) Oblicz prawidłowe wartości R 2 oraz R 2 dla Polski B. (c) Jaką wartość będzie miał współczynnik R 2 oraz R 2, jeżeli funkcja konsumpcji zostanie oszacowana na podstawie modelu: C = α A + β A Y + α A D + β B Y D + ξ gdzie zmienna indykatorowa D wskazuje na osoby z Polski B. (d) Następnie ekonometryk połączył obie próby i oszacował funkcję konsumpcji dla całej Polski. W jaki sposób można obliczyć R 2 w tym modelu? (e) W jaki sposób dysponując wynikami czterech powyższych modeli można sprawdzić czy krańcowa skłonność do konsumpcji w całej Polsce jest identyczna? Rozwiązanie (a) Ponieważ R 2 = 1 RSS T SS, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 } n {{ k } RSS } T{{ SS} maleje maleje } {{ } rosnie (b) R 2 = = 0.706, R2 = 1 n 1 n 2 (1 R2 ) = (0.294) = (c) Szacujemy osobne modele za pomocą jednego równania, wobec tego: T SS C = T SS A + T SS B = 4T SS B ; RSS A = 0.6T SS A = 1.8T SS B ; RSS B = 0.3T SS B ; RSS C = RSS A + RSS B = 2.14T SS B ; R 2 C = = (d) Nie da się, ponieważ nie jest znana całkowita suma kwadratów oraz resztowa suma kwadratów tak utworzonego modelu. (e) Mając wyniki regresji z punktu (c) należy zdefiniować macierz ograniczeń R = [0, 1, 0, 1] i obliczyć statystykę Walda, ze wzoru: (Rb q) [σ 2 R(X X) 1 R ] 1 (Rb q) i porównać ją z wartością krytyczną z rozkładu χ 2 (2), lub F (2, 96)
2 Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.5, dla Polski B odpowiednio n 2 = 60 oraz RB 2 = 0.8. Wiadomo również, że wariancja konsumpcji w Polsce A jest 3 razy większa niż w Polsce B Po przeprowadzeniu obliczeń zorientował się że przypadkowo pominął jedną obserwację dla Polski B. Pasuje ona do prostej regresji, po jej dołączeniu całkowita suma kwadratów rośnie o 2%. (a) Jak dodanie obserwacji wpłynie na wielkość R 2 oraz R 2 (b) Oblicz prawidłowe wartości R 2 oraz R 2 dla Polski B. (c) Jaką wartość będzie miał współczynnik R 2 oraz R 2, jeżeli funkcja konsumpcji zostanie oszacowana na podstawie modelu: C = α A + β A Y + α A D + β B Y D + ξ gdzie zmienna indykatorowa D wskazuje na osoby z Polski B. (d) Następnie ekonometryk połączył obie próby i oszacował funkcję konsumpcji dla całej Polski. W jaki sposób można obliczyć R 2 w tym modelu? (e) W jaki sposób dysponując wynikami czterech powyższych modeli można sprawdzić czy krańcowa skłonność do konsumpcji w całej Polsce jest identyczna? Rozwiązanie (a) Ponieważ R 2 = RSS T SS, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 } n {{ k } RSS } T{{ SS} maleje maleje } {{ } rosnie (b) R 2 = = 0.804, R2 = 1 n 1 n 2 (1 R2 ) = (0.196) = (c) Szacujemy osobne modele za pomocą jednego równania, wobec tego: T SS C = T SS A + T SS B = 4T SS B ; RSS A = 0.5T SS A = 1.5T SS B ; RSS B = 0.2T SS B ; RSS C = RSS A + RSS B = 1.74T SS B ; R 2 C = = (d) Nie da się, ponieważ nie jest znana całkowita suma kwadratów oraz resztowa suma kwadratów tak utworzonego modelu. (e) Mając wyniki regresji z punktu (c) należy zdefiniować macierz ograniczeń R = [0, 1, 0, 1] i obliczyć statystykę Walda, ze wzoru: (Rb q) [σ 2 R(X X) 1 R ] 1 (Rb q) i porównać ją z wartością krytyczną z rozkładu χ 2 (2), lub F (2, 96)
3 Zadanie 2. Na podstawie danych pochodzących z badania Diagnoza Społeczne 2005 zbudowano Klasyczny Model Regresji Liniowej wyjaśniający poziom dochodów za pomocą płci (1-mężczyzna), wykształcenia, wieku i zmiennej indykatorowej oznaczającej mieszkanie w dużym mieście. Oszacowano następujący model: dochody n = stala + β 1 plec + β 2 wyzsze + β 3 srednie + β 4 wiek + β 5 dmiasto + ε n Otrzymano następujące oszacowania parametrów wektora β: stala β1 β2 β3 β4 β oraz ich macierz wariancji-kowariancji: Covariance matrix of coefficients of regress model e(v) wiek plec srednie wyzsze dmiasto _cons wiek plec srednie wyzsze dmiasto _cons Uzupełnij brakujące wielkości w poniższej tabeli, a następnie oceń poprawność modelu analizując wyniki testów istotności i łącznej istotności wyestymowanych parametrów. Dokonaj interpretacji wyników poszczególnych testów, oraz oszacowań współczynników wektora β, oraz przeprowadź testy na wpółliniowość. Obliczenia należy przeprowadzić z dokładnością do 4 miejsca po przecinku. Source SS df MS Number of obs = F( 5, 3059) = Model Prob > F = Residual e R-squared = Adj R-squared = Total e Root MSE = dochody Coef. Std. Err. t Partial R^2 VIF wiek plec srednie wyzsze dmiasto _cons
4 Zadanie 2. Na podstawie danych pochodzących z badania Diagnoza Społeczne 2005 zbudowano Klasyczny Model Regresji Liniowej wyjaśniający poziom dochodów za pomocą płci (1-mężczyzna), wykształcenia, wieku i zmiennej indykatorowej oznaczającej mieszkanie w dużym mieście. Oszacowano następujący model: dochody n = stala + β 1 plec + β 2 wyzsze + β 3 srednie + β 4 wiek + β 5 dmiasto + ε n Otrzymano następujące oszacowania parametrów wektora β: stala β1 β2 β3 β4 β oraz ich macierz wariancji-kowariancji: Covariance matrix of coefficients of regress model e(v) wiek plec srednie wyzsze dmiasto _cons wiek plec srednie wyzsze dmiasto _cons Uzupełnij brakujące wielkości w poniższej tabeli, a następnie oceń poprawność modelu analizując wyniki testów istotności i łącznej istotności oszacowanych wielkości parametrów. Dokonaj interpretacji wyników poszczególnych testów, oraz oszacowań współczynników wektora β, oraz przeprowadź testy na współliniowość. Obliczenia należy przeprowadzić z dokładnością do 4 miejsca po przecinku. Source SS df MS Number of obs = F( 5, 3111) = Model Prob > F = Residual e R-squared = Adj R-squared = Total e Root MSE = dochody Coef. Std. Err. t Partial R^2 VIF wiek plec srednie wyzsze dmiasto _cons
5 Zadanie 3. Badasz wpływ różnych czynników na wynagrodzenia tłumaczy, absolwentów lingwistyki UW. Każdy z mich ukończył również jedną z trzech prywatnych szkół podyplomowych kształcących tłumaczy. Dysponujemy danymi o wynagrodzeniu tłumacza wyn, jego płci, język w jakim się dany tłumacz specjalizuje (angielski, hiszpański) jezyk, szkole, w której odbywał naukę podyplomową szkola [=1 - szkoła pod wezwaniem, w szkole nauka trwa 2 semestry (10 miesięcy); 2 - szkoła bez wezwania, w tej szkole nauka trwa 3 semestry(15 miesięcy); 3 - szkoła niezależna nauka trwa 4 semestry (20 miesięcy)], oraz przeciętnej ilości godzin jaką tłumacz poświęcał w szkole podyplomowej na naukę języka czas. Do konstrukcji modelu należy wykorzystać za każdym razem wszystkie zmienne. Najwyżej cenione będą odpowiedzi używające jak najmniejszej ilości zmiennych dodatkowych. (a) Zapisz model umożliwiający sprawdzenie, czy dodatkowa godzina przeciętnego miesięcznego czasu poświęconego na naukę, przynosi taką samą procentową zmianę wynagrodzenia absolwentom każdej z trzech szkół. Zaproponuj sposób testowania tej hipotezy. (b) Można wskazać, że szkoły nie różnią się jakością lektorów i tego jak uczą swoich studentów. Zaproponuj model, w którym wynagrodzenie zależy od całkowitego czasu poświęconego na naukę w szkole podyplomowej, a nie od tego, która to szkoła, ani ile semestrów trwa w niej nauka. (c) Dodatkowo, dysponujesz informacją, że prawdopodobnie kobiety, a w szczególności te, które uczą się hiszpańskiego, mniej efektywnie przyswajają wiedzę ponieważ, bardzo przystojni latynoamerykańscy lektorzy dekoncentrują je. Zapisz taki model, w ramach, którego można będzie przetestować taką hipotezę. (d) Iloma obserwacjami musisz dysponować, aby najbardziej rozbudowany model miał co najmniej 50 stopni swobody. Podaj minimalną możliwą liczbę wraz z uzasadnieniem. (e) Załóżmy, że zmienna czas nie jest dostępna. Różnice w wynagrodzeniu pomiędzy absolwentami różnych szkół mogą wynikać, nie z jakości nauczania, w tych szkołach, a z różnic w długości kształcenia absolwentów (w semestrach). Przedstaw sposób testowania takiej hipotezy.
6 Zadanie 3. Badasz wpływ różnych czynników na wynagrodzenia tłumaczy, absolwentów lingwistyki UW. Każdy z mich ukończył również jedną z trzech prywatnych szkół podyplomowych kształcących tłumaczy. Dysponujemy danymi o wynagrodzeniu tłumacza wyn, jego płci, język w jakim się dany tłumacz specjalizuje (angielski, hiszpański) jezyk, szkole, w której odbywał naukę podyplomową szkola [=1 - szkoła pod wezwaniem, w szkole nauka trwa 2 semestry (10 miesięcy); 2 - szkoła bez wezwania, w tej szkole nauka trwa 3 semestry(15 miesięcy); 3 - szkoła niezależna nauka trwa 4 semestry (20 miesięcy)], oraz przeciętnej ilości godzin jaką tłumacz poświęcał w szkole podyplomowej na naukę języka czas. Do konstrukcji modelu należy wykorzystać za każdym razem wszystkie zmienne. Najwyżej cenione będą odpowiedzi używające jak najmniejszej ilości zmiennych dodatkowych. (a) Zapisz model umożliwiający sprawdzenie, czy dodatkowa godzina przeciętnego semestralnego czasu poświęconego na naukę, przynosi taką samą procentową zmianę wynagrodzenia absolwentom każdej z trzech szkół. Zaproponuj sposób testowania tej hipotezy. (b) Można wskazać, że szkoły nie różnią się jakością lektorów i tego jak uczą swoich studentów. Zaproponuj model, w którym wynagrodzenie zależy od całkowitego czasu poświęconego na naukę w szkole podyplomowej, a nie od tego, która to szkoła, ani ile semestrów trwa w niej nauka. (c) Dodatkowo, dysponujesz informacją, że prawdopodobnie mężczyźni, a w szczególności ci, którzy uczą się angielskiego, mniej efektywnie przyswajają wiedzę ponieważ, bardzo lektorzy dyskutują z nimi o futbolu. Zapisz taki model, w ramach, którego można będzie przetestować taką hipotezę. (d) Iloma obserwacjami musisz dysponować, aby najbardziej rozbudowany model miał co najmniej 50 stopni swobody. Podaj minimalną możliwą liczbę wraz z uzasadnieniem. (e) Załóżmy, że zmienna czas nie jest dostępna. Różnice w wynagrodzeniu pomiędzy absolwentami różnych szkół mogą wynikać, nie z jakości nauczania, w tych szkołach, a z różnic w długości kształcenia absolwentów (w semestrach). Przedstaw sposób testowania takiej hipotezy.
7 Zadanie 4. Dysponując danymi dotyczącymi liczby zatrudnionych L i wartości kapitału K w gospodarce należy oszacować parametry modelu analizującego zmiany produkcji przemysłowej. Teoria podpowiada, że przydatna może być funkcja Cobb-Douglasa (a) Zaproponuj model wykorzystujący powyższą formę funkcyjną, tak, aby można było go estymować w ramach KMRL. (b) Posługując się poniższym wydrukiem zdecyduj o istotności parametrów w modelu na poziomie istotności 5% i 10%, oraz dokonaj ich interpretacji ekonomicznej. Zastanów się, czy i w jaki sposób zmieni się wynik testowania istotności statystycznej zmiennych, jeśli do konstrukcji hipotez testowych wykorzystasz wiedze ekonomiczną. Uzasadnij Swoją odpowiedź. Source SS df MS Number of obs = F( 2, 197) =. Model Prob > F =. Residual R-squared = Adj R-squared =. Total Root MSE = produkcja Coef. p-value _ kapitał* zatrudnienie* cons* gdzie: * - zmienne, lub pewne ich przekształcenia (c) Przetestuj hipotezę o stałych korzyściach skali. Zapisz hipotezę zerowa i alternatywną oraz statystykę testową i jej rozkład. Opisz jak przeprowadzisz ten test. (d) Zaproponuj sposób reparametryzacji modelu w oparciu o podaną w treści specyfikację w przypadku, kiedy nie dysponujemy danymi dotyczącymi wielkości kapitału. W zamian możemy wykorzystać informacje dotyczące wysokości stopy procentowej, którą uważa się za krańcową produkcyjność kapitału (dy/dk).
8 Zadanie 4. Dysponując danymi dotyczącymi liczby zatrudnionych L i wartości kapitału K w gospodarce należy oszacować parametry modelu analizującego zmiany produkcji przemysłowej. Teoria podpowiada, że przydatna może być funkcja Cobb-Douglasa (a) Zaproponuj model wykorzystujący powyższą formę funkcyjną, tak, aby można było go estymować w ramach KMRL. (b) Posługując się poniższym wydrukiem zdecyduj o istotności parametrów w modelu na poziomie istotności 5% i 10%, oraz dokonaj ich interpretacji ekonomicznej. Zastanów się, czy i w jaki sposób zmieni się wynik testowania istotności statystycznej zmiennych, jeśli do konstrukcji hipotez testowych wykorzystasz wiedze ekonomiczną. Uzasadnij Swoją odpowiedź. Source SS df MS Number of obs = F( 2, 197) =. Model Prob > F =. Residual R-squared = Adj R-squared =. Total Root MSE = produkcja Coef. p-value _ kapitał* zatrudnienie* cons* gdzie: * - zmienne, lub pewne ich przekształcenia (c) Przetestuj hipotezę o stałych korzyściach skali. Zapisz hipotezę zerowa i alternatywną oraz statystykę testową i jej rozkład. Opisz jak przeprowadzisz ten test. (d) Zaproponuj sposób reparametryzacji modelu w oparciu o podaną w treści specyfikację w przypadku, kiedy nie dysponujemy danymi dotyczącymi wielkości kapitału. W zamian możemy wykorzystać informacje dotyczące wysokości stopy procentowej, którą uważa się za krańcową produkcyjność kapitału (dy/dk).
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Ekonometria egzamin wersja ogólna 17/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Natalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
1.7 Ograniczenia nakładane na równanie regresji
1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Zmienne sztuczne i jakościowe
Zmienne o ograniczonym zbiorze wartości Przykład 1. zarobki = β 0 + β 1 liczba godzin pracy + β 2 wykształcenie + ε Przykład 2. zarobki = β 0 + β 1 liczba godzin pracy + β 2 klm + ε zarobki = β 0 + β 1
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Zmienne Binarne w Pakiecie Stata
Karol Kuhl Zbiór (hipotetyczny) dummy.dta zawiera dane, na podstawie których prowadzono analizy opisane poniżej. Nazwy zmiennych oznaczają: doch dochód w jednostkach pieniężnych; plec płeć: kobieta (0),
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Analizowane modele. Dwa modele: y = X 1 β 1 + u (1) y = X 1 β 1 + X 2 β 2 + ε (2) Będziemy analizować dwie sytuacje:
Analizowane modele Dwa modele: y = X 1 β 1 + u (1) Będziemy analizować dwie sytuacje: y = X 1 β 1 + X 2 β 2 + ε (2) zmienne pominięte: estymujemy model (1) a w rzeczywistości β 2 0 zmienne nieistotne:
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
1.5 Problemy ze zbiorem danych
1.5 Problemy ze zbiorem danych W praktyce ekonometrycznej bardzo rzadko spełnione są wszystkie założenia klasycznego modelu regresji liniowej. Częstym przypadkiem jest, że zbiór danych którymi dysponujemy
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
1.8 Diagnostyka modelu
1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Ekonometria egzamin wersja ogólna 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.
Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
1.6 Zmienne jakościowe i dyskretne w modelu regresji
1.6 Zmienne jakościowe i dyskretne w modelu regresji 1.6.1 Zmienne dyskretne i zero-jedynkowe (Dummy Variables) W badaniach ekonometrycznych bardzo często występują zjawiska, które opisujemy zmiennymi
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Natalia Nehrebecka. 18 maja 2010
Natalia Nehrebecka 18 maja 2010 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Analiza zależności cech ilościowych regresja liniowa (Wykład 13)
Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
1.3 Własności statystyczne estymatorów MNK
1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
2.3 Modele nieliniowe
2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE
EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator