Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
|
|
- Roman Grabowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Egzamin z ekonometrii wersja ogólna Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna w tym teście? 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi. 3. Wyjaśnić różnice między parametrami i oszacowaniami parametrów oraz między odchyleniami losowymi i resztami. 4. Dlaczego zmienną dyskretną rozkodowywujemy na zmienne zerojedynkowe? 1
2 Zadanie 1 Na podstawie pewnej bazy danych analizowano determinanty długości trwania bezrobocia w miesiącach (Bezrobocie). Zmiennymi objaśniającymi są wiek wyrażony w latach (wiek), wiek podniesiony do kwadratu (wiek_2), wykształcenie średnie (srednie: 1- jeśli dla osoby najwyższym ukończonym poziomem wykształcenia jest wykształcenie średnie, 0 w pozostałych przypadkach), wykształcenie wyższe (wyzsze: 1- jeśli dla osoby najwyższym ukończonym poziomem wykształcenia jest wykształcenie wyższe, 0- pozostałych przypadkach), znajomość angielskiego (angielski: 1- jeśli osoba zna biegle język angielski w mowie i piśmie, 0- pozostałych przypadkach), interakcja między zmienną srednie a angielski, interakcja między zmienną wyzsze a angielski, płeć (plec: 0 mężczyzna, 1- kobieta). Hipotezy testować na poziomie istotności 0,05. Odpowiedzi uzasadnić podając p-value. Source SS df MS Number of obs = F( 8, 1076) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = Bezrobocie Coef. Std. Err. t P> t [95% Conf. Interval] wiek wiek_ srednie wyzsze angielski sredniexang wyzszexang plec _cons Ocenić, które zmienne są istotne. 2. Czy zmienne objaśniające są łącznie istotne? 3. Zinterpretować wartość współczynnika determinacji. 4. Jaka zależność między wiekiem respondenta a długością trwania bezrobocia wynika z modelu? Osoby w jakim wieku przebywają najdłużej na bezrobociu? 5. Wyznaczyć efekt cząstkowy dla wieku. Jaka jest oczekiwana zmiana długości trwania bezrobocia przy wzroście wieku o 1 rok dla trzydziestoletniego respondenta? 6. Dokonać interpretacji oszacowań parametrów przy zmiennych, nawet wtedy gdy zmienne są nieistotne: a) srednie b) sredniexang 2
3 7. Postanowiono wprowadzić do analizowanej regresji zmienną edu, która oznacza liczbę lat poświęconych na naukę. Jaki problem pojawi się w zmodyfikowanym modelu? Odpowiedź uzasadnić. 8. Niech zmienna edu_1 przyjmuje wartość 1 dla osób, które mają wykształcenie średnie lub wyższe. Jeśli zmienną tę wprowadzimy do modelu to jaki pojawi się problem? Odpowiedź uzasadnić. 9. Przypuszcza się, że wpływ wieku na długość trwania bezrobocia zależy od płci respondenta. Podać postać modelu, który będzie odpowiadał temu założeniu. Rozwiązanie Zadanie 1 1. Istotne zmienne, to te dla których jest mniejsze od przyjętego poziomu istotności wynoszącego 0,05. Czyli istotne zmienne to: ( 5, 1, 0,000) (,, 0,000 ) (,5, 0,01 ) (,5, 0,000) (,1, 0,000 ) 2. Test na łączną istotność regresji: 1,1, 0,000 0,05, odrzucamy hipotezę zerową o łącznej nieistotności regresji. 3.. % zmienności długości trwania bezrobocia zostało wyjaśnionych za pomocą zmiennych niezależnych. 4. Zależność miedzy długością trwania bezrobocia a wiekiem jest kwadratowa: bezroboc e 0,00 501wiek 0, 5 wiek Jest to parabola z ramionami skierowanymi do dołu, czyli wraz ze wzrostem wieku długość trwania bezrobocia rośnie, ale coraz wolniej. Maksimum funkcji jest osiągane dla osoby w wieku lat b a 0, 5 ( 0,00 501),15 Dla osób powyżej lat zależność miedzy wiekiem a długością trwania bezrobocia jest ujemna długość trwania bezrobocia maleje coraz szybciej wraz ze wzrostem wieku. 3
4 5. Postać analizowanego modelu: Efekt cząstkowy dla wieku: E(bezrobocie ) wiek wiek Oszacowanie efektu cząstkowego na podstawie modelu dla osoby trzydziestoletniej wynosi: b b wiek 0, 5 ( 0,00 501) 0 0, 1 - oczekiwany wzrost długości trwania bezrobocia przy wzroście wieku o 1 rok dla trzydziestoletniego respondenta wynosi 0, 1 miesiąca. 6. a) Osoby z wykształceniem średnim, które nie znają jeżyka angielskiego w porównaniu z osobami z wykształceniem podstawowym nieznającymi języka angielskiego o 1,55 miesiąca krótszy czas przebywania na bezrobociu. b) Osoby z wykształceniem średnim, które znają język angielski w porównaniu z osobami z wykształceniem średnim nieznającymi języka angielskiego maja o 0,41 miesiąca krótszy czas przebywania na bezrobociu (,5 0,1 0, 1055 ). 7. Zmienna edu oznaczająca wykształcenie mierzone za pomocą liczby lat nauki będzie silnie skorelowana ze zmiennymi zerojedynkowymi dotyczącymi poziomu osiągniętego wykształcenia, więc wystąpi (najprawdopodobniej) problem współliniowości. Zmienna edu nie wnosi nic nowego, wiec nie ma sensu wprowadzać jej do regresji. 8. Zmienna edu_1 przyjmuje wartość 1 dla osób, które maja wykształcenie średnie lub wyższe, więc będzie dokładnie współliniowa ze zmiennymi zerojedynkowymi srednie i wyzsze. Dla każdej obserwacji w próbie będzie zachodzić: edu 1 srednie wyzsze. Jeżeli jedna z kolumn macierzy X jest kombinacją liniową pozostałych, to macierz X X nie ma pełnego rzędu kolumnowego, wiec nie istnieje macierz odwrotna do X X - nie można wyznaczyć estymatora MNK dla takiego modelu. Należy usunąć jedną ze zmiennych wywołujących problem dokładnej współliniowości. 4
5 9. Należy wprowadzić do modelu interakcje miedzy zmiennymi dotyczącymi wieku a zmienna płeć: 5
6 Zadanie 2 Udzielić odpowiedzi odnośnie następujących problemów: Problem 1 Badacz dysponując pewnym zbiorem danych wykorzystał program Stata w celu zbadania występowania pewnego problemu. Badacz stwierdził, że problem ten występuje, a następnie podjął strategię w celu rozwiązania tego problemu. Poniżej znajdują się wyniki poszczególnych działań badacza. Przyjęty przez badacza poziom istotności to 0,05. reg y x Source SS df MS Number of obs = F( 1, 98) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = y Coef. Std. Err. t P> t [95% Conf. Interval] x _cons estat hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of y chi2(1) = Prob > chi2 =
7 logy y 10 Wykres rozrzutu pomiędzy y a x x Wykres rozrzutu pomiędzy logarytmem y a x x 7
8 reg logy x Source SS df MS Number of obs = F( 1, 98) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = logy Coef. Std. Err. t P> t [95% Conf. Interval] x _cons 2.14e estat hettest Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of logy chi2(1) = 0.02 Prob > chi2 = Wyjaśnić jaki problem badacz testował i na jakiej podstawie stwierdził, że on występuje. 2. Uzasadnić rozwiązanie powyższego problemu, które badacz wybrał. 3. Zaproponować alternatywne rozwiązanie problemu, które nie zostało wykorzystane przez badacza. 8
9 Problem 2 Badacz przeprowadził regresję dochodu (doch) na liczbie lat nauki (nauka) uzyskując poniższe wyniki i wykres. reg doch nauka Source SS df MS Number of obs = F( 1, 498) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = doch Coef. Std. Err. t P> t [95% Conf. Interval] nauka _cons predict Linear (option xb assumed; fitted values) Wykres 9
10 Następnie badacz utworzył nowe zmienne: a) nauka_nizsze przyjmująca wartości zmiennej nauka jeśli liczba lat nauki była niższa od 1 lat bądź im równa i wartość 1 jeśli liczba lat nauki była większa od 1 lat; b) nauka_wyzsze przyjmująca wartości zmiennej 0 jeśli liczba lat nauki była niższa od 1 lat bądź im równa i wartość będąca różnicą między liczbą lat nauki a 1 jeśli liczba lat nauki była większa od 1 lat; i uzyskał poniższe wyniki i wykres. reg doch nauka_nizsze nauka_wyzsze Source SS df MS Number of obs = F( 2, 497) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = doch Coef. Std. Err. t P> t [95% Conf. Interval] nauka_nizsze nauka_wyzsze _cons predict spline (option xb assumed; fitted values) 10
11 Wykres 4. Wyjaśniać jaki jest cel utworzenia przez badacza nowych zmiennych i przeprowadzenia regresji dochodu na tych zmiennych. Dlaczego badacz po uzyskaniu drugiego wykresu nie podjął dalszych działań? Problem 3 Badacz dysponując pewnym zbiorem danych wykorzystał program Stata w celu zbadania występowania pewnego problemu. Badacz stwierdził, że problem ten występuje, a następnie podjął strategię w celu rozwiązania tego problemu. Poniżej znajdują się wyniki poszczególnych działań badacza. Przyjęty przez badacza poziom istotności to 0,05. Uwaga: x^ to kwadrat zmiennej x. x^ to sześcian zmiennej x. 11
12 reg y x Source SS df MS Number of obs = F( 1, 2291) = Model e e+13 Prob > F = Residual e e+10 R-squared = Adj R-squared = Total e e+10 Root MSE = 1.1e+05 y Coef. Std. Err. t P> t [95% Conf. Interval] x _cons ovtest Ramsey RESET test using powers of the fitted values of y Ho: model has no omitted variables F(3, 2288) = Prob > F = Wykres rozrzutu pomiędzy y a x 12
13 reg y x x^2 x^3 Source SS df MS Number of obs = F( 3, 2289) =. Model e e+13 Prob > F = Residual e R-squared = Adj R-squared = Total e e+10 Root MSE = y Coef. Std. Err. t P> t [95% Conf. Interval] x x^ x^ _cons ovtest Ramsey RESET test using powers of the fitted values of y Ho: model has no omitted variables F(3, 2286) = 0.14 Prob > F = Wykres 13
14 5. Wyjaśnić jaki problem badacz testował i na jakiej podstawie stwierdził, że on występuje. 6. Uzasadnić rozwiązanie powyższego problemu, które badacz wybrał. Rozwiązanie Zadanie 2 1. Na podstawie testu Breuscha-Pagana ( ( ),, 0,000 0,05) badacz odrzucił hipotezę zerową o homoskedastyczności. Również na podstawie wykresu rozrzutu pomiędzy y a x badacz stwierdza, iż zależność między y a x nie jest liniowa, co implikuje nie spełnienie założenia dot. formy funkcyjnej modelu. 2. W celu poprawienia formy funkcyjnej w modelu badacz zlogarytmował zmienną y a następnie przeprowadził regresję log y na x. Na podstawie wykresu rozrzutu pomiędzy log y a x badacz stwierdza, że związek jest już bardziej liniowy. W przypadku testu Breuscha-Pagana brak jest podstaw do odrzucenia hipotezy zerowej o homoskedastyczności ( ( ) 0,0, 0, 1 0, Badacz oczywiście mógł zastosować Uogólnioną Metodę Najmniejszy Kwadratów (UMNK) lub odporne estymatory macierzy wariancji kowariancji b. Natomiast badacz nie użył powyższych metod, bo problemem nie była heteroskedastyczność, ale błędna specyfikacja modelu. 4. Badacz wprowadził nowe zmienne i przeprowadził na nich regresję dochodu aby przybliżyć nieliniową zależność między dochodem a liczbą lat nauki, (którą zauważył na podstawie pierwszego wykresu w tym problemie) za pomocą zależności liniowej, a konkretnie krzywej łamanej. Badacz zakończył działania bo wykres drugi w tym problemie wskazuje, iż udało mu się przybliżyć tą nieliniową zależność za pomocą krzywej łamanej i wobec tego nie ma konieczności podejmowania dalszych działań. 5. Badacz testował poprawność formy funkcyjnej modelu. Na podstawie testu RESET (,5, 0,0000 0,05) badacz odrzucił hipotezę zerową o poprawnej formie funkcyjnej modelu. Również na podstawie wykresu rozrzutu pomiędzy y a x badacz stwierdza, że forma funkcyjna modelu nie jest poprawna: zależność między y a x nie jest liniowa. 6. W celu poprawy formy funkcyjnej modelu badacz uwzględnił w regresji zmienną x podniesioną do kwadratu i do sześcianu. W przypadku testu RESET ( 0,1, 0, 0 0,05) brak jest podstaw do odrzucenia hipotezy zerowej o poprawnej formie funkcyjnej modelu z uwzględnieniem kwadratu i sześcianu x. Również na podstawie wykresu drugiego w tym problemie badacz stwierdza, że forma funkcyjna modelu z uwzględnieniem kwadratu i sześcianu x jest poprawna. 14
15 Zadanie 3 Na podstawie pewnej bazy danych szacowano czynniki wpływające na odczucia rodzica dotyczące szczepień ich dzieci (szczepionka, mierzone w skali od 0 do 100). Zmiennymi niezależnymi są rasa rodzica (rasa: 1- biała, 0 inna); przekonania rodzica co do tego, że szczepienia powodują autyzm (autyzm, mierzone w skali od 0 do 100); wpływ lekarza na decyzje rodzica odnośnie szczepienia (wplyw, mierzony w skali od 0 do 100). Hipotezy testować na poziomie istotności 0,05. Odpowiedzi uzasadnić podając p-value. sum szczepionka rasa autyzm wplyw Variable Obs Mean Std. Dev. Min Max szczepionka rasa autyzm wplyw Regresja I reg szczepionka i.rasa autyzm wplyw, vce(robust) Linear regression Number of obs = 2000 F( 3, 1996) = Prob > F = R-squared = Root MSE = Robust szczepionka Coef. Std. Err. t P> t [95% Conf. Interval] rasa autyzm wplyw _cons
16 Regresja II reg szczepionka i.rasa autyzm wplyw Source SS df MS Number of obs = F( 3, 1996) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = szczepionka Coef. Std. Err. t P> t [95% Conf. Interval] rasa autyzm wplyw _cons Regresja III reg szczepionka i.rasa autyzm wpływ i.rasa*i.rasa Source SS df MS Number of obs = F( 3, 1996) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = szczepionka Coef. Std. Err. t P> t [95% Conf. Interval] rasa autyzm wplyw _cons
17 testparm i.rasa autyzm wplyw ( 1) 1.rasa = 0 ( 2) autyzm = 0 ( 3) wplyw = 0 F( 3, 1996) = Prob > F = test wplyw = -autyzm ( 1) autyzm + wplyw = 0 F( 1, 1996) = 0.00 Prob > F = Przeprowadzono regresję z VCE (Regresja I), a następnie ponownie bez VCE (Regresja II). Zauważono, że współczynniki nie zmieniły się wobec tego postanowiono nie korzystać z VCE. Czy uważasz, że taka decyzja została podjęta słusznie? Uwaga: VCE to odporny estymator White a macierzy wariancji kowariancji b 2. Niektórzy badacze uważają, że przekonania rodzica co do autyzmu mają największy wpływ na ich odczucia odnośnie szczepień. Inni badacze mówią, że to wpływ lekarza jest najważniejszy. Jeszcze inni twierdzą, że obie też zmienne są równie ważne i że różnice pomiędzy nimi nie istnieją. Korzystając z wydruków wskazać, które z powyższych podejść jest prawdziwe. Odpowiedź uzasadnić. 3. Pewna osoba została poinformowana, że ważne jest, aby dodać do regresji zmienną podniesioną do kwadratu. Stąd dodała ona zmienną rasa podniesioną do kwadratu do regresji (Regresja III). Ku zaskoczeniu tej osoby żaden z wyników nie zmienił się. Wyjaśnić dlaczego żaden z wyników się nie zmienił. Rozwiązanie Zadanie 3 1. Taka decyzja została podjęta niesłusznie. W wyniku użycia odpornego estymatora White a macierzy wariancji kowariancji b oszacowania estymatorów nie zmieniają się. Natomiast uzyskujemy w wyniku użycia VCE odporne na problem związany z heteroskedastycznością odchylenia standardowe estymatorów. 2. Prawidłowe jest podejście stwierdzające, iż zarówno przekonania rodzica co do autyzmu jak i wpływ lekarza są równie ważne a różnice między nimi nie istnieją. Wskazuje na to wyniki testu badającego czy współczynniki przy zmiennej wpływ jest równy współczynnikowi z minusem przy zmiennej autyzm. Statystyka: 0,00, 0, 51 0,05 czyli brak jest podstaw do odrzucenia 17
18 hipotezy zerowej mówiącej, że te dwie są równie ważne a różnice między nimi nie istnieją. 3. W przypadku dodania do regresji zmiennej rasa podniesionej do kwadratu wystąpi problem dokładnej współliniowości: zmienna rasa podniesiona do kwadratu przyjmuje dokładnie takie same wartości jak zmienna rasa. W takim przypadku jedna z kolumn macierzy X jest kombinacją liniowa pozostałych a macierz X X nie ma pełnego rzędu kolumnowego, wiec nie istnieje macierz odwrotna do X X - nie można wyznaczyć estymatora MNK dla takiego modelu. Stąd należy usunąć jedną ze zmiennych wywołujących problem dokładnej współliniowości czyli zmienną rasa podniesioną do kwadratu. Więc kwadrat zmiennej 0-1 nie ma sensu! 18
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Natalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Ekonometria egzamin wersja ogólna 17/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Natalia Nehrebecka. 18 maja 2010
Natalia Nehrebecka 18 maja 2010 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Zmienne Binarne w Pakiecie Stata
Karol Kuhl Zbiór (hipotetyczny) dummy.dta zawiera dane, na podstawie których prowadzono analizy opisane poniżej. Nazwy zmiennych oznaczają: doch dochód w jednostkach pieniężnych; plec płeć: kobieta (0),
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
1.8 Diagnostyka modelu
1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
Zmienne sztuczne i jakościowe
Zmienne o ograniczonym zbiorze wartości Przykład 1. zarobki = β 0 + β 1 liczba godzin pracy + β 2 wykształcenie + ε Przykład 2. zarobki = β 0 + β 1 liczba godzin pracy + β 2 klm + ε zarobki = β 0 + β 1
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
1.5 Problemy ze zbiorem danych
1.5 Problemy ze zbiorem danych W praktyce ekonometrycznej bardzo rzadko spełnione są wszystkie założenia klasycznego modelu regresji liniowej. Częstym przypadkiem jest, że zbiór danych którymi dysponujemy
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models ADL ADL Ogólna postać modelu ADL o p-opóźnieniach zmiennej zależnej i r-opóźnieniach zmiennej/zmiennych objaśniających
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Ekonometria egzamin wersja ogólna 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
Natalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
Egzamin z ekonometrii
Pytania teoretyczne Egzamin z ekonometrii 22.06.2012 1. Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego
1.6 Zmienne jakościowe i dyskretne w modelu regresji
1.6 Zmienne jakościowe i dyskretne w modelu regresji 1.6.1 Zmienne dyskretne i zero-jedynkowe (Dummy Variables) W badaniach ekonometrycznych bardzo często występują zjawiska, które opisujemy zmiennymi
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
1. Obserwacje nietypowe
1. Obserwacje nietypowe Przeanalizujemy następujący eksperyment: 1) Generujemy zmienną x z rozkładu N (,1) (37 obserwacji). ) Generujemy zmienną y w następujący sposób: y = 1+ x + ε, gdzie ε ~ N(0,1).
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
MODEL EKONOMETRYCZNY. Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW
MODEL EKONOMETRYCZNY Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW 1. Problem ekonometryczny Bardzo waŝnym problemem w duŝych firmach i korporacjach jest ustalanie wysokości wynagrodzenia głównych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
2 Rozszerzenia MNK. 2.1 Heteroscedastyczność
2 Rozszerzenia MNK 2.1 Heteroscedastyczność 2.1.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
1.7 Ograniczenia nakładane na równanie regresji
1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy
Model 1: Estymacja KMNK z wykorzystaniem 4877 obserwacji Zmienna zależna: y
Zadanie 1 Rozpatrujemy próbę 4877 pracowników fizycznych, którzy stracili prace w USA miedzy rokiem 1982 i 1991. Nie wszyscy bezrobotni, którym przysługuje świadczenie z tytułu ubezpieczenia od utraty
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:
Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Dane Dane wykorzystane w przykładzie pochodzą z pracy McCall, B.P., 1995, The
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk
Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie!
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie! Model ekonometryczny na kierunku: Informatyka i Ekonometria
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817
Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą