Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
|
|
- Wanda Dudek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Część 1
2 Testy i ich rodzaje Statystyka NR 2 Cel testowania
3 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby
4 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy dużej próby
5 Statystyka NR 2 Statystyka NR 2 1 szacowanie modelu z ograniczeniami, zapamiętanie e R
6 Statystyka NR 2 Statystyka NR 2 1 szacowanie modelu z ograniczeniami, zapamiętanie e R 2 regresja pomocnicza e R na X
7 Statystyka NR 2 Statystyka NR 2 1 szacowanie modelu z ograniczeniami, zapamiętanie e R 2 regresja pomocnicza e R na X 3 LM = NR 2 D χ 2 J
8 Statystyka NR 2 Statystyka NR 2 1 szacowanie modelu z ograniczeniami, zapamiętanie e R 2 regresja pomocnicza e R na X 3 LM = NR 2 D χ 2 J 4 LM = N k J R 2 1 R 2 D F (J, N k)
9 Test Jarque-Bera Współczynnik skośności w = n i=1 e3 i n( n i=1 e2 i ) 3 2
10 Test Jarque-Bera Współczynnik skośności w = n i=1 e3 i n( n i=1 e2 i ) 3 2 Współczynnik kurtozy k = N n i=1 e4 i ( n i=1 e2 i )2
11 Test Jarque-Bera Współczynnik skośności w = n i=1 e3 i n( n i=1 e2 i ) 3 2 Współczynnik kurtozy k = N n i=1 e4 i ( n i=1 e2 i )2 Weryfikowana hipoteza H 1 : ε H 0 : ε N(0, σ 2 I) ma inny rozkład
12 Test Jarque-Bera Współczynnik skośności w = n i=1 e3 i n( n i=1 e2 i ) 3 2 Współczynnik kurtozy k = N n i=1 e4 i ( n i=1 e2 i )2 Weryfikowana hipoteza H 1 : ε Statystyka testowa [ w JB = n 6 H 0 : ε N(0, σ 2 I) ma inny rozkład (k ] 3)2 D + χ 2 (2) 24
13 Przykład: duża próba Source SS df MS Number of obs = F( 9, 16152) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = lzarobki Coef. Std. Err. t P> t [95% Conf. Interval] _Iplec_ wiek wiek _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _cons
14 Przykład: duża próba Skewness/Kurtosis tests for Normality joint Variable Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi reszty
15 Przykład: mała próba Source SS df MS Number of obs = F( 8, 148) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = lzarobki Coef. Std. Err. t P> t [95% Conf. Interval] _Iplec_ wiek wiek _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _cons
16 Przykład: mała próba Skewness/Kurtosis tests for Normality joint Variable Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi reszty
17 Test White a Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : H 0 jest nieprawdziwa
18 Test White a Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : H 0 jest nieprawdziwa 1 Szacujemy parametry modelu zapamiętując wektor reszt e i
19 Test White a Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : H 0 jest nieprawdziwa 1 Szacujemy parametry modelu zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i
20 Test White a Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : H 0 jest nieprawdziwa 1 Szacujemy parametry modelu zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Przeprowadzamy regresję pomocniczą
21 Test White a Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : H 0 jest nieprawdziwa 1 Szacujemy parametry modelu zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Przeprowadzamy regresję pomocniczą 4 Zapamiętujemy R 2
22 Test White a Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : H 0 jest nieprawdziwa 1 Szacujemy parametry modelu zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Przeprowadzamy regresję pomocniczą 4 Zapamiętujemy R 2 5 Statystyka LM = nr 2 ma asymptotyczny rozkład χ 2 z liczbą stopni swobody równą liczbie zmiennych w regresji z punktu (3) bez stałej
23 Przykład: duża próba Source SS df MS Number of obs = F( 9, 16152) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = lzarobki Coef. Std. Err. t P> t [95% Conf. Interval] _Iplec_ wiek wiek _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _cons
24 Przykład: duża próba. estat imtest Cameron & Trivedi s decomposition of IM-test Source chi2 df p Heteroskedasticity Skewness Kurtosis Total
25 Przykład: mała próba. estat imtest Cameron & Trivedi s decomposition of IM-test Source chi2 df p Heteroskedasticity Skewness Kurtosis Total
26 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i )
27 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i ) 1 Szacujemy model zapamiętując wektor reszt e i
28 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i ) 1 Szacujemy model zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i
29 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i ) 1 Szacujemy model zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Normalizujemy wektor reszt g i = e2 i e e/n
30 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i ) 1 Szacujemy model zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Normalizujemy wektor reszt g i = e2 i e e/n 4 Przeprowadzamy regresję g i na z i
31 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i ) 1 Szacujemy model zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Normalizujemy wektor reszt g i = e2 i e e/n 4 Przeprowadzamy regresję g i na z i 5 Zapamiętujemy ESS
32 Test Breuscha-Pagana Weryfikowana hipoteza H 0 : σ 2 i = σ 2 i H 1 : σ 2 i = σ 2 f (α 0 + α 1 z i ) 1 Szacujemy model zapamiętując wektor reszt e i 2 Podnosimy reszty do kwadratu e 2 i 3 Normalizujemy wektor reszt g i = e2 i e e/n 4 Przeprowadzamy regresję g i na z i 5 Zapamiętujemy ESS 6 Statystyka LM = 1 2 ESS χ2 (r(z))
33 Przykład: duża próba Source SS df MS Number of obs = F( 9, 16152) = Model Prob > F = Residual R-squared = Adj R-squared = Total Root MSE = lzarobki Coef. Std. Err. t P> t [95% Conf. Interval] _Iplec_ wiek wiek _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _Iwyksztal~ _cons
34 Przykład: duża próba. estat hettest, rhs Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: _Iplec_2 wiek wiek2 _Iwyksztalc_2 _Iwyksztalc_3 _Iwyksztalc_4 _Iwyksztalc_5 _Iwyksztalc_6 _Iwyksztalc_7 chi2(9) = Prob > chi2 =
35 Przykład: duża próba. estat hettest, rhs Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: _Iplec_2 wiek wiek2 _Iwyksztalc_2 _Iwyksztalc_3 _Iwyksztalc_4 _Iwyksztalc_5 _Iwyksztalc_6 _Iwyksztalc_7. estat hettest chi2(9) = Prob > chi2 = Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of lzarobki chi2(1) = Prob > chi2 =
36 Przykład: mała próba. estat hettest, rhs Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: _Iplec_2 wiek wiek2 _Iwyksztalc_2 _Iwyksztalc_3 _Iwyksztalc_4 _Iwyksztalc_5 _Iwyksztalc_6 _Iwyksztalc_7 chi2(8) = Prob > chi2 =
37 Przykład: mała próba. estat hettest, rhs Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: _Iplec_2 wiek wiek2 _Iwyksztalc_2 _Iwyksztalc_3 _Iwyksztalc_4 _Iwyksztalc_5 _Iwyksztalc_6 _Iwyksztalc_7. estat hettest chi2(8) = Prob > chi2 = Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of lzarobki chi2(1) = 0.93 Prob > chi2 =
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Natalia Nehrebecka. 18 maja 2010
Natalia Nehrebecka 18 maja 2010 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Zmienne sztuczne i jakościowe
Zmienne o ograniczonym zbiorze wartości Przykład 1. zarobki = β 0 + β 1 liczba godzin pracy + β 2 wykształcenie + ε Przykład 2. zarobki = β 0 + β 1 liczba godzin pracy + β 2 klm + ε zarobki = β 0 + β 1
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
1.8 Diagnostyka modelu
1.8 Diagnostyka modelu Dotychczas zajmowaliśmy się własnościami estymatorów przy spełnionych założeniach KMRL. W praktyce nie zawsze spełnione są wszystkie założenia modelu. Jeżeli któreś z nich nie jest
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models
Autoregresyjne modele o rozłożonych opóźnieniach - Autoregressive Distributed Lags models ADL ADL Ogólna postać modelu ADL o p-opóźnieniach zmiennej zależnej i r-opóźnieniach zmiennej/zmiennych objaśniających
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
1. Obserwacje nietypowe
1. Obserwacje nietypowe Przeanalizujemy następujący eksperyment: 1) Generujemy zmienną x z rozkładu N (,1) (37 obserwacji). ) Generujemy zmienną y w następujący sposób: y = 1+ x + ε, gdzie ε ~ N(0,1).
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Natalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
2 Rozszerzenia MNK. 2.1 Heteroscedastyczność
2 Rozszerzenia MNK 2.1 Heteroscedastyczność 2.1.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
MODEL EKONOMETRYCZNY. Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW
MODEL EKONOMETRYCZNY Marcin Michalski, Konrad Rotuski, gr. 303, WNE UW 1. Problem ekonometryczny Bardzo waŝnym problemem w duŝych firmach i korporacjach jest ustalanie wysokości wynagrodzenia głównych
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Ekonometria egzamin wersja ogólna 17/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji
Jednowskaźnikowy model Sharpe`a
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Stanisław Cichocki Natalia Nehrebecka. Wykład 1
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Ćwiczenia Literatura 2. Obciążenie Lovella 3. Metoda od ogólnego do szczególnego 4. Kryteria informacyjne 2 1.
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Ekonometria egzamin wersja ogólna 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie!
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Mateusz Błażej Nr albumu: 308521 Chcesz zwiększyć swój dochód? Przenieś się i pracuj w Urzędzie! Model ekonometryczny na kierunku: Informatyka i Ekonometria
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Stanisław Cichocki. Natalia Nehrebecka. Wykład 4
Stanisław Cichocki Natalia Nehrebecka Wykład 4 1 1. Własności hiperpłaszczyzny regresji 2. Dobroć dopasowania równania regresji. Współczynnik determinacji R 2 Dekompozycja wariancji zmiennej zależnej Współczynnik
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Czynniki wpływające na wielkość oczekiwanej płacy po ukończeniu studiów przez studentów z województwa podlaskiego
Model ekonometryczny Czynniki wpływające na wielkość oczekiwanej płacy po ukończeniu studiów przez studentów z województwa podlaskiego Praca napisana na ćwiczeniach z Ekonometrii pod kierunkiem dr Stanisława
1.7 Ograniczenia nakładane na równanie regresji
1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Natalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
Ekonometria egzamin semestr drugi 14/06/09
imię, nazwisko, nr indeksu: Ekonometria egzamin semestr drugi 14/06/09 1. Przed przystąpieniem do pisania egzaminu należy podpisać wszystkie kartki arkusza egzaminacyjnego (na dole w przewidzianym miejscu).
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 27-0-202 Pytania teoretyczne. Dlaczego w modelu nie powinno si umieszcza staªej i wszystkich zmiennych zero-jedynkowych, zwi zanych z poziomami zmiennej dyskretnej?
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych
2.3 Modele nieliniowe
2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną
O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym
Sezonowość O sezonowości mówimy wtedy, gdy zmienna zmienia się w pewnym cyklu zwykle zwiazanym z cyklem rocznym Na przykład zmienne kwartalne charakteryzuja się zwykle sezonowościa kwartalna a zmienne
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
1.5 Problemy ze zbiorem danych
1.5 Problemy ze zbiorem danych W praktyce ekonometrycznej bardzo rzadko spełnione są wszystkie założenia klasycznego modelu regresji liniowej. Częstym przypadkiem jest, że zbiór danych którymi dysponujemy
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Jak zarabiają najbardziej wpływowi - determinanty zarobków CEO
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Cyryl Kasperski Nr albumu: 276885 Jak zarabiają najbardziej wpływowi - determinanty zarobków CEO Praca na kierunku: Informatyka i Ekonometria Praca wykonana
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Dane Dane wykorzystane w przykładzie pochodzą z pracy McCall, B.P., 1995, The
2.2 Autokorelacja Wprowadzenie
2.2 Autokorelacja 2.2.1 Wprowadzenie Przy wyprowadzaniu estymatorów Klasycznego Modelu Regresji Liniowej (KMRL) zakładaliśmy, że są spełnione założenia Gaussa-Markowa, tzn. składniki losowe są homoscedastyczne
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Regresja pozorna 2. Funkcje ACF i PACF 3. Badanie sacjonarności Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) 2 1. Regresja pozorna 2. Funkcje
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
Estymacja modeli ARDL przy u»yciu Staty
Estymacja modeli ARDL przy u»yciu Staty Michaª Kurcewicz 21 lutego 2005 Celem zadania jest oszacowanie dªugookresowego modelu popytu na szeroki pieni dz w Niemczech. Zaª czony zbiór danych beyer.csv pochodzi
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
Stanisław Cichocki Natalia Nehrebecka. Wykład 3
Sanisław Cichocki Naalia Nehrebecka Wykład 3 1 1. Zmienne sacjonarne 2. Zmienne zinegrowane 3. Regresja pozorna 4. Funkcje ACF i PACF 5. Badanie sacjonarności Tes Dickey-Fullera (DF) 2 1. Zmienne sacjonarne
Stanisław Cichocki Natalia Nehrebecka. Wykład 4
Sanisław Cichocki Naalia Nehrebecka Wykład 4 1 1. Badanie sacjonarności: o o o Tes Dickey-Fullera (DF) Rozszerzony es Dickey-Fullera (ADF) Tes KPSS 2. Modele o rozłożonych opóźnieniach (DL) 3. Modele auoregresyjne
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Egzamin z ekonometrii - wersja IiE, MSEMAT
Egzamin z ekonometrii - wersja IiE, MSEMAT 7-02-2013 Pytania teoretyczne 1. Porówna zastosowania znanych Ci kontrastów ze standardowym sposobem rozkodowania zmiennej dyskretnej. 2. Wyprowadzi estymator
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Dane krótko i długookresowe stopy procentowe Co wiemy z teorii? Krótkookresowe stopy powodują stopami długookresowymi (toteż taka jest idea bezpośredniego celu
TWM Ćwiczenia Empiryczne Model grawitacyjny handlu
TWM Ćwiczenia Empiryczne Model grawitacyjny handlu Leszek Wincenciak Wydział Nauk Ekonomicznych UW, 2012 2/13 Plan zajęć: Model grawitacyjny w teorii Przykład: model grawitacyjny dla Szwajcarii Źródła
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 7-02-2013 Pytania teoretyczne 1. Dlaczego zmienn dyskretn rozkodowujemy na zmienne zerojedynkowe? 2. Wyprowadzi estymator MNK dla modelu z wieloma zmiennymi obja±niaj
Ntli Natalia Nehrebecka. Dariusz Szymański. Zajęcia 4
Ntl Natala Nehrebecka Darusz Szymańsk Zajęca 4 1 1. Zmenne dyskretne 3. Modele z nterakcjam 2. Przyblżane model dlnelnowych 2 Zmenne dyskretne Zmenne nomnalne Zmenne uporządkowane 3 Neco bardzej skomplkowana
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
Wyjaśnianie zmian i różnic w nierówności
Wyjaśnianie zmian i różnic w nierówności Semiarium magisterskie Przyczyny i skutki nierówności ekonomicznych od Marksa do Piketty ego Michał Brzeziński WNE UW 16 marca 2016 Michał Brzeziński (WNE UW) Wyjaśnianie
Egzamin z ekonometrii
Pytania teoretyczne Egzamin z ekonometrii 22.06.2012 1. Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Ekonometria. Ćwiczenia nr 3. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Ćwiczenia nr 3 Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 3 Własności składnika losowego 1 / 18 Agenda KMNK przypomnienie 1 KMNK przypomnienie 2 3 4 Jakub Mućk