Badania modelowe substruktur układu transportowego dla pojazdu szynowego kolei podziemnej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badania modelowe substruktur układu transportowego dla pojazdu szynowego kolei podziemnej"

Transkrypt

1 Joanna Bil, Edwad ydygie, Zygmunt Stzyżakowski Badania modelowe substuktu układu tanspotowego dla pojazdu szynowego kolei podziemnej JEL: L9 DO: 1.136/atest.18.9 Data zgłoszenia: Data akceptacji: W atykule zostały pzedstawione badania modelowe dynamiki układu tanspotowego dla stuktuy pojazdu szynowego kolei podziemnej. W tym pzypadku pzedmiotem badań jest układ pojazd szynowy to tunel podłoże guntowe. Zbadano oddziaływania dynamiczne między tunelem a podłożem guntowym zamodelowanym półpzestzenią spężystą. Wyznaczono tansmitancje tunelu dla waunków piewszej linii meta waszawskiego. Wykazano pzydatność zapoponowanego sposobu modelowania oddziaływania kolei podziemnej na otoczenie w badaniach wpływu śodków tanspotu na infastuktuę miejską. Słowa kluczowe: badania modelowe układu pojazd szynowy-to-tunelpodtoze, półpzestzeń spężysta, oddziaływanie śodków tanspotu na otoczenie niejednoodny i anizotopowy, któy pzenosi óżnego odzaju fale wzdłużne, popzeczne i powiezchniowe ozchodzące się od dóg, toów lub tuneli, któe pzeważnie popagują się w szeokim paśmie częstotliwości (od kilku do kilkuset heców). W niniejszej pacy do opisu podłoża guntowego użyto modelu izotopowej jednoodnej półpzestzeni spężystej [8]. Stuktuę V stanowią obiekty inżynieskie (tunele, mosty i fundamenty budowli), czyli obiekty infastuktuy powiezchniowej i podpowiezchniowej, na któe oddziałują zabuzenia akustyczne i fale ozpzestzeniające się głównie w podłożu [3]. Wstęp To kolejowy może być posadowiony na guncie dla kolei naziemnych lub za pośednictwem tunelu dla kolei podziemnych. Dla kolei podziemnej model stuktuy badanego układu obejmuje oddziaływania między podstuktuą pojazdu szynowego a podstuktuą to-tunel oaz podstuktuą to-tunel a podstuktuą podłoża guntowego. 1 Model stuktuy układu tanspotowego Model stuktuy układu tanspotowego uwzględnia sześć podstawowych podstuktu (ysunek 1) [1]: 1. Substuktua pojazdu szynowego, kolejowego lub tamwajowego (Stuktua ).. Substuktua pojazdu szynowego kolei podziemnej meta (Substuktua ). 3. Substuktua pojazdu dogowego (Substuktua ).. Substuktua jezdni i tou (Substuktua V). 5. Substuktua podłoża guntowego jako ośodka ciągłego w ogólności niejednoodnego (Substuktua V). 6. Substuktua konstukcji obiektów inżynieskich znajdujących się w otoczeniu stuktu,, (Substuktua V). Piewsze tzy z wyszczególnionych substuktu stanowią źódła geneowania zakłóceń w postaci niepożądanych efektów w postaci hałasu i dgań [1]. Dgania powstałe podczas pzejazdu pojazdów szynowych ozpzestzeniają się w ośodku (z założenia nieoganiczonym) oddziałując na obiekty inżynieskie. Substuktuy,, są zwykle złożonymi układami mechanicznymi, któe są źódłami oscylujących obciążeń uchomych [, 3]. Stuktua V obejmuje to, tunele i jezdnie posadowione na guncie, któy taktowany jest jako ośodek ciągły, odkształcalny, spężysty lub lepko-spężysty. Stuktuy V zwykle są modelowane układami dysketnymi, skupionymi typu masa-spężyna, pasmami, płytami oaz układami dysketnociągłymi opisującymi belki [7, 9, 1]. Stuktua V obejmuje podłoże guntowe w otoczeniu dogi, tou lub tunelu. Podłoże guntowe stanowi ośodek ciągły w ogólności ys. 1. Schemat modelu stuktuy układu tanspotowego W takim ośodku mogą występować tzy odzaje fal: fale bezwiowe, dylatacyjne, wzdłużne (typu P od ang. Pimay wave), fale wiowe, otacyjne (typu S od ang. Seconday wave) oaz powiezchniowe (typu, czyli fale eylegha). Na podstawie pzepowadzonych badań doświadczalnych stwiedzono filtacyjne własności guntu. Składowe fal o wyższych częstotliwościach są pochłaniane badziej niż składowe niskoczęstotliwościowe, co wpływa na zmianę kształtu fali [1]. Pomiędzy wymienionymi wyżej substuktuami występują oddziaływania spzęgające te substuktuy. Oddziaływania te mają chaakte kontaktów mechanicznych pzy waunkach bzegowych ówności pzemieszczeń, napężeń lub ich pochodnych. W niniejszej pacy obiektem badań były substuktua, VA i V. Oddziaływania pomiędzy toem i tunelem (substuktua VA) a podłożem (substuktua V) mają chaakte mechaniczny pzemieszczeniowy lub napężeniowy. Oddziaływania to tunel gunt należą do zasadniczych w dynamice całego układu tanspotowego pojazdu kolei podziemnej, gdyż okeślają ilość enegii pzenoszonej do guntu [7]. Model dynamiczny układu pojazd to tunel podłoże guntowe W modelu dynamicznym układu pojazd to tunel gunt pojazd jest układem dysketnym kontaktującym się z szynami za pomocą kół w sposób niezależny [1, 5]. Tunel kołowy jest modelo- AUTOBUSY 1/18 331

2 wany belką zginaną i skęcaną niezależnie obciążeniami wynikającymi z dysketnych kontaktów z szynami [6]. Tunel zanuzony jest w otaczającym go guncie stanowiącym ośodek spężysty, nieoganiczony. ównanie uchu guntu jako ośodka ciągłego, spężystego ma postać ównania Lame go [] a1 u a u = ü (1) gdzie: u(ux, u, uφ) wekto pzemieszczeń we współzędnych walcowych w półpzestzeni spężystej, ü duga pochodna u po czasię, a1 =, a =, a 1 pędkość fazowa fali podłużnej, a pędkość fazowa fali popzecznej, λ, μ stałe spężystości Lame go, ρ gęstość guntu. Waunki bzegowe kontaktu tunel gunt dla = wyażają ciągłość pzemieszczeń obu podukładów i mają postać ux(, φ, x, t) = u = y sin φ + z cosφ, y sinφ + x z cosφ, x () uφ = y cos φ z sinφ + θ, ys.. Pzekój popzeczny tunelu gdzie: y, z i θ pzemieszczenia tunelu (ysunek ). Gdy pole pzemieszczeń u jest falowe, wówczas spełnia waunki pomieniowania. W innych pzypadkach powinno być egulane. Tunel można opisać ównaniami belki kołowej zginanej w dwóch postopadłych płaszczyznach i skęcanej niezależnie od zginania w postaci: W niniejszej pacy pzyjęto ównania uchu tunelu w następującej postaci [9] EJ y x x + x y x t [( ) GJ x ρt J t + ρt A y t + cosφ + σφsinφ]dφ = q(x, t), + d = qs(x, t), gdzie: q(x, t), qs(x, t) obciążenia, E, G moduły elastyczności tunelu, popzeczny moment bezwładności tunelu, J polowy popzeczny moment bezwładności, J biegunowy popzeczny moment bezwładności, ρt gęstość masowa tunelu, σ, σ napężenia we współzędnych, φ, x. Napężenia we współzędnych, φ, x wynoszą u σ = μ 1 1 u u x + λ ( u ) x u 1 u u u x, σx = μ x σφ= μ (3) () Wyznaczone pzemieszczenia w guncie ux, u, uφ pzy zastosowaniu tansfomacji Fouiea- Bessela (eliminacja zmiennej x i t) wynoszą [6, 9]: uφ= { u = {β1κ1z1(κ1)+ 1 1 βz1(κ)+ik[β11z(κ) + β1z(κ)] ycosφ, β1z1(κ1)+βκz1(κ)+iκ[β11z(κ)+β1z(κ)]} Z( ) ysinφ +, Z ( ) ux=[β11 κz(κ) β1κz(κ) ycosφ, 1 β1z(κ) ikβ1z1(κ)]} gdzie: y, θ pzemieszczenia tunelu w zależności od częstotliwości: k - EJ y(k, ω)= q( k, ) EJ 6 5 t k - A - ik 1 E EJ EJ θ(k, ω) = t G - k GJ q ( k, ) s '' Z ( ) -1 ' GJ Z ( ) (5) (6) gdzie: Z, Z1, Z funkcje cylindyczne ze współczynnikami κ1, κ pzy zmiennej, wielkości β1, β, β11, β1 współczynniki z ównań tansfomacji Fouiea-Bessela, ξ1, ξ, współczynniki wpowadzone do obliczeń w takcie wyznaczania pzemieszczeń w guncie. 33 AUTOBUSY 1/18

3 Tansmitancję pzemieszczeń w guncie ti wyznaczono z następującej definicji [9] Sui ui = <ui ui * > = ti Sqq, i = 1,, 3, (7) gdzie: u 1 = u, u = uφ, u 3 = ux, S qq funkcja gęstości widmowej obciążeń tunelu, W pzypadku skęcania tunelu można wyznaczyć tansmitancję t Sθθ = t Sqq, (8) S θθ funkcja gęstości widmowej kąta skęcania tunelu. Podobnie wyznaczono tansmitancję napężeń p i Sσσ = <σiσi * > = pi Sqq, i = 1,, 3, (9) gdzie: σ 1 = σ, σ = σ φ, σ 3 = σ xx. Dla momentu zginającego tunel można wyznaczyć tansmitancję SMM = Sqq. (1) 3 WYNK OBLCZEŃ W wyniku analizy numeycznej pzy pomocy pzestawionych wyżej modeli substuktu zostały wyznaczone kwadaty modułów tansmitancji tunelu w zależności od częstotliwości dla waunków piewszej linii meta waszawskiego. Dane odnośnie paametów i współczynników wzięto z wyników badań geodynamicznych guntu otaczającego linię meta (tablica 1) oaz z dokumentacji technicznej tunelu kołowego (tablica ). ys. 3. Kwadat modułu tansmitancji dla tunelu półfabykowanego, obsza Lasek Bielański, d = 1,, φ =, φ = π/ Tab. 1 Dane geodynamiczne guntu Miejsce linii Meta a 1 [m/s] a [m/s] ρ [1 3 kg/m 3 ] λ [MPa] μ [MPa] ν [MPa] Lasek Bielański Ogód Saski Usynów- Natolin 1 1, , , Tab.. Paamety tunelu Meta Typ tunelu h ρt E G [cm] [mm] [kgs /m ] [MN/m ] [MN/m ] Pefabykowany 75 5, Tubingowy Wyniki badań pzedstawiono w fomie wykesów kwadatów modułów tansmitancji na ysunkach 3-13, gdzie paamet d =. ys.. Kwadat modułu tansmitancji dla tunelu półfabykowanego, obsza Lasek Bielański, d =,, φ =, φ = π/ AUTOBUSY 1/18 333

4 ys. 5. Kwadat modułu tansmitancji dla tunelu tubingowego, obsza Lasek Bielański, d = 1,, φ =, φ = π/ ys. 7. Kwadat modułu tansmitancji dla tunelu półfabykowanego, obsza Lasek Bielański, dla zginania tunelu, d = 1, ys. 6. Kwadat modułu tansmitancji dla tunelu półfabykowanego, obsza Lasek Bielański, dla skęcania tunelu, d =1, ys. 8. Kwadat modułu tansmitancji dla tunelu półfabykowanego. obsza Ogód Saski, dla pzemieszczeń 33 AUTOBUSY 1/18

5 ys. 9. Kwadat modułu tansmitancji dla tunelu tubingowego, obsza Ogód Saski, d=1,, φ =, φ = π/ ys. 11. Kwadat modułu tansmitancji dla tunelu półfabykowanego obsza Usynów-Natolin, d = 1,, φ =, φ = π/ ys. 1. Kwadat modułu tansmitancji dla tunelu tubingowego, obsza Usynów-Natolin, d = 1,, φ =, φ = π/ ys. 1. Kwadat modułu tansmitancji dla tunelu półfabykowanego obsza Usynów-Natolin, d =,, φ =, φ = π/ AUTOBUSY 1/18 335

6 ys. 13. Kwadat modułu tansmitancji dla pzemieszczeń, d = 1, i d = 1, dla óżnych gęstości guntu Wnioski z analizy pzedstawionych wykesów: 1. Układ tunelu w guncie stanowi dla d = 1, stanowi układ jednomodowy w zakesie ozpatywanego zakesu częstotliwości między mniej niż 1 do kilkudziesięciu o wyaźnie zaznaczonej części ezonansowej.. Dgania tunelu są tłumione ponieważ następuje pzekazanie enegii do guntu w postaci fal objętościowych. 3. Występuje wyaźny spadek intensywności tansmitancji w funkcji odległości od tunelu.. Ze wzostem odległości ujawniają się pasmowo-filtacyjne własności guntu. 5. Poównując tansmitancje tunelu pefabykowanego i tubingowego można stwiedzić, że ten ostatni w poównywalnych waunkach jest kozystniejszy, gdyż ma mniejszą tansmitancję. 6. Pzy k > ω/a mod tłumienia staje się modem nietłumionym, co ilustuje wykes dla k = (ysunek 3 i ysunek 11). Geneowany jest wówczas stan własny, co skutkuje ozchodzeniem się enegii w większości wzdłuż tunelu, a nie popagowaniem do guntu, oznacza to osty ezonans niebezpieczny dla tunelu, jak i stacji meta. 7. Pod względem dynamicznym gunt otaczający tunel ma znacznie lepsze właściwości pzy stacjach południowych (Usynów- Natolin), a niekozystne właściwości w północnej części linii (obsza Lasek Bielański). lustują to wykesy na ysunku 3 i ysunku 11, liczbowe óżnice między tansmitancjami są śednio zędu 1,5-, amplitudy odnośnie części południowej linii. Podsumowanie Pzedstawione w niniejszej pacy badania wpisują się w szesze studia nad wpływem śodków tanspotu kolejowego na infastuktuę miejską, pocesy technologiczne oaz człowieka powadzone w wielu specjalistycznych ośodkach badawczych na świecie. Pzedstawione w atykule wyniki badań mogą zostać wykozystane pzy ocenie wpływu dgań, któych źódłem są pociągi pzemieszczające się w tunelach, na pobliskie obiekty inżynieskie. Ponadto mogą zostać wykozystane do pac nad utzymaniem wysokich wymagań komfotu jazdy oaz zapewnieniem bezpieczeństwa tanspotu pzy espektowaniu zasad ochony śodowiska. Bibliogafia 1. Chudzikiewicz J., Doździel J., Kisilowski J., Żochowski A., Modelowanie i analiza dynamiki układu mechanicznego pojazd to. PWN, Waszawa Bil J., ydygie E., The use of modelling of impact exeted by means of tanspot on the envionment fo ensuing safety. Scientific Jounal of the Militay Univesity of Land Foces, vol. 5, no. (188), 18, pp Bil. J., ydygie E., Stzyżakowski Z., Modeling of the impact of means of tanspot on envionment. Autobusy 16, n 1, w dziale Eksploatacja testy, (atykuły ecenzowane) na płycie CD, st Gabyszewski Z., Teoia spężystości i plastyczności. Oficyna Wydawnicza Politechniki Wocławskiej, Wocław ydygie E., Stzyżakowski Z., Modelling of contact poblems involved in ensuing the safety of ail tanspot. LogFoum 13, n 9, pp ydygie E., Stzyżakowski Z., Badania modelowe wpływu tanspotu lądowego na otoczenie, Autobusy 17, n 1, w dziale Eksploatacja testy, (atykuły ecenzowane) na płycie CD, st Szcześniak W., Wybane zagadnienia kolejowe. Wzajemne oddziaływanie w układzie pojazd to kolejowy podtoze podłoże guntowe. Pace Naukowe Politechniki Waszawskiej. Budownictwo, Z. 19, Ofic.Wyd. PW, Waszawa Stzyżakowski Z.: nvestigation the vehicle-tack-elastic halfspace systems with egad to the wave phenomena. TU Belin, L Beicht 58, pp , Stzyżakowski Z., Dynamika układu pojazd to otoczenie modelowanego układem dysketno-ciągłym. Politechnika Waszawska, Pace nst. Tanspotu, Z. 31, Waszawa Stzyżakowski Z., Modelowanie zjawisk dynamicznych w układach tanspotowych. Wyd. nst. Technol. Eksploat., adom 7. Model studies of the tanspot system substuctues fo undegound ailway The aticle pesents model studies of the dynamics of the tanspot system fo the stuctue of the ail vehicle of the undegound ailway. n this case, the subject of the eseach is the system of ail vehicle tack tunnel subsoil. Dynamic inteactions wee investigated between the tunnel and the subsoil modeled with elastic half-space. Tunnel tansmittances have been detemined fo the conditions of the fist Wasaw subway line. The usefulness of the poposed modeling method in the study of the influence of moden means of tanspot on uban infastuctue has been demonstated. Key wods: model studies of the ail vehicle-tack-tunnel-subsoil system, elastic half-space, impact of means of tanspot on envionment Autozy: d inż. Joanna Bil Podkapacka Szkoła Wyższa im. bł. ks. Władysława Findysza w Jaśle, Zakład Ekonomiki Zaządzania, ul. Na Kotlinę 8, 38-6 Jasło, joannabil@vp.pl d Edwad ydygie Uząd m. st. Waszawy, ul. Kodatowicza, -983 Waszawa, McLeod nstitute of Simulation Sciences at the Univesity of Technology and Humanities in adom, eydygie@gmail.com pof. d hab. inż. Zygmunt Stzyżakowski - Uniwesytet Technologiczno-Humanistyczny, Wydział Tanspotu i Elektotech-niki, McLeod nstitute of Simulation Sciences, ul. Malczewskiego 9, 6-6 adom zstz@data.pl 336 AUTOBUSY 1/18

podsumowanie (E) E l Eds 0 V jds

podsumowanie (E) E l Eds 0 V jds e-8.6.7 fale podsumowanie () Γ dl 1 ds ρ d S ε V D ds ρ d S ( ϕ ) 1 ρ ε D ρ D ρ V D ( D εε ) εε S jds V ρ d t j ρ t j σ podsumowanie (H) Bdl Γ μ S jds B μ j S Bds B ( B A) Hdl Γ S jds H j ( B μμ H ) ε

Bardziej szczegółowo

11. DYNAMIKA RUCHU DRGAJĄCEGO

11. DYNAMIKA RUCHU DRGAJĄCEGO 11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie

Bardziej szczegółowo

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III Modelowanie pzepływu cieczy pzez ośodki poowate Wykład III 6 Ogólne zasady ozwiązywania ównań hydodynamicznego modelu pzepływu. Metody ozwiązania ównania Laplace a. Wpowadzenie wielkości potencjału pędkości

Bardziej szczegółowo

II.6. Wahadło proste.

II.6. Wahadło proste. II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia

Bardziej szczegółowo

m q κ (11.1) q ω (11.2) ω =,

m q κ (11.1) q ω (11.2) ω =, OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym 1.Wpowadzenie Wyznaczanie pofilu pędkości płynu w uociągu o pzekoju kołowym Dla ustalonego, jednokieunkowego i uwastwionego pzepływu pzez uę o pzekoju kołowym ównanie Naviea-Stokesa upaszcza się do postaci

Bardziej szczegółowo

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI.

ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. Modelowanie pzepływu cieczy pzez ośodki poowate Wykład VII ROZWIAZANIA ZAGADNIEŃ PRZEPŁYWU FILTRACYJNEGO METODAMI ANALITYCZNYMI. 7. Pzepływ pzez goblę z uwzględnieniem zasilania wodami infiltacyjnymi.

Bardziej szczegółowo

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE.

Uwagi: LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Ćwiczenie nr 16 MECHANIKA PĘKANIA. ZNORMALIZOWANY POMIAR ODPORNOŚCI MATERIAŁÓW NA PĘKANIE. POLITECHNIKA KRAKOWSKA WYDZIAŁ MECHANZNY INSTYTUT MECHANIKI STOSOWANEJ Zakład Mechaniki Doświadczalnej i Biomechaniki Imię i nazwisko: N gupy: Zespół: Ocena: Uwagi: Rok ak.: Data ćwicz.: Podpis: LABORATORIUM

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

Symulacja ruchu układu korbowo-tłokowego

Symulacja ruchu układu korbowo-tłokowego Symulacja uchu układu kobowo-tłokowego Zbigniew Budniak Steszczenie W atykule zapezentowano wykozystanie możliwości współczesnych systemów CAD/CAE do modelowania i analizy kinematycznej układu kobowo-tłokowego

Bardziej szczegółowo

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH

ĆWICZENIE 3 REZONANS W OBWODACH ELEKTRYCZNYCH ĆWZENE 3 EZONANS W OBWODAH EEKTYZNYH el ćwiczenia: spawdzenie podstawowych właściwości szeegowego i ównoległego obwodu ezonansowego pzy wymuszeniu napięciem sinusoidalnym, zbadanie wpływu paametów obwodu

Bardziej szczegółowo

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie

Graf skierowany. Graf zależności dla struktur drzewiastych rozgrywających parametrycznie Gaf skieowany Gaf skieowany definiuje się jako upoządkowaną paę zbioów. Piewszy z nich zawiea wiezchołki gafu, a dugi składa się z kawędzi gafu, czyli upoządkowanych pa wiezchołków. Ruch po gafie możliwy

Bardziej szczegółowo

OBLICZENIA NUMERYCZNE TENSORA PRZEPUSZCZALNOŚCI DARCY EGO W OPARCIU O METODĘ ASYMPTOTYCZNEJ HOMOGENIZACJI

OBLICZENIA NUMERYCZNE TENSORA PRZEPUSZCZALNOŚCI DARCY EGO W OPARCIU O METODĘ ASYMPTOTYCZNEJ HOMOGENIZACJI Gónictwo i Geoinżynieia Rok 3 Zeszyt 008 Tomasz Stzelecki* OBLICZENIA NUMERYCZNE TENSORA PRZEPUSZCZALNOŚCI DARCY EGO W OPARCIU O METODĘ ASYMPTOTYCZNEJ HOMOGENIZACJI 1. Wpowadzenie Załóżmy, że ośodek poowaty

Bardziej szczegółowo

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.

Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii. Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to

Bardziej szczegółowo

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO

KOMPUTEROWO WSPOMAGANA ANALIZA KINEMATYKI MECHANIZMU DŹWIGNIOWEGO XIX Międzynaodowa Szkoła Komputeowego Wspomagania Pojektowania, Wytwazania i Eksploatacji D hab. inż. Józef DREWNIAK, pof. ATH Paulina GARLICKA Akademia Techniczno-Humanistyczna w Bielsku-Białej DOI: 10.17814/mechanik.2015.7.226

Bardziej szczegółowo

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE

TECHNIKI INFORMATYCZNE W ODLEWNICTWIE ECHNIKI INFORMAYCZNE W ODLEWNICWIE Janusz LELIO Paweł ŻAK Michał SZUCKI Faculty of Foundy Engineeing Depatment of Foundy Pocesses Engineeing AGH Univesity of Science and echnology Kakow Data ostatniej

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki Póba okeślenia miay jakości infomacji na guncie teoii gafów dla potzeb dydaktyki Zbigniew Osiak E-mail: zbigniew.osiak@gmail.com http://ocid.og/0000-0002-5007-306x http://via.og/autho/zbigniew_osiak Steszczenie

Bardziej szczegółowo

Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie

Rozdział V WARSTWOWY MODEL ZNISZCZENIA POWŁOK W CZASIE PRZEMIANY WODA-LÓD. Wprowadzenie 6 Rozdział WARSTWOWY MODL ZNISZCZNIA POWŁOK W CZASI PRZMIANY WODA-LÓD Wpowadzenie Występujące po latach eksploatacji zniszczenia zewnętznych powłok i tynków budowli zabytkowych posiadają często typowo

Bardziej szczegółowo

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego Ćwiczenia: SK-7 Wpowadzenie do metody wektoów pzetzennych SK-8 Wektoowy model ilnika indukcyjnego, klatkowego Wpowadzenie teoetyczne Wekto pzetzenny definicja i poawowe zależności. Dowolne wielkości kalane,

Bardziej szczegółowo

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%: Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny

Bardziej szczegółowo

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN

9.1 POMIAR PRĘDKOŚCI NEUTRINA W CERN 91 POMIAR PRĘDKOŚCI NEUTRINA W CERN Rozdział należy do teoii pt "Teoia Pzestzeni" autostwa Daiusza Stanisława Sobolewskiego http: wwwtheoyofspaceinfo Z uwagi na ozważania nad pojęciem czasu 1 możemy pzyjąć,

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna

Elektroenergetyczne sieci rozdzielcze SIECI 2004 V Konferencja Naukowo-Techniczna Elektoenegetyczne sieci ozdzielcze SIECI 2004 V Konfeencja Naukowo-Techniczna Politechnika Wocławska Instytut Enegoelektyki Andzej SOWA Jaosław WIATER Politechnika Białostocka, 15-353 Białystok, ul. Wiejska

Bardziej szczegółowo

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:

A r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji: -- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U

Bardziej szczegółowo

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli

Badania nad kształtowaniem się wartości współczynnika podatności podłoża dla celów obliczeń statycznych obudowy tuneli AKADEMIA GÓRNICZO HUTNICZA im. Stanisława Staszica WYDZIAŁ GÓRNICTWA I GEOINŻYNIERII KATEDRA GEOMECHANIKI, BUDOWNICTWA I GEOTECHNIKI Rozpawa doktoska Badania nad kształtowaniem się watości współczynnika

Bardziej szczegółowo

STRUKTURA STEROWANIA UKŁADEM TRÓJMASOWYM Z REGULATOREM STANU

STRUKTURA STEROWANIA UKŁADEM TRÓJMASOWYM Z REGULATOREM STANU Pace Naukowe Instytutu Maszyn, Napędów i Pomiaów Elektycznych N 69 Politechniki Wocławskiej N 69 Studia i Mateiały N 0 Kaol WRÓBEL* egulato stanu, układy tójmasowe, układy z połączeniem spężystym STRUKTURA

Bardziej szczegółowo

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Ruch obrotowy. Wykład 6. Wrocław University of Technology Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Paca Paca jest ówna iloczynowi pzemieszczenia oaz siły, któa te pzemieszczenie wywołuje. Paca jest wielkością skalaną wyażaną w dżulach (ang. Joul) [J] i w ogólności może być zdefiniowana

Bardziej szczegółowo

ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne

ELEKTROMAGNETYCZNE DRGANIA WYMUSZONE W OBWODZIE RLC. 1. Podstawy fizyczne Politechnika Waszawska Wydział Fizyki Laboatoium Fizyki I Płd. Maek Kowalski ELEKTROMAGNETYZNE RGANIA WYMUSZONE W OBWOZIE RL. Podstawy fizyczne gania są zjawiskiem powszechnie występującym w pzyodzie i

Bardziej szczegółowo

L(x, 0, y, 0) = x 2 + y 2 (3)

L(x, 0, y, 0) = x 2 + y 2 (3) 0. Małe dgania Kótka notatka o małych dganiach wyjasniające możliwe niejasności. 0. Poszukiwanie punktów ównowagi Punkty ównowagi wyznaczone są waunkami x i = 0, ẋi = 0 ( Pochodna ta jest ówna pochodnej

Bardziej szczegółowo

Analiza charakterystyk drgań gruntu wraz z funkcją przejścia drgań na budynki

Analiza charakterystyk drgań gruntu wraz z funkcją przejścia drgań na budynki CUPRUM Czasopismo Naukowo-Techniczne Gónictwa Rud 1 n 1 (70) 014, s. 1-35 Analiza chaakteystyk dgań guntu waz z funkcją pzejścia dgań na budynki Izabela Jaśkiewicz-Poć KGHM CUPRUM sp. z o.o. CBR, ul. Sikoskiego

Bardziej szczegółowo

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E

a fale świetlne Powtórzenie; operatory róŝniczkowe Wektorowe równanie falowe (3D) Fale wyraŝone przez zespolone amplitudy r r r 2 r r r r E E E 1 E Równania Mawella a fale świetlne Wykład 3 Fale wyaŝone pzez zespolone amplitudy wektoowe Pola zespolone, a więc i ich amplitudy są teaz wektoami: % % Równania Mawella Wypowadzenie ównania falowego z ównań

Bardziej szczegółowo

MECHANIKA OGÓLNA (II)

MECHANIKA OGÓLNA (II) MECHNIK GÓLN (II) Semest: II (Mechanika I), III (Mechanika II), ok akademicki 2017/2018 Liczba godzin: sem. II*) - wykład 30 godz., ćwiczenia 30 godz. sem. III*) - wykład 30 godz., ćwiczenia 30 godz. (dla

Bardziej szczegółowo

Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać:

Opis kwantowy cząsteczki jest bardziej skomplikowany niż atomu. Hamiltonian przy zaniedbaniu oddziaływań związanych ze spinem ma następującą postać: Cząsteczki. Kwantowy opis stanów enegetycznych cząsteczki. Funkcje falowe i enegia ektonów 3. Ruchy jąde oscylacje i otacje 4. Wzbudzenia cząsteczek Opis kwantowy cząsteczki jest badziej skomplikowany

Bardziej szczegółowo

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI

8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8. 8. PŁASKIE ZAGADNIENIA TEORII SPRĘŻYSTOŚCI 8.. Płaski stan napężenia Tacza układ, ustój ciągły jednoodny, w któym jeden wymia jest znacznie mniejszy od pozostałych,

Bardziej szczegółowo

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995

Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

EDWARD WŁODARCZYK, MARIUSZ ZIELENKIEWICZ*

EDWARD WŁODARCZYK, MARIUSZ ZIELENKIEWICZ* BIULETYN WAT VOL. LVII, NR 1, 8 Radialne dgania gubościennej kulistej osłony balistycznej wymuszone wewnętznym ciśnieniem poduktów natychmiastowej detonacji mateiału wybuchowego (MW) EDWARD WŁODARCZYK,

Bardziej szczegółowo

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych

FIZYKA BUDOWLI. wilgoć w przegrodach budowlanych. przyczyny zawilgocenia przegród budowlanych FIZYKA BUDOWLI zagadnienia cieplno-wilgotnościowe pzegód budowlanych 1 wilgoć w pzegodach budowlanych pzyczyny zawilgocenia pzegód budowlanych wilgoć technologiczna związana z pocesem wytwazania i podukcji

Bardziej szczegółowo

Opracowanie: Emilia Inczewska 1

Opracowanie: Emilia Inczewska 1 Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA

INSTRUKCJA DO ĆWICZENIA NSTRKJA DO ĆWZENA Temat: Rezonans w obwodach elektycznych el ćwiczenia elem ćwiczenia jest doświadczalne spawdzenie podstawowych właściwości szeegowych i ównoległych ezonansowych obwodów elektycznych.

Bardziej szczegółowo

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda

II.3 Rozszczepienie subtelne. Poprawka relatywistyczna Sommerfelda . akad. 004/005 II.3 Rozszczepienie subtelne. Popawka elatywistyczna Sommefelda Jan Kólikowski Fizyka IVBC . akad. 004/005 II.3. Mechanizmy fizyczne odpowiedzialne za ozszczepienie subtelne Istnieją dwie

Bardziej szczegółowo

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA WYKŁAD OPTYMALIZACJA WIELOKYTEIALNA Wstęp. W wielu pzypadkach pzy pojektowaniu konstukcji technicznych dla okeślenia ich jakości jest niezędne wpowadzenie więcej niż jednego kyteium oceny. F ) { ( ), (

Bardziej szczegółowo

Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów)

Modelowanie zmienności i dokładność oszacowania jakości węgla brunatnego w złożu Bełchatów (pole Bełchatów) Akademia Góniczo-Hutnicza, Kopalnia Węgla Bunatnego, Wydział Geologii, Geofizyki i Ochony śodowiska Bełchatów Wasztaty Gónicze 24 Jacek Mucha, Tadeusz Słomka, Wojciech Mastej, Tomasz Batuś Akademia Góniczo-Hutnicza,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W kolejnych okesach czasu t =,,3,... ubezpieczony, chaakteyzujący się paametem yzyka Λ, geneuje szkód. Dla danego Λ = λ zmienne N t N, N, N 3,... są waunkowo niezależne i mają (bzegowe) ozkłady

Bardziej szczegółowo

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość. WYKŁAD 1 Pzedmiot badań temodynamiki. Jeśli chcemy opisać układ złożony z N cząstek, to możemy w amach mechaniki nieelatywistycznej dla każdej cząstki napisać ównanie uchu: 2 d i mi = Fi, z + Fi, j, i,

Bardziej szczegółowo

23 PRĄD STAŁY. CZĘŚĆ 2

23 PRĄD STAŁY. CZĘŚĆ 2 Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu

Bardziej szczegółowo

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono

Bardziej szczegółowo

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH Janusz ROMANIK, Kzysztof KOSMOWSKI, Edwad GOLAN, Adam KRAŚNIEWSKI Zakład Radiokomunikacji i Walki Elektonicznej Wojskowy Instytut Łączności 05-30

Bardziej szczegółowo

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

Elementarne przepływy potencjalne (ciąg dalszy)

Elementarne przepływy potencjalne (ciąg dalszy) J. Szanty Wykład n 4 Pzepływy potencjalne Aby wytwozyć w pzepływie potencjalnym siły hydodynamiczne na opływanych ciałach konieczne jest zyskanie pzepływ asymetycznego.jest to możliwe pzy wykozystani kolejnego

Bardziej szczegółowo

1. Podstawowe pojęcia mechaniki płynów

1. Podstawowe pojęcia mechaniki płynów 1. Podstawowe pojęcia mechaniki płynów W większości zastosowań technicznych wyóżnia się dwa odzaje ciał, tzn. płyny i ciała stałe, pzy czym najczęściej spotykana definicja pozwalająca ozóżnić te dwa ośodki

Bardziej szczegółowo

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku. Równania Maxwella Wstęp James Clek Maxwell Żył w latach 1831-1879 Wykonał decydujący kok w ustaleniu paw opisujących oddziaływania ładunków i pądów z polami elektomagnetycznymi oaz paw ządzących ozchodzeniem

Bardziej szczegółowo

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers Siła tacia Tacie jest zawsze pzeciwnie skieowane do kieunku uchu (do pędkości). P. G. Hewitt, Fizyka wokół nas, PWN R. D. Knight, Physics fo scientists and enginees Symulacja molekulanego modelu tacia

Bardziej szczegółowo

LINIOWA MECHANIKA PĘKANIA

LINIOWA MECHANIKA PĘKANIA odstawowe infomacje nt. LNOWA MECHANA ĘANA Wytzymałość mateiałów J. Geman OLE NARĘŻEŃ W LNOWO SRĘŻYSTYM OŚRODU ZE SZCZELNĄ oe napężeń w dwuwymiaowym ośodku iniowo-spężystym ze szczeiną zostało wyznaczone

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

cz.2 dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski Wykład 11: Gawitacja cz. d inż. Zbigniew Szklaski szkla@agh.edu.pl http://laye.uci.agh.edu.pl/z.szklaski/ Pawo Gaussa - PZYKŁADY: Masa punktowa: ds Powiezchnia Gaussa M g g S g ds S g ds 0 cos180 S gds

Bardziej szczegółowo

Grzegorz Kornaś. Powtórka z fizyki

Grzegorz Kornaś. Powtórka z fizyki Gzegoz Konaś Powtóka z fizyki - dla uczniów gimnazjów, któzy chcą wiedzieć to co tzeba, a nawet więcej, - dla uczniów liceów, któzy chcą powtózyć to co tzeba, aby zozumieć więcej, - dla wszystkich, któzy

Bardziej szczegółowo

BADANIE DYNAMICZNEGO TŁUMIKA DRGA

BADANIE DYNAMICZNEGO TŁUMIKA DRGA Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie

Bardziej szczegółowo

LABORATORIUM WIBROAKUSTYKI MASZYN. Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów

LABORATORIUM WIBROAKUSTYKI MASZYN. Wydział Budowy Maszyn i Zarządzania Instytut Mechaniki Stosowanej Zakład Wibroakustyki i Bio-Dynamiki Systemów LABORAORIUM WIBROAKUSYKI MASZYN Wydział Budowy Maszyn i Zaządzania Instytut Mechaniki Stosowanej Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n WYZNACZANIE PARAMERÓW DYNAMICZNYCH UKŁADÓW metodą

Bardziej szczegółowo

STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN

STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN STANISŁAW KIRSEK, JOANNA STUDENCKA STANDARDY EMISJI ZANIECZYSZCZEŃ DO POWIETRZA Z PROCESÓW ENERGETYCZNEGO SPALANIA PALIW ANALIZA ZMIAN THE STANDARDS OF AIR POLLUTION EMISSION FROM THE FUELS COMBUSTION

Bardziej szczegółowo

2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B

2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B PRZYKŁAD A Utwozyć model sieci z dwuuzwojeniowym, tójfazowym tansfomatoem 110/0kV. Model powinien zapewnić symulację zwać wewnętznych oaz zadawanie watości początkowych indukcji w poszczególnych fazach.

Bardziej szczegółowo

Siła. Zasady dynamiki

Siła. Zasady dynamiki Siła. Zasady dynaiki Siła jest wielkością wektoową. Posiada okeśloną watość, kieunek i zwot. Jednostką siły jest niuton (N). 1N=1 k s 2 Pzedstawienie aficzne A Siła pzyłożona jest do ciała w punkcie A,

Bardziej szczegółowo

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r.

GRAWITACJA. przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną do kwadratu ich odległości r. GRAWITACJA Pawo powszechnego ciążenia (pawo gawitacji) Dwa punkty mateialne o masach m 1 i m pzyciągają się wzajemnie siłą popocjonalną do iloczynu ich mas i odwotnie popocjonalną do kwadatu ich odległości.

Bardziej szczegółowo

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża

Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża Załącznik D (EC 7) Przykład analitycznej metody obliczania oporu podłoża D.1 e używane w załączniku D (1) Następujące symbole występują w Załączniku D: A' = B' L efektywne obliczeniowe pole powierzchni

Bardziej szczegółowo

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ. STRESZCZENIE Na bazie fizyki klasycznej znaleziono nośnik ładunku gawitacyjnego, uzyskano jedność wszystkich odzajów pól ( elektycznych,

Bardziej szczegółowo

Wzmacniacze tranzystorowe prądu stałego

Wzmacniacze tranzystorowe prądu stałego Wzmacniacze tanzystoo pądu stałego Wocław 03 kład Dalingtona (układ supe-β) C kład stosowany gdy potzebne duże wzmocnienie pądo (np. do W). C C C B T C B B T C C + β ' B B C β + ( ) C B C β β β B B β '

Bardziej szczegółowo

Równanie Schrödingera dla elektronu w atomie wodoru

Równanie Schrödingera dla elektronu w atomie wodoru Równanie Schödingea dla elektonu w atomie wodou m 1 d dp l( l + ) P = P sinθ Równanie funkcji kąta biegunowego P(θ) 1 sin θ sinθ dθ ma ozwiązania w postaci stowazyszonych funkcji Legende a P lm ( θ ) =

Bardziej szczegółowo

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów

Rodzaje fal. 1. Fale mechaniczne. 2. Fale elektromagnetyczne. 3. Fale materii. dyfrakcja elektronów Wykład VI Fale t t + Dt Rodzaje fal 1. Fale mechaniczne 2. Fale elektromagnetyczne 3. Fale materii dyfrakcja elektronów Fala podłużna v Przemieszczenia elementów spirali ( w prawo i w lewo) są równoległe

Bardziej szczegółowo

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH

KONKURS Z MATEMATYKI DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH Konkusy w województwie podkapackim w oku szkolnym 08/09 KONKURS Z MTEMTYKI L UZNIÓW SZKÓŁ POSTWOWYH ETP REJONOWY KLUZ OPOWIEZI Zasady pzyznawania punktów za każdą popawną odpowiedź punkt za błędną odpowiedź

Bardziej szczegółowo

rozwarcia 2α porusza sie wzd luż swojej osi (w strone

rozwarcia 2α porusza sie wzd luż swojej osi (w strone Zadanie Pocisk w kszta lcie stożka o polu podstawy S i kacie ozwacia 2α pousza sie z pedkości a v wzd luż swojej osi w stone wiezcho lka) w badzo ozzedzonym jednoatomowym gazie. Tempeatua gazu jest na

Bardziej szczegółowo

Nośniki swobodne w półprzewodnikach

Nośniki swobodne w półprzewodnikach Nośniki swobodne w półpzewodnikach Półpzewodniki Masa elektonu Masa efektywna swobodnego * m m Opócz wkładu swobodnych nośników musimy uwzględnić inne mechanizmy np. wkład do polayzaci od elektonów związanych

Bardziej szczegółowo

PODSTAWY MODELOWANIA MOLEKULARNEGO

PODSTAWY MODELOWANIA MOLEKULARNEGO PODSTAWY MODELOWANIA MOLEKULARNEGO Mechanika molekulana Dynamika molekulana Symulacje Monte Calo Teoia funkcjonału gęstości Liteatua Metody komputeowe w fizyce, T. Pang, PWN, Waszawa, 1. Podstawy symulacji

Bardziej szczegółowo

DOBÓR OPTYMALNEGO TYPU ŚRODKÓW TRANSPORTOWYCH

DOBÓR OPTYMALNEGO TYPU ŚRODKÓW TRANSPORTOWYCH Andzej B. CHOJNACKI * DOBÓR OPTYMALNEGO TYPU ŚRODKÓW TRANSPORTOWYCH Steszczenie W efeacie pzedstawiono analityczną metodę dobou optymalnego typu śodków tanspotowych do wykonania zadania pzewozowego okeślonego

Bardziej szczegółowo

Fizyka 10. Janusz Andrzejewski

Fizyka 10. Janusz Andrzejewski Fizyka 10 Pawa Keplea Nauki Aystotelesa i Ptolemeusza: wszystkie planety i gwiazdy pouszają się wokół Ziemi po skomplikowanych toach( będących supepozycjami uchów Ppo okęgach); Mikołaj Kopenik(1540): planety

Bardziej szczegółowo

Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu

Wyznaczanie współczynnika wzorcowania przepływomierzy próbkujących z czujnikiem prostokątnym umieszczonym na cięciwie rurociągu Wyznaczanie współczynnika wzocowania pzepływomiezy póbkujących z czujnikiem postokątnym umieszczonym na cięciwie uociągu Witold Kiese W pacy pzedstawiono budowę wybanych czujników stosowanych w pzepływomiezach

Bardziej szczegółowo

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH

WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH LABORATORIUM DRGANIA I WIBROAKUSTYKA MASZYN Wydział Budowy Maszyn i Zaządzania Zakład Wiboakustyki i Bio-Dynamiki Systemów Ćwiczenie n 4 WYWAŻANIE MASZYN WIRNIKOWYCH W ŁOŻYSKACH WŁASNYCH Cel ćwiczenia:

Bardziej szczegółowo

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 1- Mechanika. Wykład 10 7.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Fizyka - Mechanika Wykład 0 7.XII.07 Zygmunt Szefliński Śodowiskowe Laboatoium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Pawo powszechnego ciążenia F G mm Opisuje zaówno spadanie jabłka

Bardziej szczegółowo

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek.

Pole grawitacyjne. Definicje. Rodzaje pól. Rodzaje pól... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek. Pole gawitacyjne d inż. Ieneusz Owczaek CNMiF PŁ ieneusz.owczaek@p.lodz.pl http://cmf.p.lodz.pl/iowczaek 1 d inż. Ieneusz Owczaek Pole gawitacyjne Definicje to pzestzenny ozkład wielkości fizycznej. jest

Bardziej szczegółowo

Odpowiednio [4] zużycie liniowe zębów koła ślimakowego w ciągu jednego obrotu oblicza się według wzoru

Odpowiednio [4] zużycie liniowe zębów koła ślimakowego w ciągu jednego obrotu oblicza się według wzoru Postępy Nauki i Tecniki n 5, 0 Mion Czeniec, Jezy Kiełbiński, Jui Czeniec METODA NA OSZACOWANIE WPŁYWU ZUŻYCIA NA WYTRZYMAŁOŚĆ STYKOWĄ ORAZ TRWAŁOŚĆ PRZEKŁADNI ŚLIMAKOWEJ ZE ŚLIMAKIEM ARCHIMEDESA Steszczenie.

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w popzednim odcinku 1 Zasady dynamiki Newtona I II Każde ciało twa w stanie spoczynku lub pousza się uchem postoliniowym i jednostajnym, jeśli siły pzyłożone nie zmuszają ciała do zmiany tego stanu Zmiana

Bardziej szczegółowo

= ± Ne N - liczba całkowita.

= ± Ne N - liczba całkowita. POL LKTRYCZN W PRÓŻNI Ładunek - elementany Nieodłączna własność niektóych cząstek elementanych, [n. elektonu (-e), otonu (+e)], zejawiająca się w oddziaływaniu elektomagnetycznym tych cząstek. e =,6-9

Bardziej szczegółowo

Szczególna i ogólna teoria względności (wybrane zagadnienia)

Szczególna i ogólna teoria względności (wybrane zagadnienia) Szczególna i ogólna teoia względności wybane zagadnienia Maiusz Pzybycień Wydział Fizyki i Infomatyki Stosowanej Akademia Góniczo-Hutnicza Wykład 11 M. Pzybycień WFiIS AGH Szczególna Teoia Względności

Bardziej szczegółowo

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r

PRACA MOC ENERGIA. Z uwagi na to, że praca jest iloczynem skalarnym jej wartość zależy również od kąta pomiędzy siłą F a przemieszczeniem r PRACA MOC ENERGIA Paca Pojęcie pacy używane jest zaówno w fizyce (w sposób ścisły) jak i w życiu codziennym (w sposób potoczny), jednak obie te definicje nie pokywają się Paca w sensie potocznym to każda

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA. Wykład V

TERMODYNAMIKA PROCESOWA. Wykład V ERMODYNAMIKA PROCESOWA Wykład V Równania stanu substancji czystych Równanie stanu gazu doskonałego eoia stanów odpowiadających sobie Równania wiialne Pof. Antoni Kozioł, Wydział Chemiczny Politechniki

Bardziej szczegółowo

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA

PRĄD ELEKTRYCZNY I SIŁA MAGNETYCZNA PĄD LKTYCZNY SŁA MAGNTYCZNA Na ładunek, opócz siły elektostatycznej, działa ównież siła magnetyczna popocjonalna do pędkości ładunku v. Pzekonamy się, że siła działająca na magnes to siła działająca na

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

SYSTEMY ELEKTROMECHANICZNE

SYSTEMY ELEKTROMECHANICZNE SYSTEMY ELEKTROMECHANICZNE kie. Elektotechnika, studia stopnia stacjonane, sem. 1, 010/011 SZKIC DO WYKŁADÓW SILNIKI BEZSZCZOTKOWE Z MAGNESAMI TRWAŁYMI (SBMT) (1) MODELE OBWODOWE DYNAMICZNE Mieczysław

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął

POLE MAGNETYCZNE W PRÓŻNI. W roku 1820 Oersted zaobserwował oddziaływanie przewodnika, w którym płynął POLE MAGNETYCZNE W PÓŻNI W oku 8 Oested zaobsewował oddziaływanie pzewodnika, w któym płynął pąd, na igłę magnetyczną Dopowadziło to do wniosku, że pądy elektyczne są pzyczyną powstania pola magnetycznego

Bardziej szczegółowo

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych.

Cieplne Maszyny Przepływowe. Temat 8 Ogólny opis konstrukcji promieniowych maszyn wirnikowych. Część I Podstawy teorii Cieplnych Maszyn Przepływowych. Temat 8 Ogólny opis konstkcji 06 8. Wstęp Istnieje wiele typów i ozwiązań konstkcyjnych. Mniejsza wiedza dotycząca zjawisk pzepływowych Niski koszt podkcji Kótki cykl pojektowy Solidna konstkcja pod względem

Bardziej szczegółowo

Wzbudzenia sieci fonony

Wzbudzenia sieci fonony Wzbudzenia sieci fonony pzybliżenie adiabatyczne elastomechaniczny model kyształu, pojęcie fononu, Dynamiczna Funkcja Dielektyczna w opisie wzbudzeń sieci wzbudzenia podłużne i popzeczne w ównaniach Maxwella

Bardziej szczegółowo

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXXVII OIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne ZADANIE D Nazwa zadania: Obacający się pęt swobodnie Długi cienki pęt obaca się swobodnie wokół ustalonej pionowej osi, postopadłej do niego yc.

Bardziej szczegółowo