Całkowitoliczbowe programowanie liniowe
|
|
- Stefan Zawadzki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Przykład Algorytm Ralph Gomory Inne przykłady Badania operacyjne Instytut Informatyki Przykład Algorytm Ralph Gomory Inne przykłady Zadanie Producent dwóch typów szynobusów planuje produkcję na najbliższy miesiąc. Każdy z szynobusów przynosi taki sam zysk, ale wymagają do produkcji różnych zasobów. Zapotrzebowanie na zasoby oraz ich dostępność przedstawiono w Tablicy. Zasób I Zasób II Typ A 4 2 Typ B 5 dostępna ilość zasobu 20 6 Znaleźć optymalny plan produkcji szynobusów.
2 Model dyskretny zmaksymalizować z = x + x 2 () 2x + x 2 6 (2) 4x + 5x 2 20 () x, x 2 0 (4) x, x 2 Z (5) Postać standardowa zmaksymalizować z = x + x 2 (6) 2x + x 2 + s = 6 (7) 4x + 5x 2 + s 2 = 20 (8) x, x 2 0 (9) x, x 2 Z (0) i B c x x 2 s s 2 RHS s s
3 Rozwiązanie i B c x x 2 s s 2 RHS x x Dyskretne programowanie liniowe x 2 x
4 Dyskretne programowanie liniowe i B c x x 2 s s 2 RHS x x x + x 2 + ( + ) s + x 2 2 s + s 2 = 8 ( 0 + ) s 2 = () (2) s + s 2 = 2 + (2 x 2 + s ) () Dyskretne programowanie liniowe 0 x + x 2 + x 2 2 s + s 2 = 8 ( + ) ( s ) s 2 = s + s 2 = 2 + (2 x 2 + s ) s + s 2 2 s + s 2 2 (4) s + s 2 s + a = 2 (5)
5 Dyskretne programowanie liniowe Twierdzenie Niech IL oraz IR będą dowolnymi liczbami naturalnymi, f ściśle dodatnim ułamkiem a F sumą ściśle dodatnich ułamków takich, że IL + F = IR + f Wtedy IL IR oraz F f. Dowód. Niech (IL, IR, f, F ) będzie dowolną czwórką spełniającą założenia twierdzenia. Ponieważ IL oraz IR są liczbami naturalnymi, F jest sumą ściśle dodatnich ułamków a f jest ściśle dodatnim ułamkiem, to musi zachodzić F f. Jeżeli bowiem F < to F = f, a jeżeli F > to F > f. Ponieważ f jest ułamkiem, a IL oraz IR są liczbami naturalnymi, to F nie może być całkowite, w szczególności nie może być równe. Zatem z IL + F = IR + f wynika, że IL IR. Jest oczywiste, że gdy F < to IL = IR oraz gdy F > to IL < IR. Dyskretne programowanie liniowe zmaksymalizować x + x 2 + M a (6) przy ograniczeniach x + 5 s 6 s 6 2 = 5 (7) x 2 2 s + s 2 = 8 (8) s + s 2 s + a = 2 (9) i B c x x 2 s s 2 s a RHS x x a M M M 6 M 0 4
6 Dyskretne programowanie liniowe i B c x x 2 s s 2 s RHS x x s Odcięcie s + s 2 2 (20) 2x + x 2 + s = 6 (2) 4x + 5x 2 + s 2 = 20 (22) (6 2x x 2 ) + (20 4x 5x 2 ) 2 (2) 26 6x 6x 2 2 (24) x + x 2 4 (25)
7 Dyskretne programowanie liniowe x 2 x Algorytm Gomory ego krok Rozwiąż metodą sympleks zadanie PL bez uwzględniania warunku dyskretności zmiennych. krok 2 Jeżeli rozwiązanie uzyskane w wyniku ostatniego zastosowania metody sympleks jest całkowitoliczbowe, to jest ono rozwiązaniem wyjściowego zadania całkowitoliczbowego programowania liniowego; w przeciwnym razie przejdź do kroku. krok Wyeliminuj wszystkie zmienne sztuczne (bazowe i niebazowe) z równań wynikających z ostatniej tablicy sympleksowej, po czym wybierz zmienną x k, która ma wartość ułamkową w ostatnim rozwiązaniu.
8 Algorytm Gomory ego krok 4 W układzie równań wynikającym z ostatniej tablicy sympleks jeden ze współczynników przy x k, powiedzmy w l-tym równaniu jest równy, a pozostałe są równe zero. Zastąp współczynniki i stałą w l-tym równaniu ich częściami ułamkowymi. krok 5 Dodaj do każdego ujemnego ułamka wynikającego z kroku 4. Zapisz otrzymane równanie jako ograniczenie nierównościowe ze znakiem. Algorytm Gomory ego krok 6 Odejmij zmienną osłabiającą i dodaj zmienną sztuczną do zmodyfikowanego l-tego ograniczenia w celu sprowadzenia go do równania. Dołącz to równanie na koniec układu równań wynikającego z ostatniej tablicy sympleks i przydziel nowej zmiennej sztucznej dowolnie duży współczynnik w funkcji celu. Uaktualnij wiersz wskaźnikowy tablicy sympleks. krok 7 Wykonaj dodatkowe iteracje metody sympleks dla nowego układu równań utworzonego w kroku 6. Po uzyskaniu rozwiązania przejdź do kroku 2. moshe/620-62/gomory/
9 Ralph Gomory (born 7 May 929) an American applied mathematician and executive. Gomory worked at IBM as a researcher and later as an executive. During that time, his research led to the creation of new areas of applied mathematics. He graduated from George School in Newtown, PA in 946. He received his B.A. from Williams College in 950, studied at Cambridge University, and received his Ph.D. in mathematics from Princeton University in 954. While serving in the Navy ( ), Gomory described his method he shifted his focus to applied mathematics in operations in a very short paper entitled research. Among his mathematical achievements were Outline of an algorithm for founding contributions to the field of integer programming, integer solutions to linear an active area of research to this day. In December 2007 programs, Bull. American Gomory retired and became Professor at Stern School of Math. Society, 64, , Business, New York University Problem plecakowy W kolejce do serwera oczekuje 8 zadań obliczeniowych, które bezwzględnie trzeba zakończyć w ciągu godziny. Za niewykonanie zadania należy zapłacić karę zleceniodawcy. Czasy realizacji oraz kary za niewykonanie poszczególnych zadań zawarto w tablicy. Które zadania należy wykonać, aby zminimalizować całkowitą karę? zadanie Z Z2 Z Z4 Z5 Z6 Z7 Z8 czas [min] kara [tys.zł] x i = { gdy zadanie i zostanie wykonane 0 w przeciwnym razie (26)
10 Problem plecakowy zadanie Z Z2 Z Z4 Z5 Z6 Z7 Z8 czas [min] kara [tys.zł] x i = { gdy zadanie i zostanie wykonane 0 w przeciwnym razie (27) zmin. 6( x ) + 5( x 2 ) + 9( x ) + 0( x 4 ) + (28) ( x 5 ) + 2( x 6 ) + 9( x 7 ) + 8( x 8 ) (29) p.o. 6x + 8x 2 + x + 20x x 5 + 5x x 7 + 9x 8 60 (0) x i {0, }, i =,..., 8 () Problem plecakowy x i = { gdy zadanie i zostanie wykonane 0 w przeciwnym razie (2) zmin. 6( x ) + 5( x 2 ) + 9( x ) + 0( x 4 ) + () ( x 5 ) + 2( x 6 ) + 9( x 7 ) + 8( x 8 ) (4) p.o. 6x + 8x 2 + x + 20x x 5 + 5x x 7 + 9x 8 60 (5) x i {0, }, i =,..., 8 (6) zmaks. 6x + 5x 2 + 9x + 0x 4 + x 5 + 2x 6 + 9x 7 + 8x 8 (7) p.o. 6x + 8x 2 + x + 20x x 5 + 5x x 7 + 9x 8 60 (8) x i {0, }, i =,..., 8 (9)
11 Problem plecakowy Dany jest skończony zbiór elementów A = {a, a 2,..., a n }, z których każdy ma całkowitoliczbową wagę w i i wartość v i oraz całkowitoliczbową pojemność plecaka b. Które elementy należy włożyć do plecaka, aby nie przekraczając jego pojemności zmaksymalizować wartość zapakowanych elementów? x i = { gdy element i zostanie zapakowany 0 w przeciwnym razie (40) zmaksymalizować przy ograniczeniach n i= v ix i (4) n i= w ix i b (42) x i {0, }, i =,..., n (4) Problem jest NP-trudny w zwykłym sensie. Problem transportowy Firma produkująca nawozy sztuczne ma trzy zakłady produkcyjne zlokalizowane w Kluczborku, Białymstoku i Pile. Kwartalna produkcja poszczególnych zakładów wynosi odpowiednio: 5000 kg, 6000 kg, i 2500 kg. Firma ma cztery centra dystrybucji, zlokalizowane w Lublinie, Elblągu, Łodzi i Opolu. Przewidywany popyt na nawozy w poszczególnych centrach dystrybucji wynosi odpowiednio: 6000 kg, 4000 kg, 2000 kg oraz 500 kg. Jednostkowe koszty transportu (w zł/kg) z każdego zakładu do poszczególnych centrów dystrybucji podano w tablicy. Lublin Elbląg Łódź Opole Kluczbork Białystok Piła
12 Problem transportowy x ij ilość towaru przewieziona od dostawcy i do odbiorcy j zminimalizować x + 2x 2 + 7x + 6x 4 + 7x 2 + 5x x 2 + x x + 5x 2 + 4x + 5x 4 (44) przy ograniczeniach x + x 2 + x + x (45) x 2 + x 22 + x 2 + x (46) x + x 2 + x + x (47) x + x 2 + x 6000 (48) x 2 + x 22 + x (49) x + x 2 + x 2000 (50) x 4 + x 24 + x (5) x ij 0, i =, 2,, j =, 2,, 4 (52) x ij Z, i =, 2,, j =, 2,, 4 (5) Problem transportowy Mamy m dostawców, których możliwości wysyłki wynoszą a i, i =,... m i n odbiorców, których zapotrzebowania wynoszą b j, j =,... n. Koszt przesłania jednostkowej porcji towaru od dostawcy i do odbiorcy j wynosi c ij. Wyznaczyć plan przewozów minimalizujący całkowite koszty. zminimalizować przy ograniczeniach n i= m j= c ijx ij (54) n j= x ij a i, i =,..., m (55) m i= x ij b j, j =,..., n (56) x ij 0, i =,..., m, j =,..., n (57) x ij Z, i =,..., m, j =,..., n (58) Istnieje algorytm wielomianowy o złożoności O(n ) znajdujący optymalne rozwiązanie problemu.
13 Problem przydziału Firma zatrudniła do sprzątania po remoncie pracowników: Armonda, Francine, i Herberta. Jeden z nich musi posprzątać łazienkę, drugi umyć podłogi, a trzeci umyć okna, ale każdy z nich otrzymuje inne wynagrodzenie za te same czynności (tablica). Należy tak rodzielić zadania między pracowników, aby zminimalizować całkowity koszt sprzątania. Armond Francine Herbert łazienka 2 podłogi 2 okna 2 Problem przydziału x ij = { pracownik i wykonuje zadanie j 0 w przeciwnym razie zmin. 2x + x 2 + x + x 2 + 2x 22 + x 2 + x + x 2 + 2x (59) p.o. x + x 2 + x = (60) x 2 + x 22 + x 2 = (6) x + x 2 + x = (62) x + x 2 + x = (6) x 2 + x 22 + x 2 = (64) x + x 2 + x = (65) x ij {0, }, i =,..., m, j =,..., n (66)
14 Problem przydziału Mamy n pracowników (maszyn, procesorów) i n zadań do wykonania. Koszt (czas) wykonania zadania i przez pracownika j wynosi c ij. Przydzielić zadania do pracowników w taki sposób, aby całkowity koszt wykonania wszystkich zadań był minimalny. zminimalizować przy ograniczeniach n i= m j= c ijx ij (67) n j= x ij, i =,..., m (68) m i= x ij, j =,..., n (69) x ij {0, }, i =,..., m, j =,..., n (70) Istnieje algorytm wielomianowy o złożoności O(log 2 (n)) znajdujący optymalne rozwiązanie problemu.
Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?
/9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Zagadnienie transportowe
9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów
Programowanie liniowe
Badania operacyjne Problem Model matematyczny Metoda rozwiązania Znaleźć optymalny program produkcji. Zmaksymalizować 1 +3 2 2 3 (1) Przy ograniczeniach 3 1 2 +2 3 7 (2) 2 1 +4 2 12 (3) 4 1 +3 2 +8 3 10
ZAGADNIENIE TRANSPORTOWE (część 1)
ZAGADNIENIE TRANSPORTOWE (część 1) Zadanie zbilansowane Przykład 1. Zadanie zbilansowane Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
BADANIA OPERACYJNE Zagadnienie transportowe
BADANIA OPERACYJNE Zagadnienie transportowe Zadanie zbilansowane Zadanie zbilansowane Przykład 1 Firma posiada zakłady wytwórcze w miastach A, B i C, oraz centra dystrybucyjne w miastach D, E, F i G. Możliwości
ZAGADNIENIE TRANSPORTOWE(ZT)
A. Kasperski, M. Kulej BO Zagadnienie transportowe 1 ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a 1, a 2,...,a p i q odbiorców,którychpopytwynosi b 1, b 2,...,b q.zakładamy,że
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe1
A. Kasperski, M. Kulej, Badania operacyjne, Wykład 4, Zagadnienie transportowe ZAGADNIENIE TRANSPORTOWE(ZT) Danychjest pdostawców,którychpodażwynosi a,a 2,...,a p i qodbiorców, którychpopytwynosi b,b 2,...,b
Zadanie transportowe i problem komiwojażera. Tadeusz Trzaskalik
Zadanie transportowe i problem komiwojażera Tadeusz Trzaskalik 3.. Wprowadzenie Słowa kluczowe Zbilansowane zadanie transportowe Rozwiązanie początkowe Metoda minimalnego elementu macierzy kosztów Metoda
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Badania Operacyjne Ćwiczenia nr 5 (Materiały)
ZADANIE 1 Zakład produkuje trzy rodzaje papieru: standardowy do kserokopiarek i drukarek laserowych (S), fotograficzny (F) oraz nabłyszczany do drukarek atramentowych (N). Każdy z rodzajów papieru wymaga
Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w
Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Modele liniowe.......................... 5 1.1.
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Ćwiczenia laboratoryjne - 7. Zagadnienie transportowoprodukcyjne. programowanie liniowe
Ćwiczenia laboratoryjne - 7 Zagadnienie transportowoprodukcyjne ZT-P programowanie liniowe Ćw. L. 8 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym
Temat: Algorytmy zachłanne
Temat: Algorytmy zachłanne Algorytm zachłanny ( ang. greedy algorithm) wykonuje zawsze działanie, które wydaje się w danej chwili najkorzystniejsze. Wybiera zatem lokalnie optymalną możliwość w nadziei,
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Zagadnienie transportowe i zagadnienie przydziału
Temat: Zagadnienie transportowe i zagadnienie przydziału Zadanie 1 Trzy piekarnie zlokalizowane na terenie miasta są zaopatrywane w mąkę z trzech magazynów znajdujących się na peryferiach. Zasoby mąki
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
c j x x
ZESTAW 1 Numer indeksu Test jest wielokrotnego wyboru We wszystkich mają być nieujemne 1 Pewien towar jest zmagazynowany w miejscowości A 1 w ilości 700 ton, w miejscowości 900 ton Ma być on przewieziony
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW
WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIEŃ TRANSPORTOWYCH Z KRYTERIUM KOSZTÓW Zadania transportowe Zadania transportowe są najczęściej rozwiązywanymi problemami w praktyce z zakresu optymalizacji
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2010 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 15 Homo oeconomicus=
Rozwiązanie Ad 1. Model zadania jest następujący:
Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych
celu przyjmijmy: min x 0 = n t Zadanie transportowe nazywamy zbilansowanym gdy podaż = popyt, czyli n
123456789 wyk lad 9 Zagadnienie transportowe Mamy n punktów wysy lajacych towar i t punktów odbierajacych. Istnieje droga od każdego dostawcy do każdego odbiorcy i znany jest koszt transportu jednostki
Programowanie liniowe
Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=
Algorytmy i struktury danych.
Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Zadanie niezbilansowane. Gliwice 1
Zadanie niezbilansowane 1 Zadanie niezbilansowane Przykład 11 5 3 8 2 A 4 6 4 2 B 9 2 3 11 C D E F G dostawcy odbiorcy DOSTAWCY: A: 15 B: 2 C: 6 ODBIORCY: D: 8 E: 3 F: 4 G: 5 2 Zadanie niezbilansowane
Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 2 PROGRAMOWANIE LINIOWE CAŁKOWITOLICZBOWE 2.2 Ćwiczenia komputerowe Ćwiczenie
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2009 Mirosław Sobolewski (UW) Warszawa, 2009 1 / 13
WYZNACZANIE KOSZTÓW TRANSPORTU Z WYKORZYSTANIEM OCTAVE 3.4.3
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 111 Transport 2016 Joanna Szkutnik-, Wojskowa Akademia Techniczna, W WYZNACZANIE KOSZTÓW TRANSPORTU Z WYKORZYSTANIEM OCTAVE 3.4.3 : maj 2016 Streszczenie: samochodowej.
BADANIA OPERACYJNE Zagadnienie transportowe. dr Adam Sojda
BADANIA OPERACYJNE Zagadnienie transportowe dr Adam Sojda adam.sojda@polsl.pl http://dydaktyka.polsl.pl/roz6/asojda/default.aspx Pokój A405 Zagadnienie transportowe Założenia: Pewien jednorodny towar należy
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT).
KLASYCZNE ZAGADNIENIE TRANSPORTOWE (KZT). Przez klasyczne zagadnienie transportowe rozumiemy problem znajdowania najtańszego programu przewozowego jednorodnego dobra pomiędzy punktami nadania (m liczba
ZAGADNIENIA TRANSPORTOWE
ZAGADNIENIA TRANSPORTOWE Maciej Patan Uniwersytet Zielonogórski WPROWADZENIE opracowano w 1941 r. (F.L. Hitchcock) Jest to problem opracowania planu przewozu pewnego jednorodnego produktu z kilku różnych
Sieć (graf skierowany)
Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle
ZAGADNIENIE TRANSPORTOWE
ZAGADNENE TRANSPORTOWE Definicja: Program liniowy to model, w którym warunki ograniczające oraz funkcja celu są funkcjami liniowymi. W skład każdego programu liniowego wchodzą: zmienne decyzyjne, ograniczenia
BADANIA OPERACYJNE pytania kontrolne
DUALNOŚĆ 1. Podać twierdzenie o dualności 2. Jaka jest zależność pomiędzy funkcjami celu w zadaniu pierwotnym i dualnym? 3. Prawe strony ograniczeń zadania pierwotnego, w zadaniu dualnym są 4. Współczynniki
Algorytm simplex i dualność
Algorytm simplex i dualność Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 15, 2016 Łukasz Kowalik (UW) LP April 15, 2016 1 / 35 Przypomnienie 1 Wierzchołkiem wielościanu P nazywamy
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 6 Metoda simpleks Spis treści Wstęp Zadanie programowania liniowego Wstęp Omówimy algorytm simpleksowy, inaczej metodę simpleks(ów). Jest to stosowana w matematyce
Dualność w programowaniu liniowym
2016-06-12 1 Dualność w programowaniu liniowym Badania operacyjne Wykład 2 2016-06-12 2 Plan wykładu Przykład zadania dualnego Sformułowanie zagadnienia dualnego Symetryczne zagadnienie dualne Niesymetryczne
Programowanie liniowe metoda sympleks
Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 13. wykład z algebry liniowej Warszawa, styczeń 2018 Mirosław Sobolewski (UW) Warszawa, 2018 1 /
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie
Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie transportowe 1 dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Klasyczne zagadnienie transportowe 1 Klasyczne zadanie transportowe problem najtańszego przewozu
Zadanie transportowe
Zadanie transportowe Opracowanie planu przewozu jednorodnego produktu z różnych źródeł zaopatrzenia do punktów, które zgłaszają zapotrzebowanie na ten produkt. Wykład ARo Metody optymalizacji w ekonomii
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
Metoda graficzna może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład):
może być stosowana w przypadku gdy model zawiera dwie zmienne decyzyjne. Metoda składa się z dwóch kroków (zobacz pierwszy wykład): 1 Narysuj na płaszczyźnie zbiór dopuszczalnych rozwiazań. 2 Narysuj funkcję
Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 3 ZADANIE TRANSPORTOWE I PROBLEM KOMIWOJAŻERA 3.2. Ćwiczenia komputerowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI. Zagadnienie transportowe
BADANIA OPERACYJNE I TEORIE OPTYMALIZACJI Zagadnienie transportowe Klasyczne zagadnienie transportowe Klasyczne zadanie transportowe problem najtańszego przewozu jednorodnego dobra pomiędzy punktami nadania
OPTYMALIZACJA W LOGISTYCE
OPTYMALIZACJA W LOGISTYCE Zagadnienie przydziału dr Zbigniew Karwacki Katedra Badań Operacyjnych UŁ Zagadnienie przydziału 1 Można wyodrębnić kilka grup problemów, których zadaniem jest alokacja szeroko
Ćwiczenia laboratoryjne - 7. Problem (diety) mieszanek w hutnictwie programowanie liniowe. Logistyka w Hutnictwie Ćw. L. 7
Ćwiczenia laboratoryjne - 7 Problem (diety) mieszanek w hutnictwie programowanie liniowe Ćw. L. 7 Konstrukcja modelu matematycznego Model matematyczny składa się z: Funkcji celu będącej matematycznym zapisem
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Laboratorium Metod Optymalizacji
Laboratorium Metod Optymalizacji Grupa nr... Sekcja nr... Ćwiczenie nr 4 Temat: Programowanie liniowe (dwufazowa metoda sympleksu). Lp. 1 Nazwisko i imię Leszek Zaczyński Obecność ocena Sprawozdani e ocena
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Optymalizacja
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Optymalizacja Dla podanych niżej problemów decyzyjnych (zad.1 zad.5) należy sformułować zadania optymalizacji, tj.: określić postać zmiennych
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a
Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje
Standardowe zadanie programowania liniowego. Gliwice 1
Standardowe zadanie programowania liniowego 1 Standardowe zadanie programowania liniowego Rozważamy proces, w którym zmiennymi są x 1, x 2,, x n. Proces poddany jest m ograniczeniom, zapisanymi w postaci
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
zadaniem programowania liniowego całkowitoliczbowego. nazywamy zadaniem programowania liniowego 0-1. Zatem, w
Sformułowanie problemu Zastosowania Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie
Badania operacyjne egzamin
Imię i nazwisko:................................................... Nr indeksu:............ Zadanie 1 Załóżmy, że Tablica 1 reprezentuje jeden z kroków algorytmu sympleks dla problemu (1)-(4). Tablica
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Zagadnienie transportowe
Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów
ZAGADNIENIE TRANSPORTOWE (część 2)
ZAGADNIENIE TRANSPORTOWE (część ) Zadanie niezbilansowane Zadanie niezbilansowane Przykład 11. 5 3 8 A 4 6 4 B 9 3 11 C D E F G dostawcy odbiorcy Dostawcy: A :15 B : C :6 Odbiorcy: D :8 E :3 F :4 G :5
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych. Piotr Kaczyński. Badania Operacyjne
Uniwersytet Kardynała Stefana Wyszyńskiego Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Piotr Kaczyński Badania Operacyjne Notatki do ćwiczeń wersja 0. Warszawa, 7 stycznia 007 Spis treści Programowanie
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Programowanie liniowe całkowitoliczbowe
Programowanie liniowe całkowitoliczbowe Jeżeli w zadaniu programowania liniowego pewne (lub wszystkie) zmienne musza przyjmować wartości całkowite, to takie zadanie nazywamy zadaniem programowania liniowego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego
Notatki do tematu Metody poszukiwania rozwiązań jednokryterialnych problemów decyzyjnych metody dla zagadnień liniowego programowania matematycznego część III Analiza rozwiązania uzyskanego metodą simpleksową
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
OPTYMALIZACJA DYSKRETNA
Temat nr a: odelowanie problemów decyzyjnych, c.d. OPTYALIZACJA DYSKRETA Zagadnienia decyzyjne, w których chociaż jedna zmienna decyzyjna przyjmuje wartości dyskretne (całkowitoliczbowe), nazywamy dyskretnymi
Pyt.1. Podać warunki jakie musi spełniać model matematyczny dla możliwości rozwiązywania metodami programowania liniowego.
Firma produkująca płatki śniadaniowe rozważa wypuszczenie na rynek nowego produktu. Ma to być mieszanka pszenicy, ryżu i kukurydzy. Normy zawartości przedstawia tabela: Dane Pszenica Ryż Kukurydza Zawartość
Rozdział 1 PROGRAMOWANIE LINIOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 1 PROGRAMOWANIE LINIOWE 1.2 Ćwiczenia komputerowe Ćwiczenie 1.1 Wykorzystując
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Podstawy Programowania Algorytmy i programowanie
Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
=B8*E8 ( F9:F11 F12 =SUMA(F8:F11)
Microsoft EXCEL - SOLVER 2. Elementy optymalizacji z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe 1
A. Kasperski, M. Kulej Badania Operacyjne- programowanie liniowe ZAGADNIENIE DUALNE Z każdym zagadnieniem liniowym związane jest inne zagadnienie nazywane dualnym. Podamy teraz teraz jak budować zagadnienie
1 Przykładowe klasy zagadnień liniowych
& " 1 PRZYKŁADOWE KLASY ZAGADNIEŃ LINIOWYCH 1 1 Przykładowe klasy zagadnień liniowych Liniowy model produkcji Zakład może prowadzić rodzajów działalności np. produkować różnych wyrobów). Do prowadzenia
[1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985.
Metody optymalizacji, wykład nr 10 Paweł Zieliński 1 Literatura [1] E. M. Reingold, J. Nievergelt, N. Deo Algorytmy kombinatoryczne PWN, 1985. [2] R.S. Garfinkel, G.L. Nemhauser Programowanie całkowitoliczbowe
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Agenda. Politechnika Poznańska WMRiT ZST. Piotr Sawicki Optymalizacja w transporcie 1. Kluczowe elementy wykładu. WPROWADZENIE Cel i zakres wykładu.
Tytuł: 01 Budowa portfela produktowego. Zastosowanie programowania liniowego Autor: Piotr SAWICKI Zakład Systemów Transportowych WMRiT PP piotr.sawicki@put.poznan.pl www.put.poznan.pl/~piotr.sawicki www.facebook.com/piotr.sawicki.put
Optymalizacja liniowa w liczbach całkowitych (PLC)
* ) && &&& % ( - &&(() n && - n% ( ' n!"#$ Optymalizacja liniowa w liczbach całkowitych (PLC) (( & ' nn nn Zadanie (-) nazywamy zadaniem regularnym Zadanie (-) nazywamy zadaniem PLC Stosownie do tego podziału
Wybrane elementy badań operacyjnych
Wybrane elementy badań operacyjnych 1 Przykład 1. GWOŹDZIE. Pewna fabryczka może produkować dwa gatunki gwoździ II i I. Do wyprodukowania tony gwoździ II gatunku potrzeba 1,2 tony stali oraz 1 roboczogodzinę
Wykład z modelowania matematycznego. Algorytm sympleks.
Wykład z modelowania matematycznego. Algorytm sympleks. 1 Programowanie matematyczne jest to zbiór metod poszukiwania punktu optymalizującego (minimalizującego lub maksymalizującego) wartość funkcji rzeczywistej
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ).
PROGRAMOWANIE LINIOWE Zbudować model matematyczny do poniższych zagadnień (ułożyć program matematyczny ). Problem. Przedsiębiorstwo przewozowe STAR zajmuje się dostarczaniem lodów do sklepów. Dane dotyczące
Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 6 PROGRAMOWANIE WYPUKŁE I KWADRATOWE 6. Ćwiczenia komputerowe Ćwiczenie 6.1
PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH
PEWNE ZASTOSOWANIA TEORII DYSTRYBUCJI I RACHUNKU OPERATOROWEGO W TEORII RÓWNAŃ RÓŻNICZKOWYCH WŁADYSŁAW KIERAT Oliver Heaviside w latach 1893-1899 opublikował trzytomową monografię: Elektromagnetic Theory,
Badania operacyjne. Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie:
Badania operacyjne Dr hab. inż. Adam Kasperski, prof. PWr. Pokój 509, budynek B4 adam.kasperski@pwr.edu.pl Materiały do zajęć dostępne na stronie: www.ioz.pwr.wroc.pl/pracownicy/kasperski Forma zaliczenia
) a j x j b; x j binarne (j N) całkowitoliczbowe; przyjmujemy (bez straty ogólności): c j > 0, 0 <a j b (j N), P n
PDczęść4 8. Zagadnienia załadunku 8.1 Klasyczne zagadnienia załadunku (ozn. N = {1, 2,..., n} Binarny problem ( (Z v(z =max c j x j : a j x j b; x j binarne (j N zakładamy, że wszystkie dane sa całkowitoliczbowe;
Modelowanie całkowitoliczbowe
1 Modelowanie całkowitoliczbowe Zmienne binarne P 1 Firma CMC rozważa budowę nowej fabryki w miejscowości A lub B lub w obu tych miejscowościach. Bierze również pod uwagę budowę co najwyżej jednej hurtowni
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO
ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo
Rozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty