4. Statystyka elektronów i dziur
|
|
- Danuta Stankiewicz
- 8 lat temu
- Przeglądów:
Transkrypt
1 4. Statystya ltroów i ziur Gęstość staów Kotraja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i aptory Półprzwoi omiszoway, zalżość otraji swoboy ośiów i poziomu rmigo o tmpratury
2 Gęstość staów w paśmi D D D3 ( ( ( ( ( ( ( ( * ( m + m * ( / ρ * ( m ρ m ρ 3 / * ( la ulisty powirzi izorgtyzy: D 3D D ( (3 (a j ł
3 Gęstość staów w paśmi przwoitwa i walyjym Gęstość staów w paśmi walyjym: m m *; (- ( v - pasmo przwoitwa: g(~(m * 3/ (- / pasmo walyj: g(~(m * 3/ ( V - / g( pasmo walyj g pasmo przwoitwa v C Ogólij (la lipsoialy powirzi izorgtyzy, zgroway pasm: masa ftywa gęstośi staów m M rgia /3 /3 * (mxmymz lizba miimów 3
4 Przyła - strutura -wymiarowa 3 C C g A g g( g 3D * L Z g D Al x Ga -x As x -x v L z GaAs GaAs v 3 rgia Al x Ga -x As lasr półprzwoiowy warstwa buforowa PODŁOŻ więsz prawopoobiństwo misji sytoowj mijsza gęstość staów mijsza gęstość prąu progowgo w aji lasrowj 4
5 prawopoobistwo f( Rozła rmigo-diraa 0 >0 > rgia f f f ( la < ( > ( 0 K : 0 K 0 la + xp > - poziom rmigo, f( ½ - >> : f ( xp{-(- / } Dla ziur: f( f + xp ->> : f ( xp{-( -/ } 5
6 Kotraja swoboy ltroów i ziur w rówowaz trmoyamizj 0 K bra ltroów w paśmi przwoitwa i ziur w p. walyjym >0 Im wyższa tmpratura, tym więsz prawopoobiństwo pojawiia się swobogo ltrou w pasmi przw. i ziury w pasmi walyjym 6
7 Kotraja ltroów w paśmi przwoitwa ( f (g ( ( Półprzwoi izgroway 7
8 Kotraja ltroów w paśmi przwoitwa w rówowaz trmoyamizj Półprzwoi izgroway ( C - >> ( m * 3/ / f ( ξ ; (g ξ ( / ( ξ 0 / x x + xp( x ξ / ξ ξ ( ξ la << xp, gzi C (m * 3 3/ 8
9 Kotraja ziur w paśmi walyjym w rówowaz trmoyamizj Półprzwoi izgroway ( - V >> p p v p( f m * v ( ρ ( 3/ / ( η ; η V / ( η 0 / x x + xp( x η (η η la η << p v xp v, gzi v (m * 3 3/ 9
10 Półprzwoi zgroway 0 0 3/ ] m( 8[ g( ( 3/ * 3/ V v 3 4 p ( ( f p( p v v g
11 Półprzwoi samoisty Poziom rmigo w półprzwoiu samoistym: p ½ g p i v xp g + ¾ m * l m * ½ g i - otraja ośiów samoisty p i zawsz w warua rówowagi trmoyamizj! i g i (300 K ~0.5 V 0 6 m -3 ISb,PbS ~ V 0 0 m -3 G, Si, GaAs ~4 V <0 0 m -3 ZS, SiC, Ga
12 Poziom rmigo w fuji tmpratury w półprzwoiu samoistym C rgia i m *<m * m *>m * V tmpratura zwyl g g (0-β (wyia z rozszrzalośi iplj ryształu
13 Domiszowai typ p i Przyła - rzm Sb oor (5 ltroów walyjy aptor (3 ltroy walyj 3
14 Doory i aptory mol wooropooby Atom wooru: m (4ε 3.6 V 4ε r o m o 0.05 m Płyti oor w rysztal: ε o εε o m m* (masa ftywa la G: r m * ε m rεm m * 0.0V 80 r płyti poziom rgtyzy w przrwi wzbroioj xprymt: p-g: m* 0. m : 0.04 V Ga: 0.08 V p-si: m* 0.5 m : V Ga: V -G m* 0. m P: 0.0 V As: 0.07 V -Si m* 0.4 m P: V As: V 4
15 yp yp p poziom oorowy a poziom aptorowy (wszysti oory zjoizowa w 300 K xp{-( - / } p i / << ośii więszośiow ośii mijszośiow p a (wszysti aptory zjoizowa p V xp{-( - V / } i / a << p atom a milio zastąpioy przz omiszę otraja ośiów więszośiowy 0 6 m -3 >> i otraja ośiów wiszośiowy 0 4 m -3 << i 5
16 Kotraja ltroów i ziur a pozioma loaly 6 6 p ; p ; A A D D A A A D D D D + + +
17 Półprzwoi omiszoway - otraja oorów waru utralośi: D+ + p D - D +p D + o. zjoizoway oorów D o. obsazoy oorów <s pomięzy poziomm omiszowym a rawęzią pasma + l s << i l > i : i ja w półprz. samoistym 7
18 Kotraja ltroów w pasmi przwoitwa w fuji tmpratury (półprzwoi omiszoway isi xp( / pośri wysoi <<, g / tgα tgα g ośii mijszośiow: p i /<< i 8
19 Półprzwoi sompsoway ( ( ( a p a a a xp C 9 9 Dla ostatzi uży i >> a - a
4. Statystyka elektronów i dziur
4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu
3. Struktura pasmowa
3. Strutura pasmowa Funcja Blocha Quasi-pęd, sić odwrotna Przybliżni prawi swobodngo ltronu Dziura w paśmi walncyjnym Masa ftywna Strutura pasmowa (), przyłady Półprzwodnii miszan ltron w rysztal sformułowani
Półprzewodniki (ang. semiconductors).
-5- Półrzwod a. sodutors. Ja.Szzyto@uw.du.l tt://www.uw.du.l/~szzyto/ RGIA LKROÓW ora asowa ał stały. aso ust aso ust aso ust aso ł aso ł aso ł Uwrsytt Warszaws tal ółrzwod zolator Ja zobazyć rzrwę? Przrwa
3. Struktura pasmowa
3. Stutua pasmowa Funcja Blocha Quasi-pęd, sić odwotna Pzybliżni pawi swobodngo ltonu Dziua w paśmi walncyjnym Masa ftywna Stutua pasmowa (), pzyłady Półpzwodnii miszan lton w ysztal sfomułowani poblmu
ź Ś ś ś Ś Ś ś ś ś ś ś ś ź ś ś Ś Ś Ś źś Ń Ś ś Ą Ź ś ś ś ś Ś ś ś Ą Ś Ą Ą ś ś Ś Ś ść ś Ś ś ś Ś ś ś ś ź ś Ś Ś Ś Ś ś Ś Ź ś ś ś ś ś Ś ś Ś ć ć Ś Ś Ą ć ć Ś Ś Ś ś Ś ś Ę Ś Ę ś Ś Ś Ś Ś ś ś ś Ś Ś Ś Ś ś ś ć Ć Ę Ś Ś
Plan wykładu. Wybrane aspekty nanotechnologii. Zasady zaliczenia. Epoka NANO. Wydział Fizyki UW
7 Wybra asty aotolo Pla wyładu Powtórz. Pasma w ółrzwoda Htrostrutury ółrzwodow stud watow Potjał armozy. Kro watow. rasort, tulowa, bloada ulombowsa. Obsadza staów, ęstoś staów, ozom rmo. Htrostrutury
Półprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force
SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *
Domieszki w półprzewodnikach
Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu
Nanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
1. Struktura pasmowa from bonds to bands
. Strutura pasmowa from bonds to bands Wiązania owalencyjne w cząsteczach Pasma energetyczne w ciałach stałych Przerwa energetyczna w półprzewodniach Dziura w paśmie walencyjnym Przybliżenie prawie swobodnego
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Proste struktury krystaliczne
Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne
Teoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
EFEKT PAMIĘCI KSZTAŁTU
EFEKT PIĘCI KSZTŁTU 1. Przykłady efektu. 2. Co się dzieje podczas odwracalnej przemiany martenzytycznej? 3. Przykłady stopów wykazujących pamięć kształtu. 4. Charakterystyka przemiany. 5. Opis termodynamiczny.
Teoria struktury kapitału
Toria strutury apitału Dr Tomasz Słońsi Toria strutury apitału, Moigliani-Millr (MM), Nobl w zizini onomii Powaliny nowoczsnj torii strutury apitału zostały położon w rou 1958 w molu, tóry opirał się o
Półprzewodniki (ang. semiconductors).
Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn
Obserwacje świadczące o dyskretyzacji widm energii w strukturach niskowymiarowych
Obsrwacj świadcząc o dyskrtyzacji widm nrgii w strukturach niskowymiarowych 1. Optyczn Widma: - absorpcji wzbudzani fotonami o coraz większj nrgii z szczytu pasma walncyjngo do pasma przwodnictwa maksima
Dyrektor oraz pracownicy Miejsko - Gminnego Ośrodka Kultury w Kowalewie Pomorskim
Wszystkim Nauczycielom i pracownikom oświaty z okazji Dnia Edukacji Narodowej moc najserdeczniejszych życzeń, spełnienia najskrytszych marzeń oraz byście mogli w pełni realizować swoje plany życiowe i
Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -
ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -
półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski
Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
Wiązania. w świetle teorii kwantów fenomenologicznie
Wiązania w świetle teorii kwantów fenomenologicznie Wiązania Teoria kwantowa: zwiększenie gęstości prawdopodobieństwa znalezienia elektronów w przestrzeni pomiędzy atomami c a a c b b Liniowa kombinacja
SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie
DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje
Diody i tranzystory. - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy)
Diody i tranzystory - prostownicze, stabilizacyjne (Zenera), fotodiody, elektroluminescencyjne, pojemnościowe (warikapy) bipolarne (NPN i PNP) i polowe (PNFET i MOSFET), Fototranzystory i IGBT (Insulated
Krawędź absorpcji podstawowej
Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI OPÓR OBWODY Z PRADEM STAŁYM. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski
PODSTAWY FIZYKI - WYKŁAD 7 PRZEWODNIKI PRAD OPÓR OBWODY Z PRADEM STAŁYM Piotr Nieżurawski pniez@fuw.edu.pl Wydział Fizyki Uniwersytet Warszawski http://www.fuw.edu.pl/~pniez/bioinformatyka/ 1 Najważniejsze
Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******
Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
ELEMENTY ELEKTRONICZNE
AKADMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWI Wydział Iformatyki, lektroiki i Telekomuikacji Katedra lektroiki LMNTY LKTRONICZN dr iż. Piotr Dziurdzia aw. C-, okój 41; tel. 617-7-0, iotr.dziurdzia@agh.edu.l
Laboratorum teledetekcji. Sensory akustyczne. ppłk dr inż. Mateusz Pasternak
Laboratorum teledetekcji Sensory akustyczne ppłk dr inż. Mateusz Pasternak 22 683 76 67 mpasternak@wat.edu.pl http://strony.aster.pl/mpasternak/ czujnik (sensor) def. Czujnikiem akustycznym nazywa się
Przewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Własności płynów - zadania
Zadanie 1 Naczynie o objętości V = 0,1 m³ jest wypełnione cieczą o masie m = 85 kg. Oblicz gęstość cieczy oraz jej ciężar właściwy. Gęstość cieczy: ciężar właściwy cieczy: ρ = m V = 85 = 850 kg/m³ 0,1
Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10
Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0
Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Ń Ź ź Ź ć Ę ć Ę Ż Ą ć Ą ć ć Ż ć ć ć Ó Ż ć ć ć ć ć Ź ć Ś Ż ć Ń ć Ż Ć ć Ś Ć Ż Ń ź Ż Ń Ż Ź ć Ę Ś ć ź ć Ż ć Ź ć Ś ć ć ć Ż ć ć ć ć ć ć ć ć Ź ć Ż Ś ć Ń Ń Ź Ź Ź Ź ć Ź Ż Ż Ż Ż Ą Ż ć ć Ż Ż Ź ź Ż Ż Ą ć Ż Ś ć Ż Ó
Wykład 12. Anna Ptaszek. 16 września Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Fizykochemia biopolimerów - wykład 12.
Wykład 12 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 16 września 2016 1 / 23 Pomiar lepkości wiskozymetry (lepkościomierze) 2 / 23 Pomiar lepkości reometry rotacyjne 3 / 23 Pomiar lepkości reometry
Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.
Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.
II WARMIŃSKO-MAZURSKIE FORUM DROGOWE LIDZBARK WARMIŃSKI
II WARMIŃSKO-MAZURSKIE FORUM DROGOWE LIDZBARK WARMIŃSKI dr hab. inż. Marek J. Ciak dr inż. Natalia Ciak mgr inż. Kacper Sikora 2015-10-04 Tempo realizacji inwestycji w budownictwie i drogownictwie ostatnich
ZAGADNIENIA PROJEKTOWE PALNIKÓW PYŁOWYCH
ZAGADNIENIA PROJEKTOWE PALNIKÓW PYŁOWYCH Podstawowe parametry palników pyłowych 1. Typ palnika 2. Moc palnika 3. Przekroje kanałów: mieszanki gazowo-pyłowej powietrza wtórnego 4. Opory przepływu Koncentracja
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
PL B1. Politechnika Wrocławska,Wrocław,PL BUP 02/04
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 203033 (13) B1 (21) Numer zgłoszenia: 355071 (51) Int.Cl. H01S 5/343 (2006.01) H01L 31/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Układ okresowy Przewidywania teorii kwantowej
Przewiywania teorii kwantowej Chemia kwantowa - oumowanie Czątka w ule Atom wooru Równanie Schroeingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - oumowanie rozwiązanie Czątka w ule Atom wooru Ψn
Procedura wymiarowania mimośrodowo ściskanego słupa żelbetowego wg PN-EN-1992:2008
Poua wymiaowaia mimośoowo śikago łupa żlbtowgo wg P-E-99:8. Utalamy zy łup jt mukły zy kępy a) wyzazamy ługość obliziową i mukłość łupa (5.8.3.) 3 bh I I i (jżli watość ϕ i jt zaa, moża pzyjąć,7) +,ϕ S
Ą ć ć ć ć Ź Ź ź ź Ę Ł Ń Ą ź Ł Ę Ę Ń Ń Ź Ź ć Ę Ę Ś ź ć ć ć ć Ź ź ć ć ć ć ć ć ć ć ć Ź ć ć ć ć ć Ź ć ć Ć ć Ę Ą Ś Ń Ń ź Ń Ź ź ć ć ć Ą Ą ć ź ź ć Ę ć ź Ą ć Ń Ę Ę Ę Ę ć Ą Ę ć ź Ó ć ć Ń Ę Ń Ń ć Ś Ą Ę ć Ś ć Ń
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
Wielowymiarowy próbnik Gibbsa
29.05.2006 Seminarium szkoleniowe 30 maja 2006 Plan prezentacji Slgorytm MH i PG przypomnienie wiadomości Wielowymiarowy PG Algorytm PG z dopełnieniem Odwracalny PG Modele hierarchiczne Modele hybrydowe
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola
Ekscytony Wanniera Motta
ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują
METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4
MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79
Relacje pomiędzy strukturą, symetrią i widmem energetycznym kryształów w ramach koncepcji elementarnych pasm energetycznych
Relacje pomiędzy strukturą symetrią i widmem energetycznym kryształów w ramach koncepcji elementarnych pasm energetycznych Małgorzata Sznajder Instytut Fizyki Uniwersytet Rzeszowski Instytut Fizyki Jądrowej
Uchwała nr 54/IX/2016 Komendy Chorągwi Dolnośląskiej ZHP z dnia r.
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 5 4 / I X / 2 0 1 6 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 2 5. 0 2. 0 1 6 r. w s p r a w i e p r z y j ę
ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI. σ ρ [kpa]
ROZKŁAD NAPRĘśEŃ POD FUNDAMENTEM W KOLEJNYCH FAZACH REALIZACJI INWESTYCJI 1. NapręŜenia pierwotne z ρ napręŝenia od obciąŝenia nadległymi warstwami gdzie: z = ( ρ h ) g = ( γ h ) i i i i ρ ρ i gęstość
METODA CIASNEGO (silnego) WIĄZANIA (TB)
MEODA CIASEGO silnego WIĄZAIA B W FE elektony taktujemy jak swobone, tylko zabuzone słabym peioycznym potencjałem; latego FE jest obym moelem metalu w B uważamy, że elektony są silnie związane z maciezystymi
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Inne koncepcje wiązań chemicznych. 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań?
Inne koncepcje wiązań chemicznych 1. Jak przewidywac strukturę cząsteczki? 2. Co to jest wiązanie? 3. Jakie są rodzaje wiązań? Model VSEPR wiązanie pary elektronowe dzielone między atomy tworzące wiązanie.
Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11
Wrocław, dnia 27 marca 2015 r. Poz UCHWAŁA NR VIII/113/15 RADY MIEJSKIEJ WROCŁAWIA. z dnia 19 marca 2015 r.
ZE URZĘY JEÓZTA LŚLĄE, 27 2015 P 1376 UCHAŁA R V/113/15 RAY EJEJ RCŁAA 19 2015 b ó ó ą 4,5% ( ą ), 18 2 15 8 1990 ą g ( U 2013 594, óź 1) ) ą 12 1 26 ź 1982 źś ( U 2012 1356, óź 2) ) R, ę: 1 1 U ś bę ó
Prędkość i przyspieszenie punktu bryły w ruchu kulistym
Pędkość i pzyspieszenie punktu były w uchu kulistym Położenie dowolnego punktu były okeślmy z pomocą wekto (o stłej długości) któego współzędne możemy podć w nieuchomym ukłdzie osi x y z ) z b) ζ ζ η z
α - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową.
PÓŁPRZEWODNIKI W ELEKTRONICE Powszechie uważa się, że wsółczesa elektroika jest elektroiką ółrzewodikową. 1 Półrzewodiki Półrzewodiki to ciała stałe ieorgaicze lub orgaicze o rzewodictwie elektryczym tyu
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Modele kp Studnia kwantowa
Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z
Zestawić siły wewnętrzne kombinacji SGN dla wszystkich kombinacji w tabeli:
4. Wymiarowanie ramy w osiach A-B 4.1. Wstępne wymiarowanie rygla i słupa. Wstępne przyjęcie wymiarów. 4.2. Wymiarowanie zbrojenia w ryglu w osiach A-B. - wyznaczenie otuliny zbrojenia - wysokość użyteczna
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA
POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika
L.Kowalski Systemy obsługi SMO
SMO Systy asow obsługi zastosowai procsu urodzń i śirci - przyłady: - ctrala tlfoicza, - staca bzyowa, - asa biltowa, - syst iforatyczy. Założia: - liczba staowis obsługi, - liczba isc w poczali. - struiń
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Układ okresowy. Przewidywania teorii kwantowej
Przewidywania teorii kwantowej Chemia kwantowa - podsumowanie Cząstka w pudle Atom wodoru Równanie Schroedingera H ˆ = ˆ T e Hˆ = Tˆ e + Vˆ e j Chemia kwantowa - podsumowanie rozwiązanie Cząstka w pudle
Część I. Wyznaczanie parametrów sieci i grupy przestrzennej dla kryształów oksymu oksofenyloacetaldehydu. Zakres materiału do opanowania
Retgeowska aaliza strukturala Wyzazaie parametrów siei oraz grupy przestrzeej a postawie yfraktogramów wykoayh la pojeyzego kryształu Zakres materiału o opaowaia Sieć owrota (relaja siei owrotej o prostej)
Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.
Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,
Spis wszystkich symboli
1 Spis wszystkich symboli Symbole podstawowe - pojedyncze znaki, alfabet grecki α β γ Γ δ ξ η ε ϕ ν ρ τ θ Θ ψ Ψ φ Φ Ω Υ Σ -alfa -beta - gamma - gamma (duże) - delta (małe) - delta (duże) -ksi -eta - epsilon
Wykład VI. Teoria pasmowa ciał stałych
Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów
WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana