Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy
|
|
- Seweryna Stefaniak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów ATOM KRYSZTAŁ 1
2 ATOM atom zjonizowany KRYSZTAŁ pasmo przewodnictwa energia poziomy wzbudzone poziom podstawowy przerwa energetyczna pasmo walencyjne E pasma energii wzbronionych pasmo elektronowe Kryształy: pasma energii dozwolonej dla elektronów oddzielone pasmami energii zabronionej E Pasmo walencyjne - najwyższe pasmo energetyczne elektronów związanych z jonami sieci krystalicznej Pasmo przewodnictwa - elektron staje się wspólny dla całego kryształu i może się w nim przemieszczać pod wpływem pola elektrycznego - nośnik prądu Koncentracja elektronów w paśmie przewodnictwa decyduje o przewodnictwie kryształu przewodniki półprzewodniki izolatory pasmo przewodnictwa Podział materiałów: E E < 5eV E~5-10eV pasmo walencyjne Przewodniki (metale) - pasma przewodnictwa i walencyjne częściowo przekrywają się Półprzewodniki (samoistne): pasmo walencyjne i pasmo przewodnictwa są rozdzielone małą przerwą energetyczną; elektrony mogą przechodzić z pasma walencyjnego do pasma przewodnictwa po otrzymaniu porcji energii > E ( E szerokość pasma zabronionego) Źródło energii: promieniowanie elektromagnetyczne (fotony), drgania sieci krystalicznej Koncentracja nośników w zależy od temperatury, natężenia promieniowania Izolatory - przerwa energetyczna jest na tyle duża, że w normalnych warunkach liczba elektronów zdolnych znaleźć się w paśmie przewodnictwa jest bardzo mała. 2
3 Mechanizm przewodnictwa przewodniki (metale) Prąd elektryczny - ruch ładunków pod wpływem przyłożonego pola elektrycznego W próżni: ruch jednostajnie przyspieszony Ruch elektronów w jednorodnym polu elektrycznym: W materiałach spowalnianie elektronów w wyniku zderzeń fononami dryf chmury elektronów wzdłuż pola elektrycznego z prędkością v (~cm/s) znacznie mniejszą niż średnia prędkość pojedynczych elektronów w chmurze. Fonony centra rozpraszania; np. zanieczyszczenia lub oscylacje sieci przewodnictwo materiału: n e e σ = 2m 2 τ e Ze wzrostem temperatury rośnie koncentracja fononów (zwiększają się drgania sieci krystalicznej) e W metalach: - zwiększenie rozpraszania i zmniejszenie τ e - koncentracja elektronów zmienia się bardzo słabo (n e const) SKTEK: opór metali zwiększa się wraz ze wzrostem temperatury Rozwój materiałów półprzewodnikowych: German Era Krzemu 1962 GaAs 1970 Wide band gap semiconductors 1990 Polimery (półprzewodniki organiczne), materiały amorficzne,... Półprzewodniki elementarne (samoistne): przerwa energetyczna Si 1.12 ev Ge ev C (diament) 5.46 ev amorficzny Si 1.71 ev Popularne związki półprzewodnikowe: przerwa energetyczna GaAs 1.41 ev GaP 2.26 ev GaSb ev InAs ev InP ev InSb 0.17 ev Półprzewodniki o szerokiej przerwie energetycznej: GaN InN AlN SiC przerwa energetyczna 3.4 ev 1.89 ev 6.2 ev ev 3
4 Mechanizm przewodnictwa - półprzewodniki samoistne energia elektronu elektron dziura E E e kt T=300 K kt=0.025 ev elektron w paśmie walencyjnym absorbuje porcję (kwant) energii > E, zerwanie wiązania w krysztale: uwolnienie elektronu do pasma przewodnictwa, dziura w paśmie walencyjnym - quasiładunek dodatni - może się przemieszczać Swobodne elektrony i dziury są nośnikami prądu w półprzewodnikach Równowaga dynamiczna gęstości nośników obu rodzajów. Rozkład energii E nośników rozkład Boltzmanna: ( ) n e exp E kt k=8.62*10-5 ev K -1 :stała Boltzmanna, T : temperatura [K] Para nośników elektron-dziura rekombinuje średnio po czasie s Ze wzrostem temperatury rośnie ilość nośników prądu przewodność półprzewodników zwiększa się Półprzewodniki domieszkowane Nośniki większościowe donor TYP N P, As, Sb poziom donorowy E Wtrącenie do sieci krystalicznej zbudowanej z atomów czterowartościowych domieszki pięciowartościowej (donora) powoduje wytworzenie elektronu słabo związanego z siecią Wtrącenie do sieci krystalicznej zbudowanej z atomów czterowartościowych domieszki trójwartościowej (akceptora) powoduje wytworzenie dziury słabo związanej z siecią. akceptor TYP P Al, Ga, In, B W temperaturze pokojowej prawie wszystkie domieszki są zjonizowane Poprzez odpowiednie domieszkowanie można wytwarzać półprzewodniki o kontrolowanej, nadmiarowej koncentracji elektronów lub dziur 4
5 Złącze p-n Doświadczenie myślowe : dokonujemy zetknięcia kryształu typu n z kryształem typu p początkowo każdy z kryształów jest elektrycznie obojętny n e - h p Różnica stężeń nośników powoduje dyfuzję: dziury z obszaru p dyfundują do obszaru typu n, elektrony obszaru n dyfundują do obszaru typu p, kryształ typu n naładował się dodatnio kryształ typu p naładował się ujemnie Złącze p-n c.d. Na styku obu materiałów powstaje bariera potencjału o wartości Φ ładunek przestrzenny Bariera potencjału ogranicza dyfuzję nośników i prowadzi do stabilizacji sytuacji w złączu. p akceptory n donory potencjał równowaga dynamiczna Φ x 5
6 półprzewodnik p energia dziur dziurowy prąd rekombinacji potencjał półprzewodnik n rozkład energii dziur e E/ kt liczba dziur liczba elektronów Φ e E / kt e elektronowy prąd rekombinacji rozkład energii elektronów wypadkowy prąd rekombinacji I R energia elektronów prąd generacji I G Ruch nośników jest odpowiedzialny za dziurowy i elektronowy prąd rekombinacji, składające się na wypadkowy prąd rekombinacji I R Prąd rekombinacji jest proporcjonalny do liczby I nośników zdolnych pokonać barierę potencjału Φ: R ( ) I = I exp e R A ( Φ ) kt exp eφ E kt de W złączu niespolaryzowanym całkowity prąd płynący przez złącze jest równy zeru, gdyż prąd I R jest równoważony przez prąd generacji I G I R = I G Stąd prąd generacji: I I ( e G = A exp Φ ) kt para elektron - dziura potencjał p n prąd generacji I G 6
7 SPOLARYZOWANE złącze p-n c.d. - + p n Φ Φ+ 1. Złącze spolaryzowane w kierunku zaporowym - Bariera potencjału wzrasta do wartości Φ + - Zmniejsza się liczba nośników zdolnych pokonać podwyższoną barierę - Prąd rekombinacji maleje SPOLARYZOWANE złącze p-n + - energia dziur p n prąd dziurowy rekombinacji Φ Φ- prąd elektronowy rekombinacji energia elektronów 2. Napięcie zewnętrzne przyłożone w kierunku przewodzenia - Zmniejszenie bariery potencjału Φ o wartość - Rośnie liczba nośników, zdolnych pokonać barierę potencjału Φ - - Prąd płynący przez złącze wzrasta 7
8 Złącze p-n niespolaryzowane Złącze p-n spolaryzowane zaporowo (-1V) Poszerzenie obszaru zubożonego Wzrost bariery potencjału Złącze p-n spolaryzowane w kierunku przewodnictwa 8
9 SPOLARYZOWANE złącze p-n c.d. W ogólności prąd rekombinacji w złączu p-n: Ponieważ prąd płynący przez złącze jest sumą prądu rekombinacji i generacji, to: [ ( ) ] czyli: I R = I A ( Φ ) e exp [ ] I I e R = G exp kt kt I = I e G exp 1 kt równanie opisujące pracę złącza p-n, 2 I złącze p-n I = I G + I R (równanie Shockley a) 100 I DIODA 1 0 I G Dioda półprzewodnikowa (prostownicza) Dla większych prądów równanie Shockley a modyfikuje się do postaci: MkT I = ln Ir e IG gdzie: r - rezystancja materiału diody (pasożytnicza), M - współczynnik związany z typem półprzewodnika M~1-2 p - napięcie przewodzenia złącza to napięcie w kierunku przewodzenia, dla którego prąd diody osiąga umownie dużą wartość I Ge Si GaAs [V] p=0.35 p=0.65 p=2.3 9
10 Podstawowe zastosowanie nieliniowych własności złącza p-n prostowanie prądów elektrycznych Prostownik jednopołówkowy WE + WY t WE WY t 100 I Dioda Zenera Zastosowanie: stabilizacja napięć I D WE> Z WY Z Z Dzielnik napięcia z diodą Zenera = stabilizator napięcia p D Miejsce pierwotnej generacji pary elektron-dziura Lawinowe powielanie nośników prądu w złączu w silnym polu elektrycznym Miejsca wtórnej generacji par elektron-dziura Zachodzi dla napięć zaporowych większych od Z Dopuszczalne napięcie wsteczne (zaporowe) diody jest ograniczone przez napięcie przebicia, zwane napięciem Zenera ( Z ) 10
11 Dioda świecąca (elektroluminescencyjna - LED) ruch elektronów p rekombinacje n ruch dziur złącze p-n spolaryzowane w kierunku przewodzenia w złączu następują intensywne spontaniczne procesy rekombinacyjne Rekombinacja dziury i elektronu jest związana z emisją kwantu promieniowania o energii równej w przybliżeniu szerokości przerwy energetycznej Charakterystyka prądowo-napięciowa podobna do charakterystyki diody prostowniczej Ćwiczenie: Badanie diod półprzewodnikowych 1. Cel ćwiczenia. Zapoznanie się z różnymi rodzajami diod półprzewodnikowych: dioda prostownicza krzemowa, dioda świecąca (LED) oraz dioda Zenera generator KŁAD POMIAROWY A oscyloskop obwód wyzwalanie B ext. Zbudować układ pomiarowy Wejście: przebieg trójkątny o napięciach szczytowych od -2.5V do +2.5 V i częstości 1000 Hz Dioda prostownicza 11
12 Dokonać pomiaru charakterystyki diody I D =f( D ) Dzielnik napięcia: WE = D + WY, I D =wy/r Wykreślić wyniki dla dodatnich napięć, stosując na osi prądów skalę logarytmiczną Dopasować charakterystykę diody używając zmodyfikowanego równania Shockley a MkT ID = ln + 1 e IG D + - pomijamy człon I D r (niewielki prąd) - pomijamy składnik 1 (ponieważ I D >>I G ) - dopasowywanie charakterystyki będzie równoważne dopasowywaniu prostej: D MkT = (ln I e I D D r ln I G ) Zastąpić diody prostownicze diodami świecącymi LED i wyznaczyć tą samą metodą napięcie przewodzenia. Czy przekroczenie napięcia przewodzenia powoduje świecenie diody? W tym samym obwodzie wykonać pomiar charakterystyki dla diody Zenera (BZX55, niebieska). Wyznaczyć napięcie Zenera i napięcie p 12
Pracownia Fizyczna i Elektroniczna Struktura układu doświadczalnego. Wojciech DOMINIK. Zjawisko przyrodnicze
Pracownia Fizyczna i Elektroniczna 0 http://pe.fuw.edu.pl/ Wojciech DOMNK Struktura układu doświadczalnego Zjawisko przyrodnicze detektor Urządzenie pomiarowe Urządzenie wykonawcze interfejs regulator
Indywidualna Pracownia Elektroniczna 2010/2011
Indywidualna Pracownia Elektroniczna 200/20 http://pe.fuw.edu.pl/ Wojciech DOMINIK Indywidualna Pracownia Elektroniczna 200 Wykłady czwartek sala 7, wtorek sala 09 na Pasteura Badanie diod 5-X-200 0-3
Indywidualna Pracownia Elektroniczna 2016
06-0- ndywidualna Pracownia Elektroniczna 06 http://pe.fuw.edu.pl/ Wojciech DOMNK NDYWDALNA PRACOWNA ELEKTRONCZNA. Plan zajęć Pracowni przewiduje 7(8) wykładów i 5 ćwiczeń. Wykład stanowi integralną część
Podstawy fizyki ciała stałego półprzewodniki domieszkowane
Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,
Pracownia fizyczna i elektroniczna S. Prąd elektryczny w obwodach; przypomnienie podstawowych pojęć i praw. dq I = dt
03 Pracownia fizyczna i elektroniczna S http://pe.fuw.edu.pl/ Wojciech DOMNK Prąd elektryczny w obwodach; przypomnienie podstawowych pojęć i praw Prąd: uporządkowany ruch ładunków elektrycznych Natężenie
Badanie charakterystyki diody
Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,
Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n
Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
W1. Właściwości elektryczne ciał stałych
W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3
STRUKTURA PASM ENERGETYCZNYCH
PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika
Teoria pasmowa. Anna Pietnoczka
Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne
Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne
Przewodnictwo elektryczne ciał stałych. Fizyka II, lato
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Wykład IV. Półprzewodniki samoistne i domieszkowe
Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent
Przewodnictwo elektryczne ciał stałych
Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi
Półprzewodniki samoistne. Struktura krystaliczna
Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/
Rozszczepienie poziomów atomowych
Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek
Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki
Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności
Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz
Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy
Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja
Równanie Shockley a. Potencjał wbudowany
Wykład VI Diody Równanie Shockley a Potencjał wbudowany 2 I-V i potencjał wbudowany Temperatura 77K a) Ge E g =0.7eV b) Si E g =1.14eV c) GaAs E g =1.5eV d) GaAsP E g =1.9eV qv 0 (0. 5 0. 7)E g 3 I-V i
Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA
3. ZŁĄCZE p-n 3.1. BUDOWA ZŁĄCZA Złącze p-n jest to obszar półprzewodnika monokrystalicznego utworzony przez dwie graniczące ze sobą warstwy jedną typu p i drugą typu n. Na rysunku 3.1 przedstawiono uproszczony
I. DIODA ELEKTROLUMINESCENCYJNA
1 I. DIODA LKTROLUMINSCNCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: misja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:
3.4 Badanie charakterystyk tranzystora(e17)
152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,
WYZNACZANIE STAŁEJ PLANCKA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH. Irena Jankowska-Sumara, Magdalena Krupska
1 II PRACOWNIA FIZYCZNA: FIZYKA ATOMOWA Z POMIARU CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH DIOD ELEKTROLUMINESCENCYJNYCH Irena Jankowska-Sumara, Magdalena Krupska Cel ćwiczenia Celem ćwiczenia jest wyznaczenie
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy i układy mocy, studia niestacjonarne, lato 2018/19 23 Półprzewodniki
Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka
Zakład Inżynierii Materiałowej i Systemów Pomiarowych Instytut Systemów Inżynierii Elektrycznej Wydział Elektrotechniki, Elektroniki Informatyki i Automatyki Politechnika Łódzka LABORATORIUM INŻYNIERII
Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1
Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia
Przyrządy półprzewodnikowe
Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal
Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza)
Instrukcja do ćwiczenia: Badanie diod półprzewodnikowych i LED (wersja robocza) Laboratorium Elektroenergetyki 1 1. Cel i program ćwiczenia. Celem ćwiczenia jest: zapoznanie się z budową diody półprzewodnikowej
Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja
Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek
Repeta z wykładu nr 6. Detekcja światła. Plan na dzisiaj. Metal-półprzewodnik
Repeta z wykładu nr 6 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 - kontakt omowy
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Wykład V Złącze P-N 1
Wykład V Złącze PN 1 Złącze pn skokowe i liniowe N D N A N D N A p n p n zjonizowane akceptory + zjonizowane donory x + x Obszar zubożony Obszar zubożony skokowe liniowe 2 Złącze pn skokowe N D N A p n
Złącza p-n, zastosowania. Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET
Złącza p-n, zastosowania Własności złącza p-n Dioda LED Fotodioda Dioda laserowa Tranzystor MOSFET Złącze p-n, polaryzacja złącza, prąd dyfuzyjny (rekombinacyjny) Elektrony z obszaru n na złączu dyfundują
Fizyka i technologia złącza PN. Adam Drózd 25.04.2006r.
Fizyka i technologia złącza P Adam Drózd 25.04.2006r. O czym będę mówił: Półprzewodnik definicja, model wiązań walencyjnych i model pasmowy, samoistny i niesamoistny, domieszki donorowe i akceptorowe,
Prawo Ohma. qnv. E ρ U I R U>0V. v u E +
Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja
IA. Fotodioda. Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody.
1 A. Fotodioda Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym w którym zachodzi
Przerwa energetyczna w germanie
Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania
Przyrządy i układy półprzewodnikowe
Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15
1 Źródła i detektory. V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED.
1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod LED. Zagadnienia: Efekt fotowoltaiczny, złącze p-n Wprowadzenie Fotodioda jest urządzeniem półprzewodnikowym
Ćwiczenie 241. Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) .. Ω.
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 241 Wyznaczanie ładunku elektronu na podstawie charakterystyki złącza p-n (diody półprzewodnikowej) Opór opornika
Skończona studnia potencjału
Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach
2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.
2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały
W5. Rozkład Boltzmanna
W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został
elektryczne ciał stałych
Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.2017 1 2 Własności elektryczne
Teoria pasmowa ciał stałych Zastosowanie półprzewodników
Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa
Ćwiczenie 1 LABORATORIUM ELEKTRONIKI POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH
LABORAORUM ELEKRONK Ćwiczenie 1 Parametry statyczne diod półprzewodnikowych Cel ćwiczenia Celem ćwiczenia jest poznanie statycznych charakterystyk podstawowych typów diod półprzewodnikowych oraz zapoznanie
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach
Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B
Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN
Elementy elektroniczne Wykłady 3: Półprzewodniki. Teoria złącza PN Budowa i właściwości elektryczne ciał stałych - wprowadzenie Budowa atomu: a) model starożytny b) model J.J. Thompsona c) model E. Rutherforda
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA
Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Teoria pasmowa ciał stałych
Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
LABORATORIUM INŻYNIERII MATERIAŁOWEJ
Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Część 2. Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych
Część 2 Przewodzenie silnych prądów i blokowanie wysokich napięć przy pomocy przyrządów półprzewodnikowych Łukasz Starzak, Przyrządy półprzewodnikowe mocy, zima 2015/16 20 Półprzewodniki Materiały, w których
VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY
Oporność właściwa (Ωm) 1 VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: pomiar zależności oporności elektrycznej (rezystancji) metalu i półprzewodnika od temperatury,
Badanie emiterów promieniowania optycznego
LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 9 Badanie emiterów promieniowania optycznego Cel ćwiczenia: Zapoznanie studentów z podstawowymi charakterystykami emiterów promieniowania optycznego. Badane elementy:
V. Fotodioda i diody LED
1 V. Fotodioda i diody LED Cel ćwiczenia: Pomiar charakterystyk prądowo - napięciowych fotodiody i diod elektroluminescencyjnych. Wyznaczenie zależności prądu zwarcia i napięcia rozwarcia fotodiody od
Rys.1. Struktura fizyczna diody epiplanarnej (a) oraz wycinek złącza p-n (b)
Ćwiczenie E11 UKŁADY PROSTOWNIKOWE Elementy półprzewodnikowe złączowe 1. Złącze p-n Złącze p-n nazywamy układ dwóch półprzewodników.jednego typu p w którym nośnikami większościowymi są dziury obdarzone
Repeta z wykładu nr 4. Detekcja światła. Dygresja. Plan na dzisiaj
Repeta z wykładu nr 4 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek
Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe
!!!DEL są źródłami światła niespójnego.
Dioda elektroluminescencyjna DEL Element czynny DEL to złącze p-n. Gdy zostanie ono spolaryzowane w kierunku przewodzenia, to w obszarze typu p, w warstwie o grubości rzędu 1µm, wytwarza się stan inwersji
Podstawy krystalografii
Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną
elektryczne ciał stałych
Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał
Ćwiczenie 123. Dioda półprzewodnikowa
Ćwiczenie 123 Ćwiczenie 123. Dioda półprzewodnikowa Cel ćwiczenia Poznanie własności warstwowych złącz półprzewodnikowych typu p-n. Wyznaczenie i analiza charakterystyk stałoprądowych dla różnych typów
Struktura pasmowa ciał stałych
Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................
ĆWICZENIE 39 WYZNACZANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ
Piotr Janas Zakład Fizyki, Uniwersytet Rolniczy Do użytku wewnętrznego ĆWICZENIE 39 WYZNACZANIE CHARAKTERYSTYKI DIODY PÓŁPRZEWODNIKOWEJ Kraków 2015 SPIS TREŚCI I. CZĘŚĆ TEORETYCZNA... 2 1. ELEMENTY PASMOWEJ
Złącze p-n powstaje wtedy, gdy w krysztale półprzewodnika wytworzone zostaną dwa obszary o odmiennym typie przewodnictwa p i n. Nośniki większościowe
Diody Dioda jest to przyrząd elektroniczny z dwiema elektrodami mający niesymetryczna charakterystykę prądu płynącego na wyjściu w funkcji napięcia na wejściu. Symbole graficzne diody, półprzewodnikowej
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY
ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I.. Prąd elektryczny Dla dużej grupy przewodników prądu elektrycznego (metale, półprzewodniki i inne) spełnione jest prawo Ohma,
METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4
MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79
S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE
Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając
E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5
1/5 Celem ćwiczenia jest poznanie temperaturowej zależności przepływu prądu elektrycznego przez przewodnik i półprzewodnik oraz doświadczalne wyznaczenie energii aktywacji przewodnictwa dla półprzewodnika
Podstawy działania elementów półprzewodnikowych - diody
Podstawy działania elementów półprzewodnikowych - diody Wrocław 2010 Ciało stałe Ciało, którego cząstki (atomy, jony) tworzą trwały układ przestrzenny (sieć krystaliczną) w danych warunkach (tzw. normalnych).
Elektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Wykład VI. Teoria pasmowa ciał stałych
Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
V. DIODA ELEKTROLUMINESCENCYJNA
1 V. DIODA ELEKTROLUMINESCENCYJNA Cel ćwiczenia : Pomiar charakterystyk elektrycznych diod elektroluminescencyjnych. Zagadnienia: Emisja spontaniczna, złącze p-n, zasada działania diody elektroluminescencyjnej
PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową.
PÓŁPRZEWODNIKI W ELEKTRONICE Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. 1 Półprzewodniki Półprzewodniki to ciała stałe nieorganiczne lub organiczne o przewodnictwie
Wykład III. Teoria pasmowa ciał stałych
Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Absorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
MATERIAŁY PÓŁPRZEWODNIKOWE
MATERIAŁY PÓŁPRZEWODNIKOWE Półprzewodniki obejmują obszerną grupę materiałów, które ze względu na przewodnictwo elektryczne zajmują pośrednie miejsce pomiędzy metalami a izolatorami. Półprzewodniki stanowią
10 K AT E D R A F I Z Y K I S T O S OWA N E J
10 K AT E D R A F I Z Y K I S T O S OWA N E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 10. Wyznaczanie charakterystyk diod półprzewodnikowych Wprowadzenie
POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY
ĆWICZENIE 44 POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: Pomiar zależności oporu elektrycznego (rezystancji) metalu i półprzewodnika od temperatury oraz wyznaczenie temperaturowego
EL08s_w03: Diody półprzewodnikowe
EL08s_w03: Diody półprzewodnikowe Złącza p-n i m-s Dioda półprzewodnikowa ( Zastosowania diod ) 1 Złącze p-n 2 Rozkład domieszek w złączu a) skokowy b) stopniowy 3 Rozkłady przestrzenne w złączu: a) bez
35 KATEDRA FIZYKI STOSOWANEJ
35 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 35. Wyznaczanie charakterystyk diod półprzewodnikowych Wprowadzenie Substancje w przyrodzie mają dużą rozpiętość wartości oporu właściwego od najmniejszej
Przyrządy półprzewodnikowe część 2
Przyrządy półprzewodnikowe część 2 Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 110 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski
IX. DIODY PÓŁPRZEWODNIKOWE Janusz Adamowski 1 1 Dioda na złączu p n Zgodnie z wynikami, otrzymanymi na poprzednim wykładzie, natężenie prądu I przepływającego przez złącze p n opisane jest wzorem Shockleya
BADANIE DIOD PÓŁPRZEWODNIKOWYCH
BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie
ELEKTRONIKA I ENERGOELEKTRONIKA
ELEKTRONIKA I ENERGOELEKTRONIKA wykład 2 PÓŁPRZEWODNIKI luty 2008 - Lublin krzem u ej n o z r o w t rze i p o ytk d u pł m rze k Od m ik ro pr oc es or ET F S MO p rzy rząd Od p iasku do Ten wykład O CZYM
Urządzenia półprzewodnikowe
Urządzenia półprzewodnikowe Diody: - prostownicza - Zenera - pojemnościowa - Schottky'ego - tunelowa - elektroluminescencyjna - LED - fotodioda półprzewodnikowa Tranzystory - tranzystor bipolarny - tranzystor
Wykład 7. Złącza półprzewodnikowe - przyrządy półprzewodnikowe
Wykład 7 Złącza półprzewodnikowe - przyrządy półprzewodnikowe Złącze p-n Złącze p-n Tworzy się złącze p-n E Złącze po utworzeniu Pole elektryczne na styku dwóch półprzewodników powoduje, że prąd łatwo