Rozszczepienie poziomów atomowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozszczepienie poziomów atomowych"

Transkrypt

1 Rozszczepienie poziomów atomowych Poziomy energetyczne w pojedynczym atomie Gdy zbliżamy atomy chmury elektronowe nachodzą na siebie (inaczej: funkcje falowe elektronów zaczynają się przekrywać) Na skutek zakazu Pauliego każdy poziom energetyczny rozszczepia się na N poziomów (N liczba atomów) Pasma energetyczne Rozszczepienie poziomów w pasma w ciele stałym (oddziaływanie z sąsiednimi atomami) - liczba poziomów w paśmie: (2l+1)*N atomów

2 Pasma energetyczne Diament izolator Beryl metal E = E g przerwa energetyczna

3 metale opór elektryczny półmetale półprzewodniki izolatory Wstęp do fizyki ciała stałego, Ch. Kittel (2005) Kryształ 1s 2 2s 2 2p 6 3s 2 3p 2 14 elektronów 4 elektrony walencyjne 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 2 32 elektrony 4 elektrony walencyjne Wiązania powstałe w wyniku wymiany elektronów walencyjnych między atomami noszą nazwę wiązań kowalencyjnych 6

4 Elektrony i dziury Zerwanie wiązania elektronowego jest równoznaczne z pojawieniem się luki, dziury, w sieci wiązań międzyatomowych. E E e h 2 2 h k = Ec + 2m * 2 2 h k = Ev + 2m * e h k r h E m h * h = k r ev = E ev = m * ev W półprzewodniku samoistnym: n = p = n i Wstęp do fizyki ciała stałego, Ch. Kittel (2005) GaAs, CdS, CdSe, ZnS,InSb, HgTe, GaN, Si, Ge, GaP, AlAs,

5 Handbook of photovoltaics, Willey (2007) Przejścia proste: hωg = E g Przejścia skośne: hω = Eg + hω r r v k = k + K fotonu c fononu Przerwa energetyczna Przerwa prosta Przerwa skośna E g GaAs Si

6 Wstęp do fizyki ciała stałego, Ch. Kittel (2005) Własności elektryczne ciał stałych Opór elektryczny właściwy (ρ [Ω*m]) Temperaturowy współczynnik oporu (α [K 1 ] dρ α = 1 ρ dt Koncentracja nośników ładunku (n [cm 3 ] lub p [cm 3 ]) Wielkość fizyczna Metal (Cu) Półprzewodnik (Si) Opór właściwy 2*10 8 W*m 3*10 3 W*m Współczynnik temperaturowy oporu 4*10 3 K 1 7*10 2 K 1 Koncentracja nośników ładunku 9*10 22 cm 3 1*10 16 cm 3

7 Metale, a półprzewodniki opór elektryczny Opór elektryczny właściwy metalu rośnie z temperaturą gdyż zderzenia elektronów w wyższej temperaturze zachodzą częściej α = 1 ρ dρ dt > 0 Opór elektryczny właściwy półprzewodnika maleje wraz z temperaturą gdyż rośnie prawdopodobieństwo wzbudzenia termicznego elektronów do pasma przewodnictwa α = 1 ρ dρ dt < 0 Półprzewodniki domieszkowane Sb donor (5 elektronów walencyjnych) B akceptor (3 elektrony walencyjne)

8 Typ n, typ p materiał domieszkowany atomami o większej liczbie elektronów walencyjnych materiał typu n donor atom dostarczający elektron do pasma przewodnictwa np: Sb, P, As w Si, Al w ZnO Si W GaAs materiał domieszkowany atomami o mniejszej liczbie elektronów walencyjnych materiał typu p akceptor atom przyjmujący elektron z sąsiedniego wiązania np: B, Al w Si, Mg w GaN, Be, Mg w GaAs Prawdopodobieństwo obsadzenia Prawdopodobieństwo obsadzenia wolnego stanu o energii E przez elektron jest opisywane rozkładem Fermiego Diraca P(E) = 1 e (E E F )/k B T +1

9 T=0 K: brak elektronów w paśmie przewodnictwa i dziur w p. walencyjnym Im wyższa temperatura, tym większe prawdopodobieństwa pojawienia się elektronu w pasmie przewodnictwa i dziury w pasmie walencyjnym 17 Równowagowe koncentracje nośników ładunku Ilość dostępnych stanów (gęstość stanów- DOS): Efektywne gęstości stanów w pasmach: 18

10 Równowagowe koncentracje nośników ładunku Gdy E F > kt koncentracje nośników ładunku mogą być przybliżone równaniami: EF EC n = NC exp kt EV EF p = NV exp kt 2 EV E n p = ni = NC NV exp kt n = p = n E F E = V i = + E 2 C N C N V Eg exp 2kT kt N + ln 2 N V C C = N C N V E exp 2 E exp kt W półprzewodniku samoistnym (nie domieszkowanym): g 1 kt energia aktywacji g E g 1 σ exp 2 kt Koncentracja nośników ładunku w półprzewodniku domieszkowanym E g 1 σ exp 2 kt E D 1 σ exp 2 kt 1/T [K 1 ]

11 Półprzewodniki przykłady Si elektronika, diody, ogniwa słoneczne Ge historycznie tranzystory Półprzewodniki przykłady GaAs tranzystory (szybsze niż Si), podłoża dla elektroniki, diody podczerwone, ogniwa słoneczne (bardzo wydajne ale bardzo drogie) GaN niebieskie diody, niebieski laser (czytniki Blue Ray)

12 Półprzewodniki przykłady CdS, CdTe, CuInSe2 cienkowarstwowe ogniwa słoneczne ZnO pochłania promieniowanie nadfioletowe UV obecnie przemysł gumowy, budowlany (tynki), kosmetyczny (pudry, szampony przeciwłupieżowe, kremy do opalania) itp. potencjalnie diody i lasery UV, fotodetektory Półprzewodniki przykłady ITO : In2O3 + SnO2 monitory LCD, ekrany tabletów, ekrany telefonów komórkowych, itp. Podobnie jak ZnO należy do tzw. Przezroczystych, Przewodzących Tlenków (TCO Transparent Conductive Oxides)

Proste struktury krystaliczne

Proste struktury krystaliczne Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności elektryczne trzeba zdefiniować kilka wielkości Oporność właściwa (albo przewodność) ładunek [C] = 1/

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Półprzewodniki samoistne. Struktura krystaliczna

Półprzewodniki samoistne. Struktura krystaliczna Półprzewodniki samoistne Struktura krystaliczna Si a5.43 A GaAs a5.63 A ajczęściej: struktura diamentu i blendy cynkowej (ZnS) 1 Wiązania chemiczne Wiązania kowalencyjne i kowalencyjno-jonowe 0K wszystkie

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki

S. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,

Bardziej szczegółowo

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz

Ciała stałe. Literatura: Halliday, Resnick, Walker, t. 5, rozdz. 42 Orear, t. 2, rozdz. 28 Young, Friedman, rozdz Ciała stałe Podstawowe własności ciał stałych Struktura ciał stałych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencjał kontaktowy

Bardziej szczegółowo

Przerwa energetyczna w germanie

Przerwa energetyczna w germanie Ćwiczenie 1 Przerwa energetyczna w germanie Cel ćwiczenia Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporu monokryształu germanu od temperatury. Wprowadzenie Eksperymentalne badania

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato

Przewodnictwo elektryczne ciał stałych. Fizyka II, lato Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2016 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Przewodnictwo elektryczne ciał stałych

Przewodnictwo elektryczne ciał stałych Przewodnictwo elektryczne ciał stałych Fizyka II, lato 2011 1 Własności elektryczne ciał stałych Komputery, kalkulatory, telefony komórkowe są elektronicznymi urządzeniami półprzewodnikowymi wykorzystującymi

Bardziej szczegółowo

Przyrządy półprzewodnikowe

Przyrządy półprzewodnikowe Przyrządy półprzewodnikowe Prof. Zbigniew Lisik Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych pokój: 116 e-mail: zbigniew.lisik@p.lodz.pl wykład 30 godz. laboratorium 30 godz WEEIiA E&T Metal

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

STRUKTURA PASM ENERGETYCZNYCH

STRUKTURA PASM ENERGETYCZNYCH PODSTAWY TEORII PASMOWEJ Struktura pasm energetycznych Teoria wa Struktura wa stałych Półprzewodniki i ich rodzaje Półprzewodniki domieszkowane Rozkład Fermiego - Diraca Złącze p-n (dioda) Politechnika

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

W1. Właściwości elektryczne ciał stałych

W1. Właściwości elektryczne ciał stałych W1. Właściwości elektryczne ciał stałych Względna zmiana oporu właściwego przy wzroście temperatury o 1 0 C Materiał Opór właściwy [m] miedź 1.68*10-8 0.0061 żelazo 9.61*10-8 0.0065 węgiel (grafit) 3-60*10-3

Bardziej szczegółowo

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy

Złącze p-n: dioda. Przewodnictwo półprzewodników. Dioda: element nieliniowy Złącze p-n: dioda Półprzewodniki Przewodnictwo półprzewodników Dioda Dioda: element nieliniowy Przewodnictwo kryształów Atomy dyskretne poziomy energetyczne (stany energetyczne); określone energie elektronów

Bardziej szczegółowo

Elektryczne własności ciał stałych

Elektryczne własności ciał stałych Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale

Bardziej szczegółowo

Teoria pasmowa ciał stałych

Teoria pasmowa ciał stałych Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach ulegają rozszczepieniu. W kryształach zjawisko to prowadzi do wytworzenia się pasm. Klasyfikacja ciał stałych na podstawie struktury

Bardziej szczegółowo

2. Elektrony i dziury w półprzewodnikach

2. Elektrony i dziury w półprzewodnikach 2. Elektrony i dziury w półprzewodnikach 1 B III C VI 2 Związki półprzewodnikowe: 8 walencyjnych elektronów na walencyjnym orbitalu cząsteczkowym2 Rozszczepienie elektronowych poziomów energetycznych Struktura

Bardziej szczegółowo

Wykład V Wiązanie kowalencyjne. Półprzewodniki

Wykład V Wiązanie kowalencyjne. Półprzewodniki Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy

Wykład IV. Dioda elektroluminescencyjna Laser półprzewodnikowy Wykład IV Dioda elektroluminescencyjna Laser półprzewodnikowy Półprzewodniki - diagram pasmowy Kryształ Si, Ge, GaAs Struktura krystaliczna prowadzi do relacji dyspersji E(k). Krzywizna pasm decyduje o

Bardziej szczegółowo

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne

Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Zjawiska zachodzące w półprzewodnikach Przewodniki samoistne i niesamoistne Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Zadania elektroniki: Urządzenia elektroniczne

Bardziej szczegółowo

2. Elektrony i dziury w półprzewodnikach

2. Elektrony i dziury w półprzewodnikach 2. Elektrony i dziury w półprzewodnikach 1 B III C VI 2 Związki półprzewodnikowe: 8 walencyjnych elektronów na walencyjnym orbitalu cząsteczkowym2 Krzem i german 1s 2 2s 2 2p 6 3s 2 3p 2 14 elektronów

Bardziej szczegółowo

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4

METALE. Cu 8.50 1.35 1.56 7.0 8.2 Ag 5.76 1.19 1.38 5.5 6.4 Au 5.90 1.2 1.39 5.5 6.4 MAL Zestawienie właściwości gazu elektronowego dla niektórych metali: n cm -3 k cm -1 v cm/s ε e ε /k Li 4.6 10 1.1 10 8 1.3 10 8 4.7 5.5 10 4 a.5 0.9 1.1 3.1 3.7 K 1.34 0.73 0.85.1.4 Rb 1.08 0.68 0.79

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków.

2. Półprzewodniki. Istnieje duża jakościowa różnica między właściwościami elektrofizycznymi półprzewodników, przewodników i dielektryków. 2. Półprzewodniki 1 Półprzewodniki to materiały, których rezystywność jest większa niż rezystywność przewodników (metali) oraz mniejsza niż rezystywność izolatorów (dielektryków). Przykłady: miedź - doskonały

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Półprzewodniki i elementy z półprzewodników homogenicznych Ryszard J. Barczyński, 2012 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Publikacja

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 08.06.2017 1 2 Własności elektryczne

Bardziej szczegółowo

Krawędź absorpcji podstawowej

Krawędź absorpcji podstawowej Obecność przerwy energetycznej między pasmami przewodnictwa i walencyjnym powoduje obserwację w eksperymencie absorpcyjnym krawędzi podstawowej. Dla padającego promieniowania oznacza to przejście z ośrodka

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne

S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne Pasma energetyczne Niedostatki modelu gazu Fermiego elektronów swobodnych Pomimo wielu sukcesów model nie jest w stanie wyjaśnić następujących zagadnień: 1. różnica między metalami, półmetalami, półprzewodnikami

Bardziej szczegółowo

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Oporność właściwa (Ωm) 1 VI. POMIAR ZALEŻNOŚCI OPORNOŚCI METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: pomiar zależności oporności elektrycznej (rezystancji) metalu i półprzewodnika od temperatury,

Bardziej szczegółowo

Przyrządy i układy półprzewodnikowe

Przyrządy i układy półprzewodnikowe Przyrządy i układy półprzewodnikowe Prof. dr hab. Ewa Popko ewa.popko@pwr.edu.pl www.if.pwr.wroc.pl/~popko p.231a A-1 Zawartość wykładu Wy1, Wy2 Wy3 Wy4 Wy5 Wy6 Wy7 Wy8 Wy9 Wy10 Wy11 Wy12 Wy13 Wy14 Wy15

Bardziej szczegółowo

W5. Rozkład Boltzmanna

W5. Rozkład Boltzmanna W5. Rozkład Boltzmanna Podstawowym rozkładem w klasycznej fizyce statystycznej jest rozkład Boltzmanna E /( kt ) f B ( E) Ae gdzie: A jest stałą normalizacyjną, k stałą Boltzmanna 5 k 8.61710 ev / K Został

Bardziej szczegółowo

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika

Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Ćwiczenie 243 4.2. Badanie zależności temperaturowej oporu elektrycznego metalu i półprzewodnika Tabela I. Metal Nazwa próbki:

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych

III.4 Gaz Fermiego. Struktura pasmowa ciał stałych III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE

Bardziej szczegółowo

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach

Funkcja rozkładu Fermiego-Diraca w różnych temperaturach Funkcja rozkładu Fermiego-Diraca w różnych temperaturach 1 f FD ( E) = E E F exp + 1 kbt Styczna do krzywej w punkcie f FD (E F )=0,5 przecina oś energii i prostą f FD (E)=1 w punktach odległych o k B

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 23: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał

Bardziej szczegółowo

Podstawy fizyki wykład 4

Podstawy fizyki wykład 4 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Skończona studnia potencjału

Skończona studnia potencjału Skończona studnia potencjału U = 450 ev, L = 100 pm Fala wnika w ściany skończonej studni długość fali jest większa (a energia mniejsza) Teoria pasmowa ciał stałych Poziomy elektronowe atomów w cząsteczkach

Bardziej szczegółowo

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO.

GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. GAZ ELEKTRONÓW SWOBODNYCH POWYŻEJ ZERA BEZWZGLĘDNEGO. Funkcja rozkładu Fermiego-Diraca T=0K T>0K 1 f ( E ) = 0 dla dla E E F E > EF f ( E, T ) 1 = E E F kt e + 1 1 T>0K Funkcja rozkładu Fermiego-Diraca

Bardziej szczegółowo

Dr inż. Zbigniew Szklarski

Dr inż. Zbigniew Szklarski Wykład 1: Ciało stałe Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Struktura kryształu Ciała stałe o budowie bezpostaciowej

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir

POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY. Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir POLITECHNIKA GDAŃSKA WYDZIAŁ FIZYKI TECHNICZNEJ I MATEMATYKI STOSOWANEJ EKSCYTONY W CIAŁACH ACH STAŁYCH Seminarium z Molekularnego Ciała a Stałego Jędrzejowski Jaromir Co to sąs ekscytony? ekscyton to

Bardziej szczegółowo

Projekt FPP "O" Kosma Jędrzejewski 13-12-2013

Projekt FPP O Kosma Jędrzejewski 13-12-2013 Projekt FPP "O" Kosma Jędrzejewski --0 Projekt polega na wyznaczeniu charakterystyk gęstości stanów nośników ładunku elektrycznego w obszarze aktywnym lasera półprzewodnikowego GaAs. Wyprowadzenie wzoru

Bardziej szczegółowo

+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna

+ + Struktura cia³a sta³ego. Kryszta³y jonowe. Kryszta³y atomowe. struktura krystaliczna. struktura amorficzna Struktura cia³a sta³ego struktura krystaliczna struktura amorficzna odleg³oœci miêdzy atomami maj¹ tê sam¹ wartoœæ; dany atom ma wszêdzie takie samo otoczenie najbli szych s¹siadów odleg³oœci miêdzy atomami

Bardziej szczegółowo

P R A C O W N I A

P R A C O W N I A P R A C O W N I A www.tremolo.pl M E T O D Y B A D A Ń M A T E R I A Ł Ó W (WŁAŚCIWOŚCI ELEKTRYCZNE, MAGNETYCZNE I AKUSTYCZNE) Ewelina Broda Robert Gabor ĆWICZENIE NR 3 WYZNACZANIE ENERGII AKTYWACJI I

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0

na dnie (lub w szczycie) pasma pasmo jest paraboliczne, ale masa wyznaczona z krzywizny niekoniecznie = m 0 Koncepcja masy efektywnej swobodne elektrony k 1 1 E( k) E( k) =, = m m k krzywizna E(k) określa masę cząstek elektrony prawie swobodne - na dnie pasma masa jest dodatnia, ale niekoniecznie = masie swobodnego

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII

GaSb, GaAs, GaP. Joanna Mieczkowska Semestr VII GaSb, GaAs, GaP Joanna Mieczkowska Semestr VII 1 Pierwiastki grupy III i V układu okresowego mają mało jonowy charakter. 2 Prawie wszystkie te kryształy mają strukturę blendy cynkowej, typową dla kryształów

Bardziej szczegółowo

Teoria pasmowa ciał stałych Zastosowanie półprzewodników

Teoria pasmowa ciał stałych Zastosowanie półprzewodników Teoria pasmowa ciał stałych Zastosowanie półprzewodników Model atomu Bohra Niels Bohr - 1915 elektrony krążą wokół jądra jądro jest zbudowane z: i) dodatnich protonów ii) neutralnych neutronów Liczba atomowa

Bardziej szczegółowo

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003 Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 003 1. Wiązania atomów w krysztale Siły wiążące atomy w kryształ mają charakter

Bardziej szczegółowo

Prawo Ohma. qnv. E ρ U I R U>0V. v u E +

Prawo Ohma. qnv. E ρ U I R U>0V. v u E + Prawo Ohma U>0V J v u J qnv u - E + J qne d J gęstość prądu [A/cm 2 ] n koncentracja elektronów [cm -3 ] ρ rezystywność [Ωcm] σ - przewodność [S/cm] E natężenie pola elektrycznego [V/cm] I prąd [A] R rezystancja

Bardziej szczegółowo

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE

Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY 1.WIADOMOŚCI OGÓLNE Laboratorium z Fizyki Materiałów 00 Ćwiczenie 5 BADANIE ZALEŻNOŚCI PRZEWODNICTWA ELEKTRYCZNEGO PÓŁPRZEWODNIKA OD TEMPERATURY.WIADOMOŚCI OGÓLNE Przewodnictwo elektryczne ciał stałych można opisać korzystając

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Podstawy krystalografii

Podstawy krystalografii Podstawy krystalografii Kryształy Pojęcie kryształu znane było już w starożytności. Nazywano tak ciała o regularnych kształtach i gładkich ścianach. Już wtedy podejrzewano, że te cechy związane są ze szczególną

Bardziej szczegółowo

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved.

Chemia nieorganiczna. Copyright 2000 by Harcourt, Inc. All rights reserved. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Pierwiastki 1 1 H 3 Li 11

Bardziej szczegółowo

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5

E3. Badanie temperaturowej zależności oporu elektrycznego ciał stałych 1/5 1/5 Celem ćwiczenia jest poznanie temperaturowej zależności przepływu prądu elektrycznego przez przewodnik i półprzewodnik oraz doświadczalne wyznaczenie energii aktywacji przewodnictwa dla półprzewodnika

Bardziej szczegółowo

3.4 Badanie charakterystyk tranzystora(e17)

3.4 Badanie charakterystyk tranzystora(e17) 152 Elektryczność 3.4 Badanie charakterystyk tranzystora(e17) Celem ćwiczenia jest wyznaczenie charakterystyk tranzystora npn w układzie ze wspólnym emiterem W E. Zagadnienia do przygotowania: półprzewodniki,

Bardziej szczegółowo

PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową.

PÓŁPRZEWODNIKI W ELEKTRONICE. Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. PÓŁPRZEWODNIKI W ELEKTRONICE Powszechnie uważa się, że współczesna elektronika jest elektroniką półprzewodnikową. 1 Półprzewodniki Półprzewodniki to ciała stałe nieorganiczne lub organiczne o przewodnictwie

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 22: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Własności elektryczne ciał

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n

Repeta z wykładu nr 5. Detekcja światła. Plan na dzisiaj. Złącze p-n. złącze p-n Repeta z wykładu nr 5 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

LABORATORIUM INŻYNIERII MATERIAŁOWEJ

LABORATORIUM INŻYNIERII MATERIAŁOWEJ Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM INŻYNIERII MATERIAŁOWEJ Podstawy

Bardziej szczegółowo

ELEKTRONIKA I ENERGOELEKTRONIKA

ELEKTRONIKA I ENERGOELEKTRONIKA ELEKTRONIKA I ENERGOELEKTRONIKA wykład 2 PÓŁPRZEWODNIKI luty 2008 - Lublin krzem u ej n o z r o w t rze i p o ytk d u pł m rze k Od m ik ro pr oc es or ET F S MO p rzy rząd Od p iasku do Ten wykład O CZYM

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Podstawy fizyki ciała stałego półprzewodniki domieszkowane

Podstawy fizyki ciała stałego półprzewodniki domieszkowane Podstawy fizyki ciała stałego półprzewodniki domieszkowane Półprzewodnik typu n IV-Ge V-As Jeżeli pięciowartościowy atom V-As zastąpi w sieci atom IV-Ge to cztery elektrony biorą udział w wiązaniu kowalentnym,

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1

Układy nieliniowe. Stabilizator - dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) Logiczna bramka NAND. w.7, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

elektryczne ciał stałych

elektryczne ciał stałych Wykład 24: Przewodnictwo elektryczne ciał stałych Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 19.06.2018 1 2 Własności elektryczne

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Wykład FIZYKA II. 14. Fizyka ciała stałego. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 14. Fizyka ciała stałego.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 14. Fizyka ciała stałego Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ MATERIA SKONDENSOWANA Każdy pierwiastek bądź

Bardziej szczegółowo

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY

ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY ZALEŻNOŚĆ OPORU ELEKTRYCZNEGO 57 METALU I PÓŁPRZEWODNIKA OD TEMPERATURY I.. Prąd elektryczny Dla dużej grupy przewodników prądu elektrycznego (metale, półprzewodniki i inne) spełnione jest prawo Ohma,

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury.

Cel ćwiczenia: Wyznaczenie szerokości przerwy energetycznej przez pomiar zależności oporności elektrycznej monokryształu germanu od temperatury. WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie

Bardziej szczegółowo

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA

Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA Aleksandra Banaś Dagmara Zemła WPPT/OPTOMETRIA B V B C ZEWNĘTRZNE POLE ELEKTRYCZNE B C B V B D = 0 METAL IZOLATOR PRZENOSZENIE ŁADUNKÓW ELEKTRYCZNYCH B C B D B V B D PÓŁPRZEWODNIK PODSTAWOWE MECHANIZMY

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie

30/01/2018. Wykład XI: Właściwości elektryczne. Treść wykładu: Wprowadzenie Wykład XI: Właściwości elektryczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Wprowadzenie 2. a) wiadomości podstawowe b) przewodniki

Bardziej szczegółowo

Model wiązania kowalencyjnego cząsteczka H 2

Model wiązania kowalencyjnego cząsteczka H 2 Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami

Bardziej szczegółowo

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu

Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu Kryształy, półprzewodniki, nanotechnologie. Dr inż. KAROL STRZAŁKOWSKI Instytut Fizyki UMK w Toruniu skaroll@fizyka.umk.pl Plan ogólny Kryształy, półprzewodniki, nanotechnologie, czyli czym będziemy się

Bardziej szczegółowo

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1

Układy nieliniowe. Stabilizator dioda Zenera. Dioda LED. Prostownik na diodach (Graetza) w.9, p.1 Układy nieliniowe Układy nieliniowe odgrywają istotną rolę w nowoczesnej elektronice, np.: generatory sygnałów, stabilizatory, odbiorniki i nadajniki w telekomunikacji, zasialcze impulsowe stałego napięcia

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

1. Struktura pasmowa from bonds to bands

1. Struktura pasmowa from bonds to bands . Strutura pasmowa from bonds to bands Wiązania owalencyjne w cząsteczach Pasma energetyczne w ciałach stałych Przerwa energetyczna w półprzewodniach Dziura w paśmie walencyjnym Przybliżenie prawie swobodnego

Bardziej szczegółowo

Pracownia Fizyczna i Elektroniczna Struktura układu doświadczalnego. Wojciech DOMINIK. Zjawisko przyrodnicze

Pracownia Fizyczna i Elektroniczna Struktura układu doświadczalnego. Wojciech DOMINIK. Zjawisko przyrodnicze Pracownia Fizyczna i Elektroniczna 0 http://pe.fuw.edu.pl/ Wojciech DOMNK Struktura układu doświadczalnego Zjawisko przyrodnicze detektor Urządzenie pomiarowe Urządzenie wykonawcze interfejs regulator

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

ZJAWISKA FOTOELEKTRYCZNE

ZJAWISKA FOTOELEKTRYCZNE ZJAWISKA FOTOELEKTRYCZNE ZEWNĘTRZNE, WEWNETRZNE I ICH RÓŻNE ZASTOSOWANIA ZJAWISKO FOTOELEKTRYCZNE ZEWNĘTRZNE Światło padając na powierzchnię materiału wybija z niej elektron 1 ZJAWISKO FOTOELEKTRYCZNE

Bardziej szczegółowo

POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY

POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY ĆWICZENIE 44 POMIAR ZALEŻNOŚCI OPORU METALI I PÓŁPRZEWODNIKÓW OD TEMPERATURY Cel ćwiczenia: Pomiar zależności oporu elektrycznego (rezystancji) metalu i półprzewodnika od temperatury oraz wyznaczenie temperaturowego

Bardziej szczegółowo

Fizyka 3.3. prof.dr hab. Ewa Popko p.231a

Fizyka 3.3. prof.dr hab. Ewa Popko   p.231a Fizyka 3.3 prof.dr hab. Ewa Popko www.if.pwr.wroc.pl/~popko ewa.popko@pwr.edu.pl p.231a Fizyka 3.3 Literatura 1.J.Hennel Podstawy elektroniki półprzewodnikowej WNT Warszawa 1995. 2.W.Marciniak Przyrządy

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Cia!a sta!e. W!asno"ci elektryczne cia! sta!ych. Inne w!asno"ci

Cia!a sta!e. W!asnoci elektryczne cia! sta!ych. Inne w!asnoci Cia!a sta!e Podstawowe w!asno"ci cia! sta!ych Struktura cia! sta!ych Przewodnictwo elektryczne teoria Drudego Poziomy energetyczne w krysztale: struktura pasmowa Metale: poziom Fermiego, potencja! kontaktowy

Bardziej szczegółowo