WYKŁAD 4 TRANSFORMACJE 2-D, 2 PROCEDURA WIZUALIZACJI 2-D2. Plan wykładu: 1. Transformacje 2-D2

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYKŁAD 4 TRANSFORMACJE 2-D, 2 PROCEDURA WIZUALIZACJI 2-D2. Plan wykładu: 1. Transformacje 2-D2"

Transkrypt

1 WYKŁAD TRANSFORMACJE -D, PROCEDURA WIZUALIZACJI -D Plan wkładu: Tranforaje eleentarne w przetrzeni -D Składanie tranforaji Ogólna proedura wizualizaji w -D Obinanie w oknie protokątn. Tranforaje -D Tranforaje eleentarne przeunięie, ziana kali, obrót wokół środka układu wpółrzędnh. Przeunięie ( tranlation : = + t = + t t = t = (, (, Ziana kali ( aling : =. =.5 Obrót wokół środka układu wpółrzędnh (rotation: φ =3 (, (, (, φ (, = = = oφ inφ = oφ + inφ

2 (, Inn poób zapiu tranforaji eleentarnh - wpółrzędne jednorodne ( hoogeneou oordinate rin(φ + α rinα ro(φ + α roα φ α (, = r o( α + φ = r oα oφ r inα inφ = r in( α + φ = r inα oφ r oα inφ = r oα, = r inα = oφ inφ = oφ + inφ Augut Ferdnand Möbiu ( 79 - wpółrzędne przed tranforają (, (,, wpółrzędne po tranforaji [ ] [ ] (, (,, (, (,, z Związek poiędz określoni wżej wektorai ożna zapiać w potai Przeunięie: Równanie [ ] = [ ] zatępuje równanie = + t = + t [ ] = [ ] 3 t t Tranforaję przeunięia opiuje wię aierz przeunięia Ziana kali: Równanie T( t zatępuje równanie,t = t = = [ ] = [ ] t

3 Tranforaję kalowania opiuje teraz aierz S(, = Obrót wokół środka układu wpółrzędnh: Równanie zatępuje równanie = oφ inφ = oφ + inφ [ ] = [ ] oφ inφ inφ oφ Obrót opiuje w konekwenji aierz Wnioek: oφ R( φ = inφ inφ oφ Po wprowadzeniu wpółrzędnh jednorodnh wztkie trz tranforaje eleentarne opiane zotał w ten a poób. Wpółrzędne punktu po wkonaniu tranforaji ożna wznazć nożą, wektor opiują wpółrzędne punktu przed tranforają, przez odpowiednią aierz. gdzie [ ] = [ ] M M = T, S lub R. Składanie tranforaji Przkładowe zadanie: Obróić obiekt wokół punktu (, o kąt φ, poniejzają go dwukrotnie. φ (, Pozukiwana tranforaja zotanie wznazona w kilku krokah. Krok Przeunięie obiektu tak, ab punktu (, znalazł ię w punkie (,. p = [ ] [ ] p = p = p T(, (, t = - t = - Opiać określoną wżej tranforaję prz poo wzoru. 3

4 Krok Przekalować obiekt z paraetrai kalowania = /, = /. = / = / Krok 3 Obróić obiekt wokół środka układu wpółrzędnh o kąt φ. φ p = p T(, S(, p = p T(, S(, R( φ Krok Przeunięie obiektu tak, ab punkt (, znalazł ię w punkie (,. (, p = p T(, S(, Tranforaja zotała znaleziona. Jej aierz oże zotać wlizona po ponożeniu ztereh aierz tranforaji eleentarnh. R( φ T(, Tranforaja ogólniejza M = T(, S(, Można pokazać, że M = R( φ T(, Oblizanie nowh wpółrzędnh punktu; dodawania ziennoprzeinkowe, nożenia ziennoprzeinkowe. 3 3 d d

5 Inne tranforaje (przkład: Nie wztkie tranforaje ogą bć wrażone jako złożenia trzeh, zdefiniowanh uprzednio tranforaji eleentarnh. Częto touje ię, dla przkładu: Odbiie ( refletion : Śinanie ( hear : SH = (, = (, (, = (, (, (, [ ] = [ ] [ ] = [ ] SH 3. Ogólna proedura wizualizaji -D Algort wizualizaji -D wa Okno oberwatora (Window va Okno urządzenia (Viewport. Zdefiniować obiekt w układzie wpółrzędnh oberwatora.. W układzie wpółrzędnh oberwatora określić okno oberwatora 3. W układzie wpółrzędnh urządzenia określić okno urządzenia. win vin. Zodfikować opi obiektu uuwają te eleent, które znajdują ię poza okne oberwatora (obinanie. win Układ wpółrzędnh oberwatora (World Coordinate wa vin Układ wpółrzędnh urzadzenia (Devie Coordinate va 5. Przetranforować opi obiektu z wnętrza okna oberwatora do wnętrza okna urządzenia, toują tranforaję p v = p w T( w in, w in S(, T( v in, v in prz z 5

6 = v a w a v in w in. Narować obraz obiektu na ekranie = v a w a v in w in Obinanie odinka - algort Cohena i Sutherlanda Założenie: W przetrzeni oberwatora dan jet zbiór odinków. Każd odinek opian jet przez punkt pozątkow i końow.. Obinanie (lipping wa P Okno oberwatora (Window Okno urządzenia (Viewport P win win wa Przkładow układ odinków w przetrzeni oberwatora Kodowanie obzarów w przetrzeni oberwatora: Okno oberwatora bit, bit3, bit, bit bit = - na lewo od okna oberwatora, bit = - na prawo od okna oberwatora, bit3 = - w dół od okna oberwatora, bit = - w górę od okna oberwatora. Krok Dla każdego punktu końowego odinka oblizć różnie wpółrzędnh punktu końowego i grani okna oberwatora. Krok α = α α = α = w in = w a 3 w in w a Zakodować wztkie punkt końowe odinków według reguł: jeżeli α i > to jeżeli α i to biti = to biti =

7 Krok 3 Sprawdzić kod par punktów końowh dla wztkih odinków. P Jeżeli:. kod P = kod P = - odinek leż ałkowiie wewnątrz okna oberwatora.. biti dla P = biti dla P = - odinek leż ałkowiie na zewnątrz okna oberwatora. wa win P pozotawić odinki leżąe wewnątrz okna, uunąć odinki leżąe na zewnątrz okna, jeśli wzerpano w ten poób wztkie odinki zakońzć algort, w przeiwn przpadku wkonać krok. Krok win wa Efekt działania algortu po wkonaniu kroku 3 Dla pozotałh odinków, którh punkt końowe leżą na lewo, lub na prawo od grani okna oblizć nowe wpółrzędne th punktów według wzorów: = win dla punktów leżąh na lewo od okna, = wa dla punktów leżąh na prawo okna, wa P gdzie = k + ( k win P, - nowe wpółrzędne punktu końowego, k, k - poprzednie wpółrzędne punktu. Zakodować nowe punkt końowe według reguł opianej w kroku. Powtórzć krok 3. win wa Efekt po wkonaniu pierwzego przebiegu kroku 3 Dla pozotałh odinków, którh punkt końowe leżą pod, lub ponad graniai okna oblizć nowe wpółrzędne th punktów według wzorów: = win dla punktów leżąh poniżej okna, = wa dla punktów leżąh powżej okna, 7

8 gdzie = k + ( k /, - nowe wpółrzędne punktu końowego, k, k - poprzednie wpółrzędne punktu. Zakodować nowe punkt końowe według reguł opianej w kroku. Powtórzć krok 3. P wa P win win wa Końow efekt działania algortu obinania

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2 WYKŁAD TRANSFORMACJE -D PROCEDURA WIZUALIZACJI -D Plan wkładu: Transforaje eleentarne w przestrzeni -D Składanie transforaji Ogólna proedura wizualizaji w -D Obinanie w oknie prostokątn tn 1. Transforaje

Bardziej szczegółowo

Blok 2: Zależność funkcyjna wielkości fizycznych

Blok 2: Zależność funkcyjna wielkości fizycznych Blok : Zależność funkcjna wielkości fizcznch I. Odcztwanie informacji z wkreu co tak naprawdę na nim ię znajduje. Chcąc odcztać informacje z wkreu funkcji, muim dokładnie wiedzieć, jaka wielkość fizczna

Bardziej szczegółowo

= oraz = ; Przykładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI. Transmitancja operatorowa

= oraz = ; Przykładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI. Transmitancja operatorowa Przkładowe zadania EGZAMINACYJNE z przedmiotu PODSTAWY AUTOMATYKI Tranmitancja operatorowa. Dla przedtawionego układu a) Podać równanie różniczkujące opiujące układ Y ( b) Wznacz tranmitancję operatorową

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ

OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ WYZNACZANIE PRZEMIESZCZEŃ - kratownica obciążenie iłami 070 OBLICZENIE PRZEMIESZCZEŃ W KRATOWNICY PŁASKIEJ DANE WYJŚCIOWE DO OBLICZEŃ Dana jet kratownica jak na runku Zaprojektować wtępnie przekroje prętów

Bardziej szczegółowo

Obcinanie prymitywów. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH

Obcinanie prymitywów. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Obcinanie prymitywów Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Obcinanie odcinków Z reguły odcinki linii prostej muszą być obcinane przez prostokąty np. okna Wielokąty

Bardziej szczegółowo

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne

Bardziej szczegółowo

1. Podstawowe informacje

1. Podstawowe informacje Komunikacja w protokole MPI za pomocą funkcji X_SEND/X_RCV pomiędzy terownikami S7-300 PoniŜzy dokument zawiera opi konfiguracji programu STEP7 dla terowników SIMATIC S7 300/S7 400, w celu tworzenia komunikacji

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian 3. (poziom podtawowy) Rozwiązania zadań Zadanie 1. (1 pkt) III.1.5. Uczeń oblicza wartości niekomplikowanych wyrażeń arytmetycznych zawierających ułamki zwykłe i

Bardziej szczegółowo

Układy inercjalne i nieinercjalne w zadaniach

Układy inercjalne i nieinercjalne w zadaniach FOTON 98 Jeień 007 53 Układy inercjalne i nieinercjalne w zadaniach Jadwia Salach Zadanie 1 Urzędnik pracujący w biurowcu wiadł do windy która ruzył dół i przez 1 ekundę jechała z przypiezenie o wartości

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

WYKŁAD Parcie na ściankę zakrzywioną

WYKŁAD Parcie na ściankę zakrzywioną WYKŁD.3. Parcie na ściankę zakrzwioną Parcie ciecz na dowolną zakrzwiona powierzchnie jest geoetrczna sua par eleentarnch. Obliczenie tego parcia polega na wznaczeniu jego składowch, jako rzutów na osie

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a Działania na zbiorach i ich własności Informatyka Stosowana 1. W dowolnym zbiorze X określamy działanie : a b = b. Pokazać, że jest to działanie łączne. 2. W zbiorze Z określamy działanie : a b = a 2 +

Bardziej szczegółowo

1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający

1 Wstęp teoretyczny. Temat: Obcinanie odcinków do prostokąta. Grafika komputerowa 2D. Instrukcja laboratoryjna Prostokąt obcinający Instrukcja laboratoryjna 3 Grafika komputerowa 2D Temat: Obcinanie odcinków do prostokąta Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

Realizacja funkcji przełączających z wykorzystaniem programu LabView

Realizacja funkcji przełączających z wykorzystaniem programu LabView Laboratorium Podstaw Automatki. Cele ćwizenia Laboratorium nr 6 Realizaja funkji przełązająh z wkorzstaniem programu LabView zapoznanie się z metodą minimalizaji funkji przełązająh metodą tabli Karnaugh

Bardziej szczegółowo

Podstawy opisu dynamiki punktu materialnego

Podstawy opisu dynamiki punktu materialnego Podstaw opisu dnaiki punktu aterialnego Ruch ałego obiektu, któr oże przbliżać koncepcjnie jako punkt obdarzon asą (tzw. punkt aterialn) będzie opiswać podając wektor położenia tego punktu jako funkcję

Bardziej szczegółowo

ELEMENTY TEORII ZBIORÓW ROZMYTYCH

ELEMENTY TEORII ZBIORÓW ROZMYTYCH ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja

Bardziej szczegółowo

Imperfekcje globalne i lokalne

Imperfekcje globalne i lokalne Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.

Bardziej szczegółowo

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym

Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym . Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego

Bardziej szczegółowo

Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał

Blok 4: Dynamika ruchu postępowego. Równia, wielokrążki, układy ciał Blok 4: Dynaika ruchu potępowego Równia, wielokrążki, układy ciał I Dynaiczne równania ruchu potępowego Chcąc rozwiązać zagadnienie ruchu jakiegoś ciała lub układu ciał bardzo częto zaczynay od dynaicznych

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją

Charakterystyka statyczna diody półprzewodnikowej w przybliŝeniu pierwszego stopnia jest opisywana funkcją 1 CEL ĆWCZEN Celem ćwiczenia jet zapoznanie ię z: przebiegami tatycznych charakterytyk prądowo-napięciowych diod półprzewodnikowych protowniczych, przełączających i elektroluminecencyjnych, metodami pomiaru

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszeo roku kierunku zamawianeo Biotecnoloia w ramac projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera pewna lokata

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY

MATEMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 06/07 FORMUŁA OD 05 ( NOWA MATURA ) MATEMATYKA POZIOM ROZSZERZONY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 07 Kluz punktowania zadań zamkniętyh Numer zadania

Bardziej szczegółowo

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska

Podstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

PODSTAWY AUTOMATYKI 4. Schematy blokowe

PODSTAWY AUTOMATYKI 4. Schematy blokowe Politechnika Warzawka Inttt Atomatki i Robotki Prof. dr hab. inż. Jan Maciej Kościeln PODSTAWY AUTOMATYKI. Schemat blokowe Schemat blokow Schemat blokowe trktralne: przedtawiają wzajemne powiązania pomiędz

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania

Bardziej szczegółowo

Grafika komputerowa Cieniowanie i usuwanie niewidocznych powierzchni

Grafika komputerowa Cieniowanie i usuwanie niewidocznych powierzchni Grafika komputerowa Cieniowanie i uuwanie niewidocznch powierzchni. Cieniowanie W grafice komputerowej łowo cieniowanie odnoi ię do zatoowania modeu oświetenia oraz odbić da powierzchni obiektu. Ponieważ

Bardziej szczegółowo

Rozdział III IZOTERMICZNE OSUSZANIE ZAWILGOCONYCH ZABYTKÓW. 1. Wstęp

Rozdział III IZOTERMICZNE OSUSZANIE ZAWILGOCONYCH ZABYTKÓW. 1. Wstęp 3 Rozdział III IZOTERMICZNE OSUSZANIE ZAWILGOCONYCH ZABYTKÓW 1. Wtęp Ouzanie mono zawilgoonyh zabytków nizym ię w itoie nie różni od ouzania budynków po powodzi. Metody potępowania ą podobne, a różnia

Bardziej szczegółowo

Pierwiastki kwadratowe z liczby zespolonej

Pierwiastki kwadratowe z liczby zespolonej Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

gdzie (4.20) (4.21) 4.3. Rzut równoległy

gdzie (4.20) (4.21) 4.3. Rzut równoległy 4.3. Rzut równoległy 75 gdzie (4.20) Punkt zbiegu, określony wzorami (4.19) (4.20), leży na prostej przechodzącej przez środek rzutowania i równoległej do wektora u. Zauważmy, że gdy wektor u jest równoległy

Bardziej szczegółowo

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji:

Zad.1 Zad. Wyznaczyć rozkład sił wewnętrznych N, T, M, korzystając z komputerowej wersji metody przemieszczeń. schemat konstrukcji: Zad. Wznaczć rozkład sił wewnętrznch N, T, M, korzstając z komputerowej wersji metod przemieszczeń. schemat konstrukcji: ϕ 4, kn 4, 4, macierz transformacji (pręt nr): α = - ϕ = -, () 5 () () E=5GPa; I

Bardziej szczegółowo

Kodowanie pomiarów w oprogramowaniu Trimble Access

Kodowanie pomiarów w oprogramowaniu Trimble Access Kodowanie pomiarów w oprogramowaniu Trimble Access Geotronics Polska TIPS & TRICKS Nr 2/2012 (2) W ćwiczeniu tym pokażemy jak wykorzystać tachimetr Trimble serii S w połączeniu z kontrolerem TSC2/TSC3/TCU/Tablet

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 3. Budowa modeli obiektów 3-D

Zadania domowe. Ćwiczenie 3. Budowa modeli obiektów 3-D Zadania doowe Ćwiczenie 3 udowa odeli obiektów 3-D Zadanie 3.1 Model terenu na bazie fraktala plazowego Założenia: Należy wykorzystać opracowany w poprzedni ćwiczeniu algoryt i progra do generacji fraktala

Bardziej szczegółowo

Ćwiczenie: "Kinematyka"

Ćwiczenie: Kinematyka Ćwiczenie: "Kinematyka" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1. Ruch punktu

Bardziej szczegółowo

REGULACJA KASKADOWA. - - R1(s) + R2(s) 1. Cel ćwiczenia

REGULACJA KASKADOWA. - - R1(s) + R2(s) 1. Cel ćwiczenia REGULACJA KASKADOWA. Cel ćwiczenia Zapoznanie ię z zaadą działania i właściwościami kład Zaprojektowanie kład reglacji kakadowej Przeprowadzenie mlacji prac kład w środowik MATLAB 2. Przebieg ćwiczenia

Bardziej szczegółowo

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie

interaktywny pakiet przeznaczony do modelowania, symulacji, analizy dynamicznych układów ciągłych, dyskretnych, dyskretno-ciągłych w czasie Simulink Wprowadzenie: http://me-www.colorado.edu/matlab/imulink/imulink.htm interaktywny pakiet przeznaczony do modelowania, ymulacji, analizy dynamicznych układów ciągłych, dykretnych, dykretno-ciągłych

Bardziej szczegółowo

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe

Rozwiązanie równań stanu dla układów liniowych - pola wektorowe Rozwiązanie równań stanu dla układów liniowch - pola wektorowe Przgotowanie: Dariusz Pazderski Wprowadzenie Rozważm liniowe równanie stanu układu niesingularnego stacjonarnego o m wejściach: ẋ = A+ Bu,

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Pong to dwuwymiarowy symulator tenisa sportowego. Gracz, poruszając prostokątem symulującym paletkę, stara się zdobyć punkt poprzez posłanie piłki

Pong to dwuwymiarowy symulator tenisa sportowego. Gracz, poruszając prostokątem symulującym paletkę, stara się zdobyć punkt poprzez posłanie piłki GRA 3: PONG Pong to dwuwymiarowy symulator tenisa sportowego. Gracz, poruszając prostokątem symulującym paletkę, stara się zdobyć punkt poprzez posłanie piłki obok prostokąta drugiego gracza. Była to jedna

Bardziej szczegółowo

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez

Liczby zespolone. Niech C = R 2. Zdefiniujmy dwa działania w C. Dodawanie + : C 2 C zdefiniowane jest przez Liczb zespolone Ciało liczb zespolonch Niech C = R. Zdefiniujm dwa działania w C. Dodawanie + : C C zdefiniowane jest przez (, ) + (, ) = ( +, + ). Ćwiczenie. Obliczm (, ) + (, 0) =.................................................

Bardziej szczegółowo

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco

Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x

Bardziej szczegółowo

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA.

Ćwiczenie 39 KLOCEK I WALEC NA RÓWNI POCHYŁEJ - STATYKA. Ćwiczenie 39 KLOCEK WALEC A ÓW POCHYŁEJ - SAYKA. 39... Wiadoości ogólne Zjawiko tarcia jet jedny z najbardziej rozpowzechnionych w nazej codziennej rzeczywitości. W świecie w jaki żyjey tarcie jet dołownie

Bardziej szczegółowo

GRK 2. dr Wojciech Palubicki

GRK 2. dr Wojciech Palubicki GRK dr Wojciech Palubicki Macierz wektor produkt jako Transformacja T: R n R m T Ԧx = A Ԧx Przemieszczanie wierzchołków - Transformacje Skalowanie Rotacja Translacja -y -y Macierz rotacji M wobec punktu

Bardziej szczegółowo

Badanie układów RL i RC Cel ćwiczenia II. Przyrządy III. Literatura IV. Wprowadzenie ~ Rys.1 ~ Rys.2

Badanie układów RL i RC Cel ćwiczenia II. Przyrządy III. Literatura IV. Wprowadzenie ~ Rys.1 ~ Rys.2 Ćwiczenie E- Badanie układów L i C I. Cel ćwiczenia wznaczenie parametrów układów L i C tj. oporu omowego, pojemności C, indukcjności L a także zależności impedancji i różnic faz ϕ od czętości kątowej

Bardziej szczegółowo

f x f y f, jest 4, mianowicie f = f xx f xy f yx

f x f y f, jest 4, mianowicie f = f xx f xy f yx Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Maskowanie i selekcja

Maskowanie i selekcja Maskowanie i selekcja Maska prostokątna Grafika bitmapowa - Corel PHOTO-PAINT Pozwala definiować prostokątne obszary edytowalne. Kiedy chcemy wykonać operacje nie na całym obrazku, lecz na jego części,

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r.

V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 14 maja 2005 r. V JURAJSKI TURNIEJ MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM FINAŁ 4 maja 005 r. Przecztaj uważnie poniższą instrukcję: Test składa się z dwóch części. Pierwsza część zawiera 0 zadań wielokrotnego wboru. Tlko

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,

Bardziej szczegółowo

x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A

x 1 x 2 x 3 x n w 1 w 2 Σ w 3 w n x 1 x 2 x 1 XOR x (x A, y A ) y A x A Sieci neuronowe model konekcjonistczn Plan wkładu Perceptron - przpomnienie Uczenie nienadzorowane Sieci Hopfielda Perceptron w 3 Σ w n A Liniowo separowaln problem klasfikacji ( A, A ) Problem XOR 0 0

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

CorelDraw - podstawowe operacje na obiektach graficznych

CorelDraw - podstawowe operacje na obiektach graficznych CorelDraw - podstawowe operacje na obiektach graficznych Przesuwanie obiektu Wymaż obszar roboczy programu CorelDraw (klawisze Ctrl+A i Delete). U góry kartki narysuj dowolnego bazgrołka po czym naciśnij

Bardziej szczegółowo

motocykl poruszał się ruchem

motocykl poruszał się ruchem Tet powtórzeniowy nr 1 W zadaniach 1 19 wtaw krzyżyk w kwadracik obok wybranej odpowiedzi Inforacja do zadań 1 5 Wykre przedtawia zależność prędkości otocykla od czau Grupa B 1 Dokończ zdanie, określając,

Bardziej szczegółowo

Programowanie obiektowe i zdarzeniowe

Programowanie obiektowe i zdarzeniowe Programowanie obiektowe i zdarzeniowe wkład 2 klas i obiekt namespace ConsoleApplication1 // współrzędne punktu int, ; Jak zdefiniować w programie punkt? = 3; = 2; Może tak? // wpisanie informacji Console.WriteLine("

Bardziej szczegółowo

1 Przekształcenie Laplace a

1 Przekształcenie Laplace a Przekztałcenie Laplace a. Definicja i podtawowe właności przekztałcenia Laplace a Definicja Niech dana będzie funkcja f określona na przedziale [,. Przekztałcenie (tranformatę Laplace a funkcji f definiujemy

Bardziej szczegółowo

Dodatek A. Spis instrukcji języka Prophio.

Dodatek A. Spis instrukcji języka Prophio. Dodatek A. Spis instrukcji języka Prophio. Wszystkie bloczki poza bloczkami z palety robot dotyczą obiektów na scenie, bądź samej sceny. Jedynie bloczki palety robot dotyczą rzeczywistego robota, połączonego

Bardziej szczegółowo

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru.

Pole magnetyczne ma tę własność, że jego dywergencja jest wszędzie równa zeru. Dywergenja i rotaja pola magnetyznego Linie wektora B nie mają pozątku, ani końa. tąd wynika twierdzenie Gaussa dla wektora B : Φ = B d = B trumień wektora indukji magnetyznej przez dowolną powierzhnię

Bardziej szczegółowo

TEMAT: KOMPUTEROWY MODEL MECHANIZMU PASKIEGO

TEMAT: KOMPUTEROWY MODEL MECHANIZMU PASKIEGO INSTYTUT KONSTRUKCJI MASZYN PROJEKT Z TEORII MECHANIZMÓW I MASZYN TEMAT: KOMPUTEROWY MODEL MECHANIZMU PASKIEGO ZAKAD TEORII MECHANIZMÓW I MANIPULATORÓW JAN NOWAK ROK AKAD. 00/01 NR ZESTAWU DANYCH: 6 IMI

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA Na prawach rękopiu do użytku łużbowego INSTYTUT ENEROELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport erii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA ĆWICZENIE Nr SPOSOBY

Bardziej szczegółowo

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH

MATEMATYCZNY OPIS NIEGŁADKICH CHARAKTERYSTYK KONSTYTUTYWNYCH CIAŁ ODKSZTAŁCALNYCH XLIII Sympozjon Modelowanie w mechanice 004 Wieław GRZESIKIEWICZ, Intytut Pojazdów, Politechnika Warzawka Artur ZBICIAK, Intytut Mechaniki Kontrukcji Inżynierkich, Politechnika Warzawka MATEMATYCZNY OPIS

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

LXIV Olimpiada Matematyczna

LXIV Olimpiada Matematyczna LXIV Olimpiada Matematyzna Rozwiązania zadań konkursowyh zawodów stopnia drugiego 22 lutego 203 r. (pierwszy dzień zawodów) Zadanie. Dane są lizby ałkowite b i oraz trójmian f(x) = x 2 +bx+. Udowodnić,

Bardziej szczegółowo

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1.

ORIGIN 1. E 10GPa - moduł Younga drewna. 700 kg m 3. g - ciężar właściwy drewna g m s 2. 6cm b2 6cm b3 5cm 12cm h2 10cm h3 8cm. b1 h1. Statyka kratownicy drewnianej o różnych przekrojach prętów, obciążonej siłai, wilgocią i ciężare własny ORIGIN - ustawienie sposobu nueracji wierszy i kolun acierzy E GPa - oduł Younga drewna αw. ρ - współczynnik

Bardziej szczegółowo

6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g

6 = λ Częstotliwość odbierana przez nieruchomą głowicę, gdy źródło o prędkości v s emituje falę o częstotliwości f k : + = g g Projet Fizya wobec wyzwań XXI w. wpółinanowany przez Unię Europeją ze środów Europejieo Funduzu Społeczneo w raach Prorau Operacyjneo Kapitał Ludzi Zadania z olowiu 16.11.2009 (Fizya Medyczna i Neuroinoratya)

Bardziej szczegółowo

Funkcje i instrukcje języka JavaScript

Funkcje i instrukcje języka JavaScript Funkcje i instrukcje języka JavaScript 1. Cele lekcji a) Wiadomości Uczeń : zna operatory i typy danych języka JavaScript, zna konstrukcję definicji funkcji, zna pętlę If i For, Do i While oraz podaje

Bardziej szczegółowo

SKRYPT STRONY LITERATURA STRONY: 48, 63

SKRYPT STRONY LITERATURA STRONY: 48, 63 LABORATORIUM TEORIA STEROWANIA I TECHNIKA REGULACJI OPIS UKŁADÓW AUTOMATYCZNEJ REGULACJI W PRZESTRZENI STANU Wydział EAIiIB Katedra Energoelektroniki i Automatyki Sytemów Przetwarzania Energii dr inż.

Bardziej szczegółowo

Realizacja funkcji przełączających

Realizacja funkcji przełączających Realizacja funkcji przełączającch. Wprowadzenie teoretczne.. Podstawowe funkcje logiczne Funkcja logiczna NOT AND OR Zapis = x x = = x NAND NOR.2. Metoda minimalizacji funkcji metodą tablic Karnaugha Metoda

Bardziej szczegółowo

1. Pobieranie i instalacja FotoSendera

1. Pobieranie i instalacja FotoSendera Jak zamówić zdjęcia przez FotoSender? Spis treści: 1. Pobieranie i instalacja FotoSendera 2. Logowanie 3. Opis okna programu 4. Tworzenie i wysyłanie zlecenia Krok 1: Wybór zdjęć Krok 2: Podsumowanie zlecenia

Bardziej szczegółowo

Użycie przestrzeni papieru i odnośników - ćwiczenie

Użycie przestrzeni papieru i odnośników - ćwiczenie Użycie przestrzeni papieru i odnośników - ćwiczenie Informacje ogólne Korzystanie z ćwiczeń Podczas rysowania w AutoCADzie, praca ta zwykle odbywa się w przestrzeni modelu. Przed wydrukowaniem rysunku,

Bardziej szczegółowo

Egzamin z fizyki Informatyka Stosowana

Egzamin z fizyki Informatyka Stosowana Egzamin z fizyki Informatyka Stosowana 1) Dwie kulki odległe od siebie o d=8m wystrzelono w tym samym momencie czasu z prędkościami v 1 =4m/s i v 2 =8m/s, jak pokazano na rysunku. v 1 8 m v 2 α a) kulka

Bardziej szczegółowo

Dodawanie grafiki i obiektów

Dodawanie grafiki i obiektów Dodawanie grafiki i obiektów Word nie jest edytorem obiektów graficznych, ale oferuje kilka opcji, dzięki którym można dokonywać niewielkich zmian w rysunku. W Wordzie możesz zmieniać rozmiar obiektu graficznego,

Bardziej szczegółowo

Wentylacja Podwieszenia ka n ałów wentylacyj nych blaszanych. cięgna 400 mm: 3.l. Główne

Wentylacja Podwieszenia ka n ałów wentylacyj nych blaszanych. cięgna 400 mm: 3.l. Główne UKD 6979225 INSTALACJE PRZEMY SŁOWE N O R M A B R A N Ż O WA BN-6? Wentlacja 8865-26 Podwieszenia ka n ałów wentlacj nch blaszanch Grupa katalogowa 0724 l. WSTĘP Przedmiotem norm są podwieszenia kanałów

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

Laboratorium Systemów SCADA

Laboratorium Systemów SCADA Laboratorium Systemów SCADA Ćwiczenie 3. Zmienne i połączenia animacyjne w programie InTouch Opracował: dr hab. inż. Sebastian Dudzik 1. Cel ćwiczenia Zapoznanie się ze sposobami tworzenia zmiennych w

Bardziej szczegółowo

Pod staw a y y a ut u om o a m tyki Wykład 2

Pod staw a y y a ut u om o a m tyki Wykład 2 Podtaw autoatki Wkład 2 Obiekt regulacji Układ regulacji Obiekt w układzie regulacji z w e u obiekt regulacji urządzenie _ regulator wkonawcze obiekt regulacji eleent poiarow Obiekt regulacji Obiekte regulacji

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Plan wyk y ł k adu Mózg ludzki a komputer Komputer Mózg Jednostki obliczeniowe Jednostki pami Czas operacji Czas transmisji Liczba aktywacji/s

Plan wyk y ł k adu Mózg ludzki a komputer Komputer Mózg Jednostki obliczeniowe Jednostki pami Czas operacji Czas transmisji Liczba aktywacji/s Sieci neuronowe model konekcjonistczn Plan wkładu Mózg ludzki a komputer Modele konekcjonistcze Sieć neuronowa Sieci Hopfielda Mózg ludzki a komputer Twój mózg to komórek, 3 2 kilometrów przewodów i (biliard)

Bardziej szczegółowo

Strzelanka dla dwóch graczy

Strzelanka dla dwóch graczy Strzelanka dla dwóch graczy Zadanie 5: Strzelanie Dodanie zmiennej globalnej W naszej grze pojawia się problem. Skąd pocisk ma wiedzieć, w którą stronę lecieć? Pocisk nie może sprawdzić kąta nachylenia

Bardziej szczegółowo

Algebra abstrakcyjna

Algebra abstrakcyjna Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą

Bardziej szczegółowo

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych

Politechnika Śląska w Gliwicach Instytut Maszyn i Urządzeń Energetycznych Zakład Podstaw Konstrukcji i Eksploatacji Maszyn Energetycznych Politechnika Śląka w Gliwicach Intytut Mazyn i Urządzeń Energetycznych Zakład Podtaw Kontrukcji i Ekploatacji Mazyn Energetycznych Ćwiczenie laboratoryjne z wytrzymałości materiałów Temat ćwiczenia: Wyboczenie

Bardziej szczegółowo

Zadanie 3. (7 pkt.) Rozłożona kostka

Zadanie 3. (7 pkt.) Rozłożona kostka Zadanie 1. (7 pkt.) Mniej zy więej? Z sześioma kartami (trzema dodatnimi i trzema ujemnymi) szansa Pawła na wygraną Pawła 12/30, a Piotra 18/30. Z pięioma kartami (trzema dodatnimi i dwiema ujemnymi) szansa

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję: YZNACZNIKI Do opisu pewnh oiektów nie wstrz użć liz. ie n przkłd, że do opisni sił nleż użć wektor. Sił to przeież nie tlko wielkość le i jej punkt przłożeni, zwrot orz kierunek dziłni. Zte jedną lizą

Bardziej szczegółowo