Dane. Klasa f d R e R m St3S [MPa] [MPa] [MPa] Materiał
|
|
- Aneta Krzemińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Dane Słup IPE300 h c b fc t fc t wc R c [mm] [mm] 10.70[mm] 7.10[mm] 15.00[mm] A c J y0c J z0c y 0c z 0c 53.81[cm 2 ] [cm 4 ] [cm 4 ] 75.00[mm] [mm] St3S [MPa] [MPa] [MPa] Belka I_532x130x16x6 h b b fb t fb t wb R b [mm] [mm] 16.00[mm] 6.00[mm] 0.00[mm] A b J y0b J z0b y 0b z 0b 71.60[cm 2 ] [cm 4 ] [cm 4 ] 65.00[mm] [mm] St3S [MPa] [MPa] [MPa] Blacha czołowa l p h p t p [mm] [mm] 24.00[mm] St4V [MPa] [MPa] [MPa] Śruby łączące blachę i półkę słupa Klasa śruby Klasa 10.9
2 Granica plastyczności R e = [MPa] Wytrzymałość na rozciąganie R m = [MPa] Średnica śruby d = [mm] Średnica otworu dla śruby d 0 = [mm] Pole powierzchni śruby A = 3.14 [cm 2 ] Pole powierzchni czynnej śruby A s = 2.45 [cm 2 ] Liczba wierszy w = 4 Liczba śrub w wierszach m 1 =2, m 2 =2, m 3 =2, m 4 =2 Rozstawy pionowe wierszy a`1=100.00[mm], a`2=60.00[mm], a`3=356.00[mm] Spoiny Grubość spoin pachwinowych łączących półki belki i blachę Grubość spoin pachwinowych łączących środnik belki i blachę a f = [mm] a w = 5.00 [mm] Siły Obciążenie obliczeniowe Siła podłużna N d = 0.00 [kn] Siła poprzeczna V d = [kn] Moment zginający M d = [knm] Obciążenie charakterystyczne Siła podłużna N k = 0.00 [kn] Siła poprzeczna V k = [kn] Moment zginający M k = [knm] Rezultaty Śruby łączące blachę i półkę słupa Nośność śrub Rozciąganie śruby Nośność obliczeniowa w stanie granicznym zerwania trzpienia S Rt = min[0.65*r m *A s ; 0.85*R e *A s ] = min[0.65* [mpa]*2.45[cm 2 ]; 0.85*940.00[MPa]*2.45[cm 2 ]] = [kN] Nośność ze względu na rozwarcie styku S Rr = 0.85*S Rt = 0.85*165.62[kN] = [kN] Scinanie trzpienia śruby Pole ścinanej części śruby A v = 0.25*π*d 2 = 0.25*3.142*(20.00[mm]) 2 = 3.14[cm 2 ] Nośność na ścinanie trzpienia S Rv = 0.45*m*R m *A v = 0.45*1* [MPa]*3.14[cm 2 ] = [kN]
3 Docisk śruby Docisk śruby do półki słupa a 21 = 40.00[mm] a 1min = min[ a 21 ] = 40.00[mm] Współczynnik zależny od rozstawu śrub α = min[a 1min /d; (min[a, a 3 ]/d)-0.75; 2.5] = min[40.00[mm]/20.00[mm]; (min[0.00[mm], 70.00[mm]]/20.00[mm])-0.75; 2.5] = α > > Nośność obliczeniowa w stanie granicznym uplastycznienia ścianki otworu S Rb = α *f d *d*σt i = 2.000*215.00[MPa]*20.00[mm]*10.70[mm] = 92.02[kN] Docisk śruby do blachy a 11 = 30.00[mm] a 12 = 98.00[mm] a 21 = 30.00[mm] a 1min = min[ a 11 ; a 12 ; a 21 ] = 30.00[mm] Współczynnik zależny od rozstawu śrub α = min[a 1min /d; (min[a, a 3 ]/d)-0.75; 2.5] = min[30.00[mm]/20.00[mm]; (min[0.00[mm], 70.00[mm]]/20.00[mm])-0.75; 2.5] = α > > Nośność obliczeniowa w stanie granicznym uplastycznienia ścianki otworu S Rb = α *f d *d*σt i = 1.500*225.00[MPa]*20.00[mm]*24.00[mm] = [kN] Parametry blachy czołowej Odległość między brzegiem otworu a spoiną lub początkiem zaokrąglenia c = 20.00[mm] Szerokość współdziałania blachy przypadająca na jedną śrubę b s = 0.5*l p = 0.5*130.00[mm] = 65.00[mm] t min1 = 1.2 * [ (c*s Rt )/(b s *f d ) ] = 1.2 * [ (20.00[mm]*165.62[kN])/(65.00[mm]*225.00[MPa]) ] = 18.06[mm] t min2 = d * 3 [R m /1000] = 20.00[mm] * 3 [ [MPa]/1000] = 20.26[mm] Minimalna grubość blachy czołowej t min = max(t min1, t min2 ) = max(18.06[mm]; 20.26[mm]) = 20.26[mm] t p t min t p = 24.00[mm] t min = 20.26[mm]
4 Współczynnik efektu dzwigni β = 2.67-t p /t min = [mm]/20.26[mm] = Nośność na zginanie Stan graniczny nośności Siły w śrubach Rzeczywisty moment zginający M 0 = M d = [kNm] Odległość między osiami półek belki h 0 = (h b -t fb )/cos(α) = (532.00[mm]-16.00[mm])/cos(0.00[Deg]) = [mm] Minimalne ramię działania sił w śrubach z min = 0.6*h 0 = 0.6*516.00[mm] = [mm] Nr z i z i > z min 1 z 1 = [mm] 2 z 2 = [mm] 3 z 3 = [mm] 4 z 4 = 50.00[mm] Nr m i ω ti Wiersz 1 m 1 = 2 ω t1 = zewnętrzny 2 m 2 = 2 ω t2 = wewnętrzny 3 m 3 = 2 ω t3 = środkowy 4 m 4 = 2 - wewnętrzny Nośność ze względu na zerwanie śrub M Rjd = S Rt *Σ(m i *ω ti *z i ) = S Rt * (m 1 *ω t1 *z 1 + m 2 *ω t2 *z 2 + m 3 *ω t3 *z 3 ) = [kN] * ( 2*0.800*566.00[mm] + 2*1.000*466.00[mm] + 2*0.800*406.00[mm] ) = [kNm] M 0 M Rjd [kNm] < [kNm] Stan graniczny użytkowalności Siły w śrubach Rzeczywisty moment zginający M 0 = M k = [kNm] Nr z i z ired z i > z min z 1 = [mm] z 2 = [mm] z 3 = [mm] z 1red = z 1 -h b /6 = [mm] [mm]/6 = [mm] z 2red = z 2 -h b /6 = [mm] [mm]/6 = [mm] z 3red = z 3 -h b /6 = [mm] [mm]/6 = [mm] 4 z 4 = 50.00[mm] z 4red = z 4 -h b /6 = 50.00[mm] [mm]/6 = [mm]
5 Nr m i ω ri Wiersz 1 m 1 = 2 ω r1 = zewnętrzny 2 m 2 = 2 ω r2 = wewnętrzny 3 m 3 = 2 ω r3 = środkowy 4 m 4 = 2 - wewnętrzny Nośność ze względu na rozwarcie styku M Rjk = S Rr *[ m 1 *ω r1 *z 1red + Σ( m i *ω ri *z ired 2 /z 2red ) ] = S Rr * [ m 1 *ω r1 *z 1red + m 2 *ω r2 *z 2red 2 /z 2red + m 3 *ω r3 *z 3red 2 /z 2red ] = [kN] * [ 2*0.700*477.33[mm] + 2*1.000*(377.33[mm]) 2 /377.33[mm] + 2*0.800*(317.33[mm]) 2 /377.33[mm] ] = [kNm] M 0 M Rjk [kNm] < [kNm] Połączenie z żeberkiem usztywniającym Dane Słup IPE300 h c b fc t fc t wc R c [mm] [mm] 10.70[mm] 7.10[mm] 15.00[mm] A c J y0c J z0c y 0c z 0c 53.81[cm 2 ] [cm 4 ] [cm 4 ] 75.00[mm] [mm] St3S [MPa] [MPa] [MPa]
6 Belka I_532x130x16x6 h b b fb t fb t wb R b [mm] [mm] 16.00[mm] 6.00[mm] 0.00[mm] A b J y0b J z0b y 0b z 0b 71.60[cm 2 ] [cm 4 ] [cm 4 ] 65.00[mm] [mm] St3S [MPa] [MPa] [MPa] Blacha czołowa l p h p t p [mm] [mm] 24.00[mm] St4V [MPa] [MPa] [MPa] Śruby łączące blachę i półkę słupa Klasa śruby Klasa 10.9 Granica plastyczności R e = [MPa] Wytrzymałość na rozciąganie R m = [MPa] Średnica śruby d = [mm] Średnica otworu dla śruby d 0 = [mm] Pole powierzchni śruby A = 3.14 [cm 2 ] Pole powierzchni czynnej śruby A s = 2.45 [cm 2 ] Liczba wierszy w = 4 Liczba śrub w wierszach m 1 =2, m 2 =2, m 3 =2, m 4 =2 Rozstawy pionowe wierszy a`1=100.00[mm], a`2=60.00[mm], a`3=356.00[mm] Spoiny Grubość spoin pachwinowych łączących półki belki i blachę Grubość spoin pachwinowych łączących środnik belki i blachę Grubość spoin pachwinowych łączących żebro górne i blachę a f = [mm] a w = 5.00 [mm] a su = 5.00 [mm] Siły Obciążenie obliczeniowe Siła podłużna N d = 0.00 [kn] Siła poprzeczna V d = [kn] Moment zginający M d = [knm] Obciążenie charakterystyczne Siła podłużna N k = 0.00 [kn] Siła poprzeczna V k = [kn] Moment zginający M k = [knm] Rezultaty
7 Śruby łączące blachę i półkę słupa Nośność śrub Rozciąganie śruby Nośność obliczeniowa w stanie granicznym zerwania trzpienia S Rt = min[0.65*r m *A s ; 0.85*R e *A s ] = min[0.65* [mpa]*2.45[cm 2 ]; 0.85*940.00[MPa]*2.45[cm 2 ]] = [kN] Nośność ze względu na rozwarcie styku S Rr = 0.85*S Rt = 0.85*165.62[kN] = [kN] Scinanie trzpienia śruby Pole ścinanej części śruby A v = 0.25*π*d 2 = 0.25*3.14*(20.00[mm]) 2 = 3.14[cm 2 ] Nośność na ścinanie trzpienia S Rv = 0.45*m*R m *A v = 0.45*1* [MPa]*3.14[cm 2 ] = [kN] Docisk śruby Docisk śruby do półki słupa a 21 = 40.00[mm] a 1min = min[ a 21 ] = 40.00[mm] Współczynnik zależny od rozstawu śrub α = min[a 1min /d; (min[a, a 3 ]/d)-0.75; 2.5] = min[40.00[mm]/20.00[mm]; (min[0.00[mm], 70.00[mm]]/20.00[mm])-0.75; 2.5] = 2.00 α > > 0.00 Nośność obliczeniowa w stanie granicznym uplastycznienia ścianki otworu S Rb = α *f d *d*σt i = 2.00*215.00[MPa]*20.00[mm]*10.70[mm] = 92.02[kN] Docisk śruby do blachy a 11 = 30.00[mm] a 12 = 98.00[mm] a 21 = 30.00[mm] a 1min = min[ a 11 ; a 12 ; a 21 ] = 30.00[mm] Współczynnik zależny od rozstawu śrub α = min[a 1min /d; (min[a, a 3 ]/d)-0.75; 2.5] = min[30.00[mm]/20.00[mm]; (min[0.00[mm], 70.00[mm]]/20.00[mm])-0.75; 2.5] = 1.50
8 α > > 0.00 Nośność obliczeniowa w stanie granicznym uplastycznienia ścianki otworu S Rb = α *f d *d*σt i = 1.50*225.00[MPa]*20.00[mm]*24.00[mm] = [kN] Parametry blachy czołowej Odległość między brzegiem otworu a spoiną lub początkiem zaokrąglenia c = 20.00[mm] Szerokość współdziałania blachy przypadająca na jedną śrubę b s = 0.5*l p = 0.5*130.00[mm] = 65.00[mm] t min1 = 1.2 * [ (c*s Rt )/(b s *f d ) ] = 1.2 * [ (20.00[mm]*165.62[kN])/(65.00[mm]*225.00[MPa]) ] = 18.06[mm] t min2 = d * 3 [R m /1000] = 20.00[mm] * 3 [ [MPa]/1000] = 20.26[mm] Minimalna grubość blachy czołowej t min = max(t min1, t min2 ) = max(18.06[mm]; 20.26[mm]) = 20.26[mm] t p t min t p = 24.00[mm] t min = 20.26[mm] Współczynnik efektu dzwigni β = 2.67-t p /t min = [mm]/20.26[mm] = 1.49 Nośność na zginanie Stan graniczny nośności Siły w śrubach Rzeczywisty moment zginający M 0 = M d = [kNm] Odległość między osiami półek belki h 0 = (h b -t fb )/cos(α) = (532.00[mm]-16.00[mm])/cos(0.00[Deg]) = [mm] Minimalne ramię działania sił w śrubach z min = 0.6*h 0 = 0.6*516.00[mm] = [mm] Nr z i z i > z min 1 z 1 = [mm] 2 z 2 = [mm] 3 z 3 = [mm] 4 z 4 = 50.00[mm] Nr m i ω ti Wiersz 1 m 1 = 2 ω t1 = 0.90 zewnętrzny 2 m 2 = 2 ω t2 = 1.00 wewnętrzny 3 m 3 = 2 ω t3 = 0.80 środkowy 4 m 4 = 2 - wewnętrzny Nośność ze względu na zerwanie śrub M Rjd = S Rt *Σ(m i *ω ti *z i ) = S Rt * (m 1 *ω t1 *z 1 + m 2 *ω t2 *z 2 + m 3 *ω t3 *z 3 ) = [kN] * ( 2*0.90*566.00[mm] +
9 2*1.00*466.00[mm] + 2*0.80*406.00[mm] ) = [kNm] M 0 M Rjd [kNm] < [kNm] 0.29 Stan graniczny użytkowalności Siły w śrubach Rzeczywisty moment zginający M 0 = M k = [kNm] Nr z i z ired z i > z min z 1 = [mm] z 2 = [mm] z 3 = [mm] z 1red = z 1 -h b /6 = [mm] [mm]/6 = [mm] z 2red = z 2 -h b /6 = [mm] [mm]/6 = [mm] z 3red = z 3 -h b /6 = [mm] [mm]/6 = [mm] 4 z 4 = 50.00[mm] z 4red = z 4 -h b /6 = 50.00[mm] [mm]/6 = [mm] Nr m i ω ri Wiersz 1 m 1 = 2 ω r1 = 0.70 zewnętrzny 2 m 2 = 2 ω r2 = 1.00 wewnętrzny 3 m 3 = 2 ω r3 = 0.80 środkowy 4 m 4 = 2 - wewnętrzny Nośność ze względu na rozwarcie styku M Rjk = (S Rr /z 1red )*Σ(m i *ω ri *z ired 2 ) = (S Rr /z 1red ) * (m 1 *ω r1 *z 1red 2 + m 2 *ω r2 *z 2red 2 + m 3 *ω r3 *z 3red 2 ) = (140.78[kN]/477.33[mm]) * ( 2*0.70*(477.33[mm]) 2 + 2*1.00*(377.33[mm]) 2 + 2*0.80*(317.33[mm]) 2 ) = [kNm] M 0 M Rjk [kNm] < [kNm] 0.54
Belka - słup (blacha czołowa) PN-90/B-03200
BeamRigidColumn v. 0.9.9.0 Belka - słup (blacha czołowa) PN-90/B-03200 Wytężenie: 0.918 Dane Słup HEA500 h c b fc t fc t wc R c 490.00[mm] 300.00[mm] 23.00[mm] 12.00[mm] 27.00[mm] A c J y0c J z0c y 0c
Dane. Belka - belka (blacha czołowa) Wytężenie: BeamsRigid v PN-90/B-03200
BeamsRigid v. 0.9.9.2 Belka - belka (blacha czołowa) PN-90/B-03200 Wytężenie: 0.999 Dane Lewa belka IPE300 h b b fb t fb t wb R b 300.00[mm] 150.00[mm] 10.70[mm] 7.10[mm] 15.00[mm] A b J y0b J z0b y 0b
Dane. Biuro Inwestor Nazwa projektu Projektował Sprawdził. Pręt - blacha węzłowa. Wytężenie: TrussBar v
Biuro Inwestor Nazwa projektu Projektował Sprawdził TrussBar v. 0.9.9.22 Pręt - blacha węzłowa PN-90/B-03200 Wytężenie: 2.61 Dane Pręt L120x80x12 h b f t f t w R 120.00[mm] 80.00[mm] 12.00[mm] 12.00[mm]
Belka - podciąg PN-90/B-03200
Biuro Inwestor Nazwa projektu Projektował Sprawdził BeamGirder v. 0.9.9.22 Belka - podciąg PN-90/B-03200 Wytężenie: 0.98 Dane Podciąg I_30_25_2_1 h p b fp t fp t wp R p 300.00[mm] 250.00[mm] 20.00[mm]
Belka-blacha-podciąg EN :2006
Biuro Inwestor Nazwa projektu Projektował Sprawdził BeamPlateGirder v. 0.9.9.0 Belka-blacha-podciąg EN 1991-1-8:2006 Wytężenie: 0.58 Dane Podciąg C300 h p b fp t fp t wp R p 300.00[mm] 100.00[mm] 16.00[mm]
Belka - podciąg EN :2006
Biuro Inwestor Nazwa projektu Projektował Sprawdził BeamGirder v. 0.9.9.22 Belka - podciąg EN 1991-1-8:2006 Wytężenie: 0.76 Dane Podciąg IPE360 h p b fp t fp t wp R p 360.00[mm] 170.00[mm] 12.70[mm] 8.00[mm]
przygotowanie dokumentacji budowy kierowanie budową inspektor nadzoru przeglądy okresowe obiektów opinie; ekspertyzy techniczne
1 PROJEKT TECHNICZNY wzmocnienia stropu przyziemia pod ścianami działowymi zlokalizowanymi nad pomieszczeniem siłowni dla obiektu budowlanego, położonego przy ul. Moniuszki 22 w miejscowości Giżycko, na
Belka - słup (blacha czołowa) EC : 2006
BeamRigidColumn v. 0.9.9.7 Belka - słup (blacha czołowa) EC3 1991-1-8: 2006 Wytężenie: 0.98 Dane Słup IPE 270 h c b fc t fc t wc R c 270.00[mm] 135.00[mm] 10.20[mm] 6.60[mm] 15.00[mm] A c J y0c J z0c y
Przykład obliczeń głównego układu nośnego hali - Rozwiązania alternatywne. Opracował dr inż. Rafał Tews
1. Podstawa dwudzielna Przy dużych zginaniach efektywniejszym rozwiązaniem jest podstawa dwudzielna. Pozwala ona na uzyskanie dużo większego rozstawu śrub kotwiących. Z drugiej strony takie ukształtowanie
Dokumentacja połączenia Połączenie_1
Połączenie_1 Model: Norma projektowa: Użyty zał. krajowy: Rodzaj ramy: Konfiguracja połączenia: rama łączenie Eurokod EN wartości zalecane nieusztywniony Połączenie belka-słup (połączenie górne) 21.02.2017.
Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń belek i słupów złożonych z zastosowaniem łączników mechanicznych wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014)
Węzeł nr 28 - Połączenie zakładkowe dwóch belek
Projekt nr 1 - Poz. 1.1 strona nr 1 z 12 Węzeł nr 28 - Połączenie zakładkowe dwóch belek Informacje o węźle Położenie: (x=-12.300m, y=1.300m) Dane projektowe elementów Dystans między belkami s: 20 mm Kategoria
1. Połączenia spawane
1. Połączenia spawane Przykład 1a. Sprawdzić nośność spawanego połączenia pachwinowego zakładając osiową pracę spoiny. Rysunek 1. Przykład zakładkowego połączenia pachwinowego Dane: geometria połączenia
Moduł. Połączenia doczołowe
Moduł Połączenia doczołowe 470-1 Spis treści 470. POŁĄCZENIA DOCZOŁOWE... 3 470.1. WIADOMOŚCI OGÓLNE... 3 470.1.1. Opis ogólny programu... 3 470.1.2. Zakres pracy programu... 3 470.1.3. Opis podstawowych
Przykład: Oparcie kratownicy
Dokument Re: SX033b-PL-EU Strona 1 z 7 Przykład przedstawia metodę obliczania nośności przy ścinaniu połączenia doczołowego kratownicy dachowej z pasem słupa. Pas dźwigara jest taki sam, jak pokazano w
2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu
Obliczenia statyczne ekranu - 1 - dw nr 645 1. OBLICZENIE SŁUPA H = 4,00 m (wg PN-90/B-0300) wysokość słupa H 4 m rozstaw słupów l o 6.15 m 1.1. Obciążenia 1.1.1. Obciążenia poziome od wiatru ( wg PN-B-0011:1977.
Raport wymiarowania stali do programu Rama3D/2D:
2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=
POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII
τ R2 := 0.32MPa τ b1_max := 3.75MPa E b1 := 30.0GPa τ b2_max := 4.43MPa E b2 := 34.6GPa
10.6 WYMIAROWANE PRZEKROJÓW 10.6.1. DANE DO WMIAROWANIA Beton istniejącej konstrukcji betonowej klasy B5 dla którego: - wytrzymałość obliczeniowa na ściskanie (wg. PN-91/S-1004 dla betonu B5) - wytrzymałość
Konstrukcjre metalowe Wykład X Połączenia spawane (część II)
Konstrukcjre metalowe Wykład X Połączenia spawane (część II) Spis treści Metody obliczeń #t / 3 Przykład 1 #t / 11 Przykład 2 #t / 22 Przykład 3 #t / 25 Przykład 4 #t / 47 Przykład 5 #t / 56 Przykład 6
10.0. Schody górne, wspornikowe.
10.0. Schody górne, wspornikowe. OBCIĄŻENIA: Grupa: A "obc. stałe - pł. spocznik" Stałe γf= 1,0/0,90 Q k = 0,70 kn/m *1,5m=1,05 kn/m. Q o1 = 0,84 kn/m *1,5m=1,6 kn/m, γ f1 = 1,0, Q o = 0,63 kn/m *1,5m=0,95
PROJEKTOWANIE PODSTAW SŁUPÓW
Projekt SKILLS PROJEKTOWANIE PODSTAW SŁUPÓW OMAWIANE ZAGADNIENIA Procedura projektowania przegubowych i utwierdzonych podstaw słupów Nośność blachy podstawy Nośność śrub kotwiących Nośność podłoża betonowego
Wytrzymałość drewna klasy C 20 f m,k, 20,0 MPa na zginanie f v,k, 2,2 MPa na ścinanie f c,k, 2,3 MPa na ściskanie
Obliczenia statyczno-wytrzymałościowe: Pomost z drewna sosnowego klasy C27 dla dyliny górnej i dolnej Poprzecznice z drewna klasy C35 lub stalowe Balustrada z drewna klasy C20 Grubość pokładu górnego g
KONSTRUKCJE METALOWE ĆWICZENIA POŁĄCZENIA ŚRUBOWE POŁĄCZENIA ŚRUBOWE ASORTYMENT ŁĄCZNIKÓW MATERIAŁY DYDAKTYCZNE 1
ASORTYMENT ŁĄCZNIKÓW POŁĄCZENIA ŚRUBOWE MATERIAŁY DYDAKTYCZNE 1 MATERIAŁY DYDAKTYCZNE 2 MATERIAŁY DYDAKTYCZNE 3 MATERIAŁY DYDAKTYCZNE 4 POŁĄCZENIE ŚRUBOWE ZAKŁADKOWE /DOCZOŁOWE MATERIAŁY DYDAKTYCZNE 5
ĆWICZENIE / Zespół Konstrukcji Drewnianych
ĆWICZENIE 06 / 07 Zespół Konstrukcji Drewnianych Belka stropowa BELKA STROPOWA O PRZEKROJU ZŁOŻONYM Belka stropowa 3 Polecenie 4 Zaprojektować belkę stropową na podstawie następujących danych: obciążenie:
PROJEKT STROPU BELKOWEGO
PROJEKT STROPU BELKOWEGO Nr tematu: A Dane H : 6m L : 45.7m B : 6.4m Qk : 6.75kPa a :.7m str./9 Geometria nz : 5 liczba żeber B Lz : 5.8 m długość żebra nz npd : 3 liczba przęseł podciągu przyjęto długość
- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET
- 1 - Kalkulator Elementów Żelbetowych 2.1 OBLICZENIA WYTRZYMAŁOŚCIOWE - ŻELBET Użytkownik: Biuro Inżynierskie SPECBUD 2001-2010 SPECBUD Gliwice Autor: mgr inż. Jan Kowalski Tytuł: Poz.4.1. Elementy żelbetowe
6.3. Słupy. O Przykład 4 7W ////, Przykłady obliczeń. Słupy A. Wymiarowanie trzonu słupa. gdzie: pole przekroju wszystkich spoin,
3 5 2 Przykłady obliczeń Słupy 3 5 3 gdzie: y a/ - pole przekroju wszystkich spoin, o / = 2[(200 + 20) 0] = 64-0: mm2. r, = = - - - 6 = 7.4 MP a < / = A = 76. MPa. r a t 0-400 * S przy czym lw= 2 200 =
Wytrzymałość Materiałów
Wytrzymałość Materiałów Projektowanie połączeń konstrukcji Przykłady połączeń, siły przekrojowe i naprężenia, idealizacja pracy łącznika, warunki bezpieczeństwa przy ścinaniu i docisku, połączenia na spoiny
Moduł. Profile stalowe
Moduł Profile stalowe 400-1 Spis treści 400. PROFILE STALOWE...3 400.1. WIADOMOŚCI OGÓLNE...3 400.1.1. Opis programu...3 400.1.2. Zakres programu...3 400.1. 3. Opis podstawowych funkcji programu...4 400.2.
I. Wstępne obliczenia
I. Wstępne obliczenia Dla złącza gwintowego narażonego na rozciąganie ze skręcaniem: 0,65 0,85 Przyjmuję 0,70 4 0,7 0,7 0,7 A- pole powierzchni przekroju poprzecznego rdzenia śruby 1,9 2,9 Q=6,3kN 13,546
Moduł. Zakotwienia słupów stalowych
Moduł Zakotwienia słupów stalowych 450-1 Spis treści 450. ZAKOTWIENIA SŁUPÓW STALOWYCH... 3 450.1. WIADOMOŚCI OGÓLNE... 3 450.1.1. Opis ogólny programu... 3 450.1.2. Zakres pracy programu... 3 450.1.3.
700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:
Producent: Ryterna modul Typ: Moduł kontenerowy PB1 (długość: 6058 mm, szerokość: 2438 mm, wysokość: 2800 mm) Autor opracowania: inż. Radosław Noga (na podstawie opracowań producenta) 1. Stan graniczny
9.0. Wspornik podtrzymujący schody górne płytowe
9.0. Wspornik podtrzymujący schody górne płytowe OBCIĄŻENIA: 55,00 55,00 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P(Tg): P2(Td): a[m]: b[m]: Grupa: A "" Zmienne γf=,0 Liniowe 0,0 55,00 55,00
Przykład: Połączenie śrubowe rozciąganego pręta stęŝenia z kątownika do blachy węzłowej
Dokument Re: SX34a-PL-EU Strona 1 z 8 Przykład: Połączenie śrubowe rozciąganego pręta stęŝenia z Przykład pokazuje procedurę sprawdzenia nośności połączenia śrubowego pomiędzy prętem stęŝenia wykonanym
1. Projekt techniczny żebra
1. Projekt techniczny żebra Żebro stropowe jako belka teowa stanowi bezpośrednie podparcie dla płyty. Jest to element słabo bądź średnio obciążony siłą równomiernie obciążoną składającą się z obciążenia
e = 1/3xH = 1,96/3 = 0,65 m Dla B20 i stali St0S h = 15 cm h 0 = 12 cm 958 1,00 0,12 F a = 0,0029x100x12 = 3,48 cm 2
OBLICZENIA STATYCZNE POZ.1.1 ŚCIANA PODŁUŻNA BASENU. Projektuje się baseny żelbetowe z betonu B20 zbrojone stalą St0S. Grubość ściany 12 cm. Z = 0,5x10,00x1,96 2 x1,1 = 21,13 kn e = 1/3xH = 1,96/3 = 0,65
ĆWICZENIE 2. Belka stropowa Zespół Konstrukcji Drewnianych 2016 / 2017 BELKA STROPOWA O PRZEKROJU ZŁOŻONYM
07-0-7 ĆWICZENIE 06 / 07 Zespół Konstrukcji Drewnianych Belka stropowa BELKA STROPOWA O PRZEKROJU ZŁOŻONYM 07-0-7 Belka stropowa 3 Polecenie Zaprojektować belkę stropową na podstawie następujących danych:
Załącznik nr 3. Obliczenia konstrukcyjne
32 Załącznik nr 3 Obliczenia konstrukcyjne Poz. 1. Strop istniejący nad parterem (sprawdzenie nośności) Istniejący strop typu Kleina z płytą cięŝką. Wartość charakterystyczna obciąŝenia uŝytkowego w projektowanym
Połączenia. Przykład 1. Połączenie na wrąb czołowy pojedynczy z płaszczyzną docisku po dwusiecznej kąta. Dane: drewno klasy -
Dane: drewno klasy - h = b = Połączenia C30 16 cm 8 cm obciąŝenie o maksymalnej wartości w kombinacji obciąŝeń stałe klasa uŝytkowania konstrukcji - 1 F = 50 kn α = 30 0 Przykład 1 Połączenie na wrąb czołowy
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej.
10.1 Płyta wspornikowa schodów górnych wspornikowych w płaszczyźnie prostopadłej. OBCIĄŻENIA: 6,00 6,00 4,11 4,11 1 OBCIĄŻENIA: ([kn],[knm],[kn/m]) Pręt: Rodzaj: Kąt: P1(Tg): P2(Td): a[m]: b[m]: Grupa:
Obliczenia statyczne - dom kultury w Ozimku
1 Obliczenia statyczne - dom kultury w Ozimku Poz. 1. Wymiany w stropie przy szybie dźwigu w hollu. Obciąż. stropu. - warstwy posadzkowe 1,50 1,2 1,80 kn/m 2 - warstwa wyrównawcza 0,05 x 21,0 = 1,05 1,3
Obliczenia poł czenia zamocowanego Belka - Belka
Autodesk Robot Structural Analysis Professional 009 Obliczenia poł czenia zamocowanego Belka - Belka EN 993--8:005 Proporcja 0,96 OGÓLNE Nr poł czenia: Nazwa poł czenia: Doczołowe W zeł konstrukcji: 30
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu. Wymiary:
7.0. Fundament pod słupami od stropu nad piwnicą. Rzut fundamentu Wymiary: B=1,2m L=4,42m H=0,4m Stan graniczny I Stan graniczny II Obciążenie fundamentu odporem gruntu OBCIĄŻENIA: 221,02 221,02 221,02
STRONA TYTUŁOWA. Hala istniejąca plus dobudowa
STRONA TYTUŁOWA Projekt: Hala istniejąca plus dobudowa Autor : inż. Leszek Demski Widok...25 Dane - Profile...25 Obciążenia - Przypadki...25 Obciążenia - Wartości - Przypadki: 1do12...25 Obciążenia klimatyczne
POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY
62-090 Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY SPIS TREŚCI Wprowadzenie... 1 Podstawa do obliczeń... 1 Założenia obliczeniowe... 1 Algorytm obliczeń... 2 1.Nośność żebra stropu na
1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.
1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem
OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE USTROJU NOŚNEGO KŁADKI DLA PIESZYCH PRZEZ RZEKĘ NIEZDOBNĄ W SZCZECINKU
OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE USTROJU NOŚNEGO KŁADKI DLA PIESZYCH PRZEZ RZEKĘ NIEZDOBNĄ W SZCZECINKU Założenia do obliczeń: - przyjęto charakterystyczne obciążenia równomiernie rozłożone o wartości
Widok ogólny podział na elementy skończone
MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone
OBLICZENIA SPRAWDZAJĄCE NOŚNOŚĆ KONSTRUKCJI ZADASZENIA WIAT POLETEK OSADOWYCH
OBLICZENIA SPRAWDZAJĄCE NOŚNOŚĆ LOKALIZACJA: PRZEDSIĘBIORSTWO WODOCIĄGÓW I KANALIZACJI SP. Z O.O. Ul. MŁYŃSKA 100, RUDA ŚLĄSKA PRZYGOTOWANA PRZEZ BUDOSERWIS Z.U.H. Sp. z o.o. Zakład Ekspertyz i Usług Gospodarczych
Opracowanie: Emilia Inczewska 1
Dla żelbetowej belki wykonanej z betonu klasy C20/25 ( αcc=1,0), o schemacie statycznym i obciążeniu jak na rysunku poniżej: należy wykonać: 1. Wykres momentów- z pominięciem ciężaru własnego belki- dla
Ćwiczenie nr 2. obliczeniowa wytrzymałość betonu na ściskanie = (3.15)
Ćwiczenie nr 2 Temat: Wymiarowanie zbrojenia ze względu na moment zginający. 1. Cechy betonu i stali Beton zwykły C../.. wpisujemy zadaną w karcie projektowej klasę betonu charakterystyczna wytrzymałość
0,04x0,6x1m 1,4kN/m 3 0,034 1,35 0,05
' 1 2 3 4 Zestawienie obciążeń stałych oddziałujących na mb belki Lp Nazwa Wymiary Cięzar jednostko wy Obciążenia charakterystycz ne stałe kn/mb Współczyn nik bezpieczeń stwa γ Obciążenia obliczeniowe
ĆWICZENIE PROJEKTOWE NR 2 Z KONSTRUKCJI STALOWYCH
Politechnika Poznańska Instytut Konstrukcji Budowlanych Zakład Konstrukcji Metalowych Pod kierunkiem: dr inż. A Dworak rok akademicki 004/005 Grupa 5/TOB ĆWICZENIE PROJEKTOWE NR Z KONSTRUKCJI STALOWYCH
PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.
PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy
ĆWICZENIE 1. Złącze rozciągane Zespół Konstrukcji Drewnianych 2016 / 2017 ZŁĄCZE ROZCIĄGANEGO PASA KRATOWNICY
ĆWICZEIE 1 016 / 017 Zespół Konstrukcji Drewnianych Złącze rozciągane ZŁĄCZE ROZCIĄGAEGO PASA KRATOWICY 1 Polecenie 3 Zaprojektować złącze rozciągane na podstawie następujących danych: siła rozciągająca
OBLICZENIA STATYCZNO - WYTRZYMAŁOŚCIOWE
OLICZENI STTYCZNO - WYTRZYMŁOŚCIOWE 1. ZESTWIENIE OCIĄśEŃ N IEG SCHODOWY Zestawienie obciąŝeń [kn/m 2 ] Opis obciąŝenia Obc.char. γ f k d Obc.obl. ObciąŜenie zmienne (wszelkiego rodzaju budynki mieszkalne,
1. Projekt techniczny Podciągu
1. Projekt techniczny Podciągu Podciąg jako belka teowa stanowi bezpośrednie podparcie dla żeber. Jest to główny element stropu najczęściej ślinie bądź średnio obciążony ciężarem własnym oraz reakcjami
Informacje uzupełniające: Projektowanie kalenicowego styku montaŝowego rygla w ramie portalowej SN042a-PL-EU. 1. Model obliczeniowy 2. 2.
Informacje uzupełniające: Projektowanie kalenicowego styku montaŝowego rygla w ramie portalowej Ten dokument zawiera informacje na temat metod projektowanie śrubowego styku montaŝowego rygla w ramie portalowej.
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15
Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15 1. Warunkiem koniecznym i wystarczającym równowagi układu sił zbieżnych jest, aby a) wszystkie
Pręt nr 1 - Element żelbetowy wg. PN-B-03264
Pręt nr 1 - Element żelbetowy wg. PN-B-03264 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x900 (Beton
Projekt techniczny niektórych rozwiązań w budynku wielokondygnacyjnym
Projekt techniczny niektórych rozwiązań w budynku wielokondygnacyjnym Zestawienie obciążeń:.strop między-kondygnacyjny Obciążenie stałe m rzutu poziomego stropu -ciągi komunikacyjne Lp. Warstwa stropu
Analiza ściany żelbetowej Dane wejściowe
Analiza ściany żelbetowej Dane wejściowe Projekt Data : 0..05 Ustawienia (definiowanie dla bieżącego zadania) Materiały i normy Konstrukcje betonowe : Współczynniki EN 99-- : Mur zbrojony : Konstrukcje
Projekt: Data: Pozycja: EJ 3,14² , = 43439,93 kn 2,667² = 2333,09 kn 5,134² EJ 3,14² ,0 3,14² ,7
Pręt nr 8 Wyniki wymiarowania stali wg P-90/B-0300 (Stal_3d v. 3.33) Zadanie: Hala stalowa.rm3 Przekrój: 1 - U 00 E Y Wymiary przekroju: h=00,0 s=76,0 g=5, t=9,1 r=9,5 ex=0,7 Charakterystyka geometryczna
Pomoce dydaktyczne: normy: [1] norma PN-EN 1991-1-1 Oddziaływania na konstrukcje. Oddziaływania ogólne. Ciężar objętościowy, ciężar własny, obciążenia użytkowe w budynkach. [] norma PN-EN 1991-1-3 Oddziaływania
KONSTRUKCJE DREWNIANE I MUROWE
POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 5 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska 1 CHARAKTERYSTYKI MATERIAŁOWE drewno lite sosnowe klasy C35: - f m,k =
Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne
Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED
ĆWICZENIE / Zespół Konstrukcji Drewnianych
ĆWICZEIE 1 2016 / 2017 Zespół Konstrukcji Drewnianych Złącze rozciągane 2 ZŁĄCZE ROZCIĄGAEGO PASA KRATOWICY Polecenie 3 Zaprojektować złącze rozciągane na podstawie następujących danych: siła rozciągająca
Wytyczne dla projektantów
KONBET POZNAŃ SP. Z O. O. UL. ŚW. WINCENTEGO 11 61-003 POZNAŃ Wytyczne dla projektantów Sprężone belki nadprożowe SBN 120/120; SBN 72/120; SBN 72/180 Poznań 2013 Niniejsze opracowanie jest własnością firmy
ĆWICZENIE 1. Złącze rozciągane Zespół Konstrukcji Drewnianych 2016 / 2017 ZŁĄCZE ROZCIĄGANEGO PASA KRATOWNICY
ĆWICZEIE 1 016 / 017 Zespół Konstrukcji Drewnianych Złącze rozciągane ZŁĄCZE ROZCIĄGAEGO PASA KRATOWICY 1 Polecenie 3 Zaprojektować złącze rozciągane na podstawie następujących danych: siła rozciągająca
1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ.
1. OBLICZENIA STATYCZNE I WYMIAROWANIE ELEMENTÓW KONSTRUKCYJNYCH ELEWACJI STALOWEJ. Zestawienie obciążeń. Kąt nachylenia połaci dachowych: Obciążenie śniegie. - dla połaci o kącie nachylenia 0 stopni Lokalizacja
Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona = 0,644. Rys. 25. Obwiednia momentów zginających
Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona f y M f,rd b f t f (h γ w + t f ) M0 Interakcyjne warunki nośności η 1 M Ed,385 km 00 mm 16 mm 355 1,0
Pręt nr 4 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr z 7 Pręt nr 4 - Element żelbetowy wg PN-EN 992--:2004 Informacje o elemencie Nazwa/Opis: element nr 4 (belka) - Brak opisu elementu. Węzły: 2 (x=4.000m,
Zadanie 1: śruba rozciągana i skręcana
Zadanie 1: śruba rozciągana i skręcana Cylindryczny zbiornik i jego pokrywę łączy osiem śrub M16 wykonanych ze stali C15 i osadzonych na kołnierzu. Średnica wewnętrzna zbiornika wynosi 200 mm. Zbiornik
STÓŁ NR 1. 2. Przyjęte obciążenia działające na konstrukcję stołu
STÓŁ NR 1 1. Geometria stołu Stół składa się ze stalowej ramy wykonanej z płaskowników o wymiarach 100x10, stal S355 oraz dębowego blatu grubości 4cm. Połączenia elementów stalowych projektuje się jako
Projekt belki zespolonej
Pomoce dydaktyczne: - norma PN-EN 1994-1-1 Projektowanie zespolonych konstrukcji stalowo-betonowych. Reguły ogólne i reguły dla budynków. - norma PN-EN 199-1-1 Projektowanie konstrukcji z betonu. Reguły
Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic
ROZDZIAŁ VII KRATOW ICE STROPOWE VII.. Analiza obciążeń kratownic stropowych Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic Bezpośrednie obciążenie kratownic K5, K6, K7 stanowi
Autorska Pracownia Architektoniczna Kraków, ul. Zygmuntowska 33/12, tel
Autorska Pracownia Architektoniczna 31-314 Kraków, ul. Zygmuntowska 33/1, tel. 1 638 48 55 Adres inwestycji: Województwo małopolskie, Powiat wielicki, Obręb Wola Batorska [ Nr 0007 ] Działki nr: 1890/11,
OBLICZENIA KONSTRUKCYJNE Zestawienie obciążeń na dach Lp Opis obciążenia Obc. char. 1. Obciążenie śniegiem połaci dachu dwupołaciowego wg PN-EN 1991-1-3 p.5.3.3 (strefa 1, A=112 m n.p.m. -> sk = 0,7 kn/m2,
ĆWICZENIE / Zespół Konstrukcji Drewnianych
ĆWICZENIE 3 06 / 07 Zespół Konstrukcji Drewnianych Słup ELEMENT OSIOWO ŚCISKANY Słup 3 Polecenie 4 Wyznaczyć nośność charakterystyczną słupa ściskanego na podstawie następujących danych: długość słupa:
Pręt nr 1 - Element żelbetowy wg. EN :2004
Pręt nr 1 - Element żelbetowy wg. EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 5 (belka) - Brak opisu elementu. Węzły: 13 (x6.000m, y24.000m); 12 (x18.000m, y24.000m) Profil: Pr 350x800
Sprawdzenie stanów granicznych użytkowalności.
MARCIN BRAŚ SGU Sprawzenie stanów granicznych użytkowalności. Wymiary belki: szerokość przekroju poprzecznego: b w := 35cm wysokość przekroju poprzecznego: h:= 70cm rozpiętość obliczeniowa przęsła: :=
DANE OGÓLNE PROJEKTU
1. Metryka projektu Projekt:, Pozycja: Posadowienie hali Projektant:, Komentarz: Data ostatniej aktualizacji danych: 2016-07-04 Poziom odniesienia: P 0 = +0,00 m npm. DANE OGÓLNE PROJEKTU 15 10 1 5 6 7
Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.
Sprawdzenie nosności słupa w schematach A i A - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego. Sprawdzeniu podlega podwiązarowa część słupa - pręt nr. Siły wewnętrzne w słupie Kombinacje
ZALETY POŁĄCZEŃ TRZPIENIOWYCH
POŁĄCZENIA ŚRUBOWE dr inż. ż Dariusz Czepiżak 1 ZALETY POŁĄCZEŃ TRZPIENIOWYCH 1. Mogą być wykonane w każdych warunkach atmosferycznych, 2. Mogą być wykonane przez pracowników nie mających wysokich kwalifikacji,
Projekt mostu kratownicowego stalowego Jazda taboru - dołem Schemat
Projekt mostu kratownicowego stalowego Jazda taboru - dołem Schemat Rozpiętość teoretyczna Wysokość kratownicy Rozstaw podłużnic Rozstaw poprzecznic Długość poprzecznic Długość słupków Długość krzyżulców
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP
Algorytm do obliczeń stanów granicznych zginanych belek żelbetowych wzmocnionych wstępnie naprężanymi taśmami CFRP Ekran 1 - Dane wejściowe Materiały Beton Klasa betonu: C 45/55 Wybór z listy rozwijalnej
PROJEKTOWANIE POŁĄCZEO SPAWANYCH według PN-EN 1993-1-8
POLITECHNIKA GDAOSKA Wydział Inżynierii Lądowej i Środowiska Katedra Konstrukcji Metalowych i Zarządzania w Budownictwie PROJEKTOWANIE POŁĄCZEO SPAWANYCH według PN-EN 1993-1-8 ZAŁOŻENIA Postanowienia normy
OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA.
OPIS TECHNICZNY KONSTRUKCJI I OBLICZENIA. Założenia przyjęte do wykonania projektu konstrukcji: - III kategoria terenu górniczego, drgania powierzchni mieszczą się w I stopniu intensywności, deformacje
262 Połączenia na łączniki mechaniczne Projektowanie połączeń sztywnych uproszczoną metodą składnikową
262 Połączenia na łączniki mechaniczne grupy szeregów śrub przyjmuje się wartość P l eff równą sumie długości efektywnej l eff, określonej w odniesieniu do każdego właściwego szeregu śrub jako części grupy
Moduł. Płatew stalowa
Moduł Płatew stalowa 411-1 Spis treści 411. PŁATEW...3 411.1. WIADOMOŚCI OGÓLNE...3 411.1.1. Opis programu...3 411.1. 2. Zakres programu...3 411.2. WPROWADZENIE DANYCH...3 411.1.3. Zakładka Materiały i
Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-EN-1995
Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Wstęp Złącza jednocięte
KOTWY MECHANICZNE. R-HPT Rozprężna kotwa opaskowa do średnich obciążeń - beton spękany 37 A METODA OBLICZENIOWA (ETAG)
Rozprężna kotwa opaskowa do średnich obciążeń - beton spękany nazwa OZNACZENIE PROJEKTOWE -10080/20 średnica długość grubość mocowanego elementu MATERIAŁY PODŁOŻA: beton, skała beton spękany i niespękany
Projekt techniczny niektórych rozwiązań w budynku wielokondygnacyjnym
Projekt techniczny niektórych rozwiązań w budynku wielokondygnacyjnym Zestawienie obciążeń:.strop między-kondygnacyjny Obciążenie stałe m rzutu poziomego stropu -ciągi komunikacyjne Lp. Warstwa stropu
Rzut z góry na strop 1
Rzut z góry na strop 1 Przekrój A-03 Zestawienie obciążeń stałych oddziaływujących na płytę stropową Lp Nazwa Wymiary Cięzar jednostko wy Obciążenia charakterystyczn e stałe kn/m Współczyn n. bezpieczeń
Pręt nr 0 - Element żelbetowy wg PN-EN :2004
Budynek wielorodzinny - Rama żelbetowa strona nr 1 z 13 Pręt nr 0 - Element żelbetowy wg PN-EN 1992-1-1:2004 Informacje o elemencie Nazwa/Opis: element nr 0 (belka) - Brak opisu elementu. Węzły: 0 (x=-0.120m,
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej
OBLICZENIA STATYCZNE konstrukcji wiaty handlowej 1.0 DŹWIGAR DACHOWY Schemat statyczny: kratownica trójkątna symetryczna dwuprzęsłowa Rozpiętości obliczeniowe: L 1 = L 2 = 3,00 m Rozstaw dźwigarów: a =
KONSTRUKCJE METALOWE
KONSTRUKCJE METALOWE ĆWICZENIA 15 GODZ./SEMESTR PROWADZĄCY PRZEDMIOT: dr hab. inż. Lucjan ŚLĘCZKA prof. PRz. PROWADZĄCY ĆWICZENIA: dr inż. Wiesław KUBISZYN P39. ZAKRES TEMATYCZNY ĆWICZEŃ: KONSTRUOWANIE
KONSTRUKCJE METALOWE
KONSTRUKCJE METALOWE ĆWICZENIA 15 GODZ./SEMESTR PROWADZĄCY PRZEDMIOT: prof. Lucjan ŚLĘCZKA PROWADZĄCY ĆWICZENIA: dr inż. Wiesław KUBISZYN P39 ZAKRES TEMATYCZNY ĆWICZEŃ: KONSTRUOWANIE I PROJEKTOWANIE WYBRANYCH
Konstrukcje metalowe Wykład IV Klasy przekroju
Konstrukcje metalowe Wykład IV Klasy przekroju Spis treści Wprowadzenie #t / 3 Eksperyment #t / 12 Sposób klasyfikowania #t / 32 Przykłady obliczeń - stal #t / 44 Przykłady obliczeń - aluminium #t / 72