Rys. 1. Powstawanie napięcia Halla V H schemat.
|
|
- Marek Bielecki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzenie Zjawisko alla został odkrte w 1879 przez amerkaoskiego fizka Edwina alla podczas prac nad doktoratem. Polega ono na powstawaniu napięcia (różnic potencjałów elektrcznch) w przewodniku, w którm płnie prąd, a któr jest umieszczon w polu magtcznm (waż jest ab pole magtcz nie bło równoległe do kierunku przepłwu prądu) Rs. 1. Napięcie to zależ od natężenia prądu przepłwającego przez przewodnik (lub półprzewodnik) oraz od wartości zewnętrzgo pola magtczgo. Zjawisko to jest wkorzstwa w wielu dziedzinach nauki i techniki. Np. w przemśle motorzacjnm często stosuje się tzw. czujniki hallotronowe jako czujniki prędkości obrotowej i położenia wału korbowego lub wałka rozrządu, jako czujniki przspieszenia cz czujniki wchlenia kątowego. W dawniejszch rozwiązaniach układów zapłonowch efekt alla bł wkorzstwan jako element nadajnika impulsów zapłonowch (zastępował w tej roli wcześniej użwa mechanicz rozdzielacze zapłonu). B F = e (v B) Rs. 1. Powstawanie napięcia alla V schemat. Teoria Jakościowe wjaśnienie klasczgo zjawiska alla opiera się na obserwacji, że prąd elektrczn I jest uporządkowanm ruchem nośników ładunku. W metalu są to elektron. Jeżeli przewodnik jest umieszczon w polu magtcznm B prostopadłm do kierunku przepłwu prądu I, to na poruszające się elektron działa siła Lorentza prostopadła do prędkości elektronów (a więc także do prądu) oraz do pola magtczgo. Powoduje ona zatem odchlanie strumienia elektronów w jedną stronę przewodnika powodując tam nadmiar ładunku ujemgo, a po przeciwj stronie nadmiar ładunku dodatniego. W efekcie tego rozdzielenia pojawia się pole elektrcz w kierunku prostopadłm do pola magtczgo i prądu. Poniżej jest bardziej szczegółow opis.
2 Opis przbliżon zjawiska alla Jak wiadomo, na ładuk q poruszając się z prędkością w obszarze gdzie wstępuje pole magtcz B działa siła Lorentza F q B. (1) Z tego wzoru wnika m.in. że siła Lorentza jest prostopadła do i B. Wrażenie na siłę we wzorze (1) upraszcza się gd, wektor prędkości i indukcji pola magtczgo są prostopadłe, B. Mam wted wartośd sił F q B. (2) Jak już wspomniano, w przewodniku (lub półprzewodniku), w którm płnie prąd I poruszają się ładunki. Jeżeli taki przewodnik umieścim w zewnętrznm polu magtcznm, najlepiej prostopadłm do odcinka przewodnika, to na poruszające się w nim elektron będzie działad siła o wartości (2) powodująca odchlenie ładunków w jedną stronę przewodnika. Zatem po jedj stronie będzie np. nadmiar elektronów, a po drugiej ich niedobór. Powstaje więc rozdzielenie ładunku powodujące pojawienie się pola elektrczgo E o kierunku prostopadłm do przewodnika (jak się dalej okaże jest to stwierdzenie przbliżo). Pole to oczwiście wtwarza napięcie V (tzw. napięcie alla). Jeżeli przjąd przbliżenie, że pole E jest stałe, a szerokośd przewodnika wnosi L, to otrzmujem (por. Rs. 1) V E L. (3) Wartośd pola E można oszacowad przjmując, że siła (2) zrównuje się z siłą elektrczną pochodzącą od pola elektrczgo, qe q B, zatem qe E B, V BL. (4) Możem teraz wrazid napięcie alla prz pomoc natężenia prądu I. W tm celu załóżm, że przekrój przewodnika jest prostokątem o szerokości L i wsokości d. Wted mam I ( )( Ld), gdzie n jest gęstością nośników ładunku (np. elektronów) w liczbach ładunków elementarnch na objętośd oraz e wartością bezwzględną ładunku elektronu. Stąd mam I / ( Ld ) co po wstawieniu do (4) daje V IB. (5) d Jak widad napięcie alla jest proporcjonal do natężenia prądu i do pola magtczgo, a odwrotnie proporcjonal do wsokości d (grubośd płtki). Zależnośd ta wjaśnia także dlaczego waż jest ab podstawow element czujnika alla bł w postaci cienkiej płtki (małe d powoduje, że napięcie V staje
3 się wstarczająco duże). W praktce taki przewodnik uzskuje się np. naplając na podłoże z izolatora (szkło, polimer) warstwę metalu lub półprzewodnika. 1 Wzór (5) został wprowadzon prz pewnch założeniach i jest przbliżon ale jakościowo dobrze opisuje zjawisko. Przede wszstkim złożono, że pole elektrcz jest stałe i prostopadłe do kierunku przepłwu prądu. Mimo wszstko w standardowch warunkach wzór ten daje dobre rezultat. Dokładn opis i sformułowanie problemu w 2D W celu dokładgo opisu zjawiska alla wkorzstam następując model. Cienka prostokątna metalowa płtka leż na płaszczźnie XY Rs. 2. Górna krawędź ma przłożon potencjał V 0 i leż na prostej, a dolna ma potencjał V0 i leż na prostej. Ta różnica potencjałów powoduje przepłw prądu w kierunku OY. Płtka jest umieszczona w polu magtcznm B [0, 0, B0 ], czli linie pola magtczgo są prostopadłe do płaszczzn XY. Naszm zadaniem jest teraz wznaczenie rozkładu potencjał w płtce, V (, ). Znajomośd pola potencjału da nam w szczególności różnicę potencjałów pomiędz krawędziami pionowmi (czli napięcie alla). Z elektrodnamiki wiadomo, że potencjał w przewodniku metalicznm, w którm płnie stacjonarn prąd musi spełniad równanie Laplace a: 0. (6) Warunki brzegowe na górj i dolj krawędzi są oczwiste (wnikają z przłożogo napięcia): V(, ), V(, ) V. (7) W orginalnm ekspermencie przeprowadzonm przez alla w Johns opkins Universit bła to cienka folia ze złota przmocowana do szklaj płtki. Poprzednie eksperment wkonwa przez prof. Rowlanda (któr bł promotorem alla) zakooczł się niepowodzeniem (nie można bło wkrd powstającego napięcia), gdż przewodnik bł zbt grub.
4 Rs. 2. Geometria i warunki do sformułowania problemu wznaczenia napiecia alla. Ab można bło rozwiązad problem musim jeszcze ustalid popraw warunki brzegowe na krawędziach pionowch (dla 0 oraz L). Podstawowm faktem, któr zostanie wkorzstan jest obserwacja, że żad ładunki nie opuszczają i nie wchodzą do próbki przez te krawędzie! Gd nie wstępuje pole magtcz, to prawo Ohma dla materiału jednorodgo o przewodności właściwej ma postad J E, (8) gdzie J jest gęstością prądu wwołaną polem elektrcznm E. Gd dodatkowo działa pole magtcz B, to oprócz sił elektrczj (Coulomba) działa jeszcze siła magtczna (Lorentza) na jednostkę ładunku, B (por. (1)). Gęstośd prądu jest powiązana z prędkością drftu ładunków następująco, 1 J, zatem dodatkowa siła wnosi J B. Uwzględniają tę siłę w zależności konsttutwj ośrodka izotropowego i jednorodgo, równanie (8) przjmie postad J E J B. (9) Ponieważ zakładam przepłw prądu 2D (płtka jest bardzo cienka), tzn. nie uwzględniam składowch z, więc J [ J, J, 0], E [ E, E,0]. Równanie (9) po wkonaniu operacji ilocznu wektorowego rozpisa na składowe przjmuje postad: B0 B0 E J J 0, E J J 0. (10)
5 Z powższch równao wliczam: J E E E E,. 1 ( ) 1 ( ) B0 B0 J B0 2 B0 2 (11) Teraz możem sformułowad matematcznie waruk brzegow na lewej i prawej krawędzi: składowa strumienia w kierunku OX ( poziomm ) jest równa zero, J (0, ) 0, J ( L, ) 0 dla 0. (12) Wkorzstując równości (11) i (12) warunki wrazim następująco B0 B0 (0, ) (0, ), (, ) (, ). E E E L E L (13) Ponieważ problem jest sformułowan w jęzku potencjału elektrczgo (por. (6), (7)), więc warunki (13) też chcem wrazid prz pomoc potencjału. Wstarcz tlko przpomnied, że w warunkach stacjonarnch zależnośd pomiędz polem elektrcznm a potencjałem elektrcznm jest następująca, E, czli rozpisując na składowe: E, E. Podsumowując mam do rozwiązania następując problem: Dziedzina: (, ) [0, L] [, ], Równanie : 0 dla (, ), Warunki brzegowe : V (, ), V (, ), 0 0 B0 B0 (0, ) (0, ), ( L, ) ( L, ). (14) Przkładowa implementacja w COMSOLu B Z modelu matematczgo (14) widad, że jednm z parametrów układu jest wartośd 0. Dlatego w B COMSOLu będziem posługiwad się wartością 0. Dla dago metalu wielkości i n są da i stałe (zakładam, że układ jest w ustaloj temperaturze). Ładuk elektronu jest także stał, więc współcznnik opisuje wpłw pola magtczgo B, 0 do którego jest proporcjonaln. Warunki brzegowe mają więc postad (0, ) (0, ), ( L, ) ( L, ). (15) Najtrudniejszą kwestią w realizacji w COMSOLu bedzie właśnie wprowadzenie tego warunku. W tm celu będzie wkorzstan dla pionowch krawędzi waruk tpu Flu/Source.
6 1. Uruchamiam program COMSOL i wbieram Model Wizard. 2. W oknie Select Space Dimension wbieram 2D. 3. W oknie Select Phsics rozwijam: u Mathematics Laplace Equation (lpeq), a następnie klikam Add. 4. W oknie Review Phsics Interface w polu Dependent Variable wpisujem V.
7 5. Dalej kilkam Stud i wbieram Stationar, a potem Do. 6. W głównm oknie program wbieram Parameters. 7. W oknie Settings dla Parameters wpisujem wartości jak poniżej: 8. Wbieram w menu głównm wbieram Geometr, dalej w sekcji Primitives wbieram Rectangle. 9. Definujem prostokąt: Width=L, eight=2*. W sekcji Base: =0, =-. Na koocu klikamu Build All Objects. 10. Wbierając w drzewie projektu Laplace Equation przekonujem się, że jest tam już równanie Laplace a w formie: ( ) 0, co jest oczwiście równoważ 0. Nic nie musim robid! 11. Ab zdefiniowad warunki brzegowe wbieram w menu głównm Phsics Boundaries Dirichlet Boundar Condition.
8 12.W oknie projektu (po lewej stronie) powinniśm otrzmad węzeł Dirichlet Boundar Condition 1. Natomiast sekcja Settings jest pusta. Dlatego klikam w oknie Graphics (po prawej stronie) górną krawędź prostokąta. Tu klikam 13. W dolj części okna Settings w polu Prescribed value of V wpisujem V0: 14. Wkonujem jeszcze raz takie same kroki (menu głów Phsics Boundaries Dirichlet Boundar Condition), ale tm razem wbieram w oknie Graphics dolną krawędź i wartośd dla Prescribed value of V równą V Teraz definujem warunki brzegowe na krawędzich pionowch (lewej i prawej). Tm razem jako tp warunku brzegowego musim wbrad Flu/Source. Po wbraniu warunku brzegowego i kliknięciu lewej krawędzi w oknie Graphics rozwijam pole Boundar Absorption/Impedence Term.
9 Chcem zdefiniowad waruk brzegow dla 0, czli na podstawie (15): (0, ) (0, ). Ab to uzskad to wrażenie w oparciu o to co daje nam tu COMSOL, czli n ( ) g qv (taka postad warunku brzegowego widnieje pod polem Show equation assuming, powinniśm wpisad: oraz q 0. Mam więc po uzupełnieniu pól: g lam* V 16. Podobnie definiujem waruk brzegow na prawej krawędzi. Tm razem jest waruk dla L, czli ( L, ) ( L, ). Tm razem będzie bardzo podobnie, ale ze wzgledu na inn kieruk wektora noramlgo nie bedzie minusa. Zatem: g lam* V, q Definujem siatkę. Klikam więc w drzewie projektu Mesh, a następnie w oknie Settings jako Element size wbieram Etra fi. 18. Teraz klikam w drzewie projektu węzeł Stud, a następnie Compute. Po chwili obliczenia się zkoocza, a program sam wgeruje standardow wkres:
10 Przedstawion jest na nim potencjał V (, ). Jak widzim linie stałego potencjału (linie ekwipotencjal) nie są równoległe do poziomch krawędzi! Możem się też łatwo przekonad co się stanie, gd nie będzie B pola magtczgo. Ponieważ 0, wiec brak tego pola oznacza, że 0. Wpisujem zatem w oknie Parameters lam=0 i uruchamiam obliczenia. Otrzmam następując wnik: Widad, że linie ekwipotencjal są równoległe do krawędzi poziomch. Zadanie. Wkonad wkres: (a) potencjał w formie powierzchni; (b) kontur linii ekwipotencjalnch (stałego potencjału); (c) wkres linii sił pole elektrczgo, czli E [ /, / ]; (d) wkres ilustrując linie przepłwu prądu (patrz równanie (9) i (10) (należ wliczd J oraz J ).
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
Zjawisko Halla Referujący: Tomasz Winiarski
Plan referatu Zjawisko Halla Referujący: Tomasz Winiarski 1. Podstawowe definicje ffl wektory: E, B, ffl nośniki ładunku: elektrony i dziury, ffl podział ciał stałych ze względu na własności elektryczne:
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Scenariusz lekcji matematyki z wykorzystaniem komputera
Scenariusz lekcji matematki z wkorzstaniem komputera Temat: Wpłw współcznników a i b na położenie wkresu funkcji liniowej. (Rsowanie wkresów prz użciu arkusza kalkulacjnego EXCEL.) Czas zajęć: 9 min Cele:
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
Rozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
Metody matematyczne w technologii materiałów Krzysztof Szyszkiewicz
Kinetka formalna jest działem kinetki chemicznej zajmującm się opisem przebiegu reakcji chemicznch za pomocą równao różniczkowch. W przpadku reakcji homogenicznch (w objętości), g skład jest jednorodn
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Całkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA. Zadania MODUŁ 11 FIZYKA ZAKRES ROZSZERZONY
MODUŁ MAGNETYZM, INDUKCJA ELEKTROMAGNETYCZNA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Badanie własności hallotronu, wyznaczenie stałej Halla (E2)
Badanie własności hallotronu, wyznaczenie stałej Halla (E2) 1. Wymagane zagadnienia - ruch ładunku w polu magnetycznym, siła Lorentza, pole elektryczne - omówić zjawisko Halla, wyprowadzić wzór na napięcie
W. Guzicki Zadanie 30 z Informatora Maturalnego poziom rozszerzony 1
W. uzicki Zadanie 0 z Informatora Maturalnego poziom rozszerzon Zadanie 0. an jest sześcian (zobacz rsunek), którego krawędź ma długość 5. unkt i dzielą krawędzie i w stosunku :, to znacz, że 0. łaszczzna
MATURA PRÓBNA 2 KLASA I LO
IMIE I NAZWISKO MATURA PRÓBNA KLASA I LO CZAS PRACY: 90 MIN. SUMA PUNKTÓW: 60 ZADANIE (5 PKT) Znajdź wszstkie funkcje liniowe określone na zbiorze ;, którch zbiorem wartości jest przedział ; 0. ZADANIE
+ = = (, ) Zewnętrzny brzeg ( Ω 1 ): T = 25 0 C. Wewnętrzny brzeg ( Ω 2 ): T = 60 0 C. T(x,y,0) = 25 0 C. T(x,y,t) =? (x,y) ϵ Ω
Zadanie 5 Rozważmy następujący problem transportu ciepła w geometrii 2D: Transport ciepła opisany jest równaniem: + = = (, ) W zagadnieniu rozpatrujemy warunki brzegowe typu Dirichleta: Warunki początkowe:
MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut
Miejsce na naklejkę z kodem szkoł OKE ŁÓDŹ CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 008 PRZYKŁADOWY ZESTAW ZADAŃ NR Czas prac 0 minut Instrukcja dla zdającego. Sprawdź, cz arkusz egzaminacjn zawiera
Lekcja 40. Obraz graficzny pola elektrycznego.
Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
ROZWIĄZANIA I ODPOWIEDZI
Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.
PRÓBNA MATURA. ZADANIE 1 (1 PKT) Wskaż liczbę, której 4% jest równe 8. A) 200 B) 100 C) 3,2 D) 32
PRÓBNA MATURA ZADANIE ( PKT) Wskaż liczbę, której % jest równe 8. A) B) C), D) ZADANIE ( PKT) Odległość liczb od liczb -8 na osi liczbowej jest równa A) 8 B) + 8 C) + 8 D) 8 ZADANIE ( PKT) Wskaż rsunek,
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Klasyczny efekt Halla
Klasyczny efekt Halla Rysunek pochodzi z artykułu pt. W dwuwymiarowym świecie elektronów, autor: Tadeusz Figielski, Wiedza i Życie, nr 4, 1999 r. Pełny tekst artykułu dostępny na stronie http://archiwum.wiz.pl/1999/99044800.asp
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 11 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Magnetyzm to zjawisko przyciągania kawałeczków stali przez magnesy. 2. Źródła pola magnetycznego. a. Magnesy
Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
2. Wstęp do analizy wektorowej
2. Wstęp do analiz wektorowej 2.1. Pojęcia podstawowe Wielkości wektorowe (1) Wektorem (P) w punkcie P trójwmiarowej przestrzeni euklidesowej nazwam uporządkowan zbiór trzech liczb (skalarów, składowch
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Ruch po równi pochyłej
Sławomir Jemielit Ruch po równi pochłej Z równi pochłej o kącie nachlenia do poziomu α zsuwa się ciało o masie m. Jakie jest przspieszenie ciała, jeśli współcznnik tarcia ciała o równię wnosi f? W jakich
F = e(v B) (2) F = evb (3)
Sprawozdanie z fizyki współczesnej 1 1 Część teoretyczna Umieśćmy płytkę o szerokości a, grubości d i długości l, przez którą płynie prąd o natężeniu I, w poprzecznym polu magnetycznym o indukcji B. Wówczas
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym
Ćwiczenie 11A Wyznaczanie sił działających na przewodnik z prądem w polu magnetycznym 11A.1. Zasada ćwiczenia W ćwiczeniu mierzy się przy pomocy wagi siłę elektrodynamiczną, działającą na odcinek przewodnika
matematyka Matura próbna
Gazeta Edukacja Sprawdź, cz zdasz! Egzamin maturaln matematka MTEMTYK zas prac: minut Matura próbna Maturzsto! Po raz pierwsz napiszesz obowiązkową maturę z matematki na poziomie podstawowm Rozwiąż zadania
Przenoszenie niepewności
Przenoszenie niepewności Uwaga wstępna: pojęcia niepewność pomiarowa i błąd pomiarow są stosowane wmiennie. Załóżm, że wielkość jest funkcją wielkości,,, dla którch niepewności (,, ) są znane (wnikają
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 6 KWIETNIA 0 CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT.) Liczbę 5 7 zaokr aglam do liczb,6.
Linie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t
J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.
Pole elektromagnetyczne
Pole elektromagnetyczne Pole magnetyczne Strumień pola magnetycznego Jednostką strumienia magnetycznego w układzie SI jest 1 weber (1 Wb) = 1 N m A -1. Zatem, pole magnetyczne B jest czasem nazywane gęstością
Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA
Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet
Pole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
i elementy z półprzewodników homogenicznych część II
Półprzewodniki i elementy z półprzewodników homogenicznych część II Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego
Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:
Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane
Optyka 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Optka Projekt współinansowan przez Unię Europejską w ramach Europejskiego Funuszu Społecznego Optka II Promień świetln paając na powierzchnię zwierciała obija się zgonie z prawem obicia omówionm w poprzeniej
Ruch ładunków w polu magnetycznym
Ruch ładunków w polu magnetycznym Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Ruch ładunków w polu magnetycznym
ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f
IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem
Magnetyzm. Magnetyzm zdolność do przyciągania małych kawałków metalu. Bar Magnet. Magnes. Kompas N N. Iron filings. Biegun południowy.
Magnetyzm Magnetyzm zdolność do przyciągania małych kawałków metalu Magnes Bar Magnet S S N N Iron filings N Kompas S Biegun południowy Biegun północny wp.lps.org/kcovil/files/2014/01/magneticfields.ppt
Prąd elektryczny - przepływ ładunku
Prąd elektryczny - przepływ ładunku I Q t Natężenie prądu jest to ilość ładunku Q przepływającego przez dowolny przekrój przewodnika w ciągu jednostki czasu t. Dla prądu stałego natężenie prądu I jest
Warsztat pracy matematyka
Warsztat prac matematka Izabela Bondecka-Krzkowska Marcin Borkowski Jęzk matematki Teoria Jednm z podstawowch pojęc matematki jest pojęcie zbioru. Teorię opisującą zbior nazwa sie teorią mnogości. Definicja
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI
Wkład z matematki inżnierskiej BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI IMiF UTP 06 przed wkonaniem wkresu... BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Wkonujem wkres funkcji wznaczaja c wcześniej: 1 dziedzinȩ
Ćwiczenie nr 31: Modelowanie pola elektrycznego
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH
VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH ZADANIA ZAMKNIĘTE Zadanie. ( pkt) 0 90 Liczba 9 jest równa 0 B. 00 C. 0 9 D. 700 7 Zadanie. 8 ( pkt) Liczba 9 jest równa B. 9 C. D. 5 Zadanie. ( pkt) Liczba
Funkcje wielu zmiennych
Funkcje wielu zmiennch Wkres i warstwice funkcji wielu zmiennch. Przeglad powierzchni stopnia drugiego. Granice i ciagłość funkcji wielu zmiennch. Małgorzata Wrwas Katedra Matematki Wdział Informatki Politechnika
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 8 MARCA 015 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Przbliżenie dziesiętne
f x f y f, jest 4, mianowicie f = f xx f xy f yx
Zestaw 14 Pochodne wŝszch rzędów Niech będzie dana funkcja x f określona w pewnm obszarze D Przpuśćm Ŝe f x istnieją pochodne cząstkowe tej funkcji x x Pochodne cząstkowe tch pochodnch jeŝeli istnieją
Potencjalne pole elektrostatyczne. Przypomnienie
Potencjalne pole elektrostatyczne Wszystkie rysunki i animacje zaczerpnięto ze strony http://webmitedu/802t/www/802teal3d/visualizations/electrostatics/indexhtm Tekst jest wolnym tłumaczeniem pliku guide03pdf
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2012/2013
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 01/01 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA GM-M7-1 KWIECIEŃ 01 Liczba punktów za zadania zamknięte i otwarte: 9 Zadania
Pochodna funkcji wykład 5
Pochodna funkcji wkład 5 dr Mariusz Grządziel 8 listopada 2010 Funkcja logistczna 40 Rozważm funkcję logistczną = f 0 (t) = 1+5e 0,5t Funkcja f może bć wkorzstana np. do modelowania wzrostu mas ziaren
KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY
pieczątka WKK Kod ucznia - - Dzień Miesiąc Rok DATA URODZENIA UCZNIA KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJUM ETAP REJONOWY Drogi Uczniu Witaj na II etapie konkursu matematcznego. Przecztaj uważnie instrukcję.
[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.
rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH
MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1
autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 26 MAGNETYZM I ELEKTROMAGNETYZM. CZĘŚĆ 1 Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt TEST JEDNOKROTNEGO
Zwój nad przewodzącą płytą
Zwój nad przewodzącą płytą Z potencjału A można też wyznaczyć napięcie u0 jakie będzie się indukować w pojedynczym zwoju cewki odbiorczej: gdzie: Φ strumień magnetyczny przenikający powierzchnię, której
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW.
Zadanie 106 a, c WYZNACZANIE PRZEWODNICTWA WŁAŚCIWEGO I STAŁEJ HALLA DLA PÓŁPRZEWODNIKÓW. WYZNACZANIE RUCHLIWOŚCI I KONCENTRACJI NOŚNIKÓW. 1. Elektromagnes 2. Zasilacz stabilizowany do elektromagnesu 3.
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY MAJA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 ( 4) 2 8 4 jest
Analiza Matematyczna II.1, kolokwium rozwiazania 9 stycznia 2015, godz. 16:15 19:15
Analiza Matematczna II., kolokwium rozwiazania 9 stcznia 05, godz. 6:5 9:5 0. Podać definicj e zbioru miar 0. Udowodnić, że jeśli A = {(x,, z) : (x )(x + + z ) = 0}, to l (A) = 0. Zbiorem miar zero jest
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Pomiar bezpośredni przyrządem wskazówkowym elektromechanicznym
. Rodzaj poiaru.. Poiar bezpośredni (prost) W przpadku poiaru pojednczej wielkości przrząde wskalowan w jej jednostkach wartość niedokładności ± określa graniczn błąd przrządu analogowego lub cfrowego
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Wykład 4 Testy zgodności. dystrybuanta rozkładu populacji dystrybuanty rozkładów dwóch populacji rodzaj rozkładu wartości parametrów.
Wkład Test zgodności. Test zgodności służą do werikacji hipotez mówiącch, że a dstrbuanta rozkładu populacji ma określoną z gór postać unkcjną b dstrbuant rozkładów dwóch populacji nie różnią się w sposób
Elementy algebry i analizy matematycznej II
Element algebr i analiz matematcznej II Wkład 1. Ekstrema unkcji dwóch zmiennch Deinicja 1 Funkcja dwóch zmiennch, z = (, ), ma w punkcie z = (, ), maksimum lokalne, jeżeli istnieje takie otoczenie punktu
Fizyka I (mechanika), ćwiczenia, seria 1
Fizka I (mechanika), ćwiczenia, seria 1 Układ współrzędnch na płaszczźnie. Zadanie 1 Odcinek o stałej długości porusza się tak, że jego punkt końcowe A i B ślizgają się po osiach odpowiednio x i pewnego
Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza
Efekt Halla Cel ćwiczenia Celem ćwiczenia jest zbadanie efektu Halla. Wstęp Siła Loretza Na ładunek elektryczny poruszający się w polu magnetycznym w kierunku prostopadłym do linii pola magnetycznego działa
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Ć w i c z e n i e K 1
kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:
KONSPEKT LEKCJI. NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA
NAUCZYCIEL: mgr inŝ. EWA JAROSZ SZKOŁA: GIMNAZJUM KLASA: 3 PRZEDMIOT: MATEMATYKA KONSPEKT LEKCJI TEMAT LEKCJI: Badanie własności funkcji liniowej za pomocą programu Graphmatica. CELE OPERACYJNE: Uczeń
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 9 MARCA 019 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Cena nart po obniżce o
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 2500 lat
Czym jest prąd elektryczny
Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
REDUKCJA PŁASKIEGO UKŁADU SIŁ
olitechnika rocławska dział Budownictwa lądowego i odnego Katedra echaniki Budowli i Inżnierii iejskiej EDUKCJA ŁASKIEG UKŁADU SIŁ ZIĄZANIE ANALITYCZNE I GAFICZNE Zadanie nr. Dokonać redukcji układu sił
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
3.2. Podstawowe własności funkcji. Funkcje cyklometryczne, hiperboliczne. Definicję funkcji f o dziedzinie X i przeciwdziedzinie Y mamy w 3A5.
WYKŁAD 7 3 Podstawowe własności unkcji Funkcje cklometrczne, hiperboliczne Deinicję unkcji o dziedzinie X i przeciwdziedzinie Y mam w 3A5 3A37 (Uwaga: dziedzina naturalna) Często się zdarza, że unkcja
Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera
Magnetyzm cz.i Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera 1 Magnesy Zjawiska magnetyczne (naturalne magnesy) były obserwowane i badane już w starożytnej Grecji 500 lat
ELEKTRONIKA ELM001551W
ELEKTRONIKA ELM001551W Podstawy elektrotechniki i elektroniki Definicje prądu elektrycznego i wielkości go opisujących: natężenia, gęstości, napięcia. Zakres: Oznaczenia wielkości fizycznych i ich jednostek,
Wymagania edukacyjne: Elektrotechnika i elektronika. Klasa: 1Tc TECHNIK MECHATRONIK. Ilość godzin: 4. Wykonała: Beata Sedivy
Wymagania edukacyjne: Elektrotechnika i elektronika Klasa: 1Tc TECHNIK MECHATRONIK Ilość godzin: 4 Wykonała: Beata Sedivy Ocena Ocenę niedostateczną uczeń który Ocenę dopuszczającą Wymagania edukacyjne
Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można
Zadania do rozdziału 10.
Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać
a, b funkcji liniowej y ax + b
. FUNKCJA LINIOWA zadania Zad... Napisz wzór funkcji liniowej, której wkres przechodzi przez punkt A (, ) i przecina oś OY w punkcie B (0,). Zad... Dan jest wzór funkcji liniowej: A) B) C) D) Na podstawie
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika
Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki
Liczby, działania i procenty. Potęgi I pierwiastki
Zakres materiału obowiązując do egzaminu poprawkowego z matematki klasa technikum str Dział programow Liczb, działania i procent Potęgi I pierwiastki Zbior i przedział liczbowe Wrażenia algebraiczne Równania
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85