Filtracja adaptacyjna - podstawy
|
|
- Marcin Mazur
- 7 lat temu
- Przeglądów:
Transkrypt
1 Fltracja adaptacyjna - podstawy Współczynn fltrów adaptacyjnych są zmennym w czase w celu optymalzacje zadanego ryterum Powszechnym algorytmem dla fltrów adaptacyjnych jest algorytm LMS Least Mean Square) Fltry adaptacyjne są mplementowane zwyle jao FIR, tóre są struturalne stablne Taa fltracja jest powszechne stosowanym algorytmem
2 Schemat bloowy uładu fltracj adaptacyjnej rn) reference sgnal xn) Flter wth varable coeffcents Calculaton for adapton of coeffcents yn) - + New set of coeffcents en) Error sgnal
3 Rozwązane problemu metodą najmnejszych wadratów poszuujemy mnmum e r y n n n. 2 ) n Crteron mn J E e. J N 1 2 E e x ) 2E r x ) 2 b E x x ). b N 1 FIR flter: y b x. n n 0 n n n n n n 0 Optmum : R b x r xr
4 Algorytm LMS Poszuujemy mnmum J od b: J 2 b E e x ). n n Rozwązane teracyjne [ ] ) 0, N 1 b n + 1) b n) +δ E en xn. Zbeżne gdy ro adaptacj λ2 δ <. max Wartość mas. tablcy R x
5 Algorytm LMS Wartość średna E[en)xn-)] jest neznana W tym algorytme wartość średna jest zastępowana przez en)xn-) Algorytm jest zbeżny gdy ro oblczeń jest wystarczająco mały Nazwa algorytmu: LMS Least Mean Square) lub Wdrow algorthm: [ ] 0, N 1 b n + 1) b n) +δ en xn.
6 Algorytm LMS W ażdym rou algorytm LMS wyonuje: fltruje sygnał wejścowy dla współcz. b modyfuje współcz. b Input x n x n z -1 x n- 1 z -1 z -1 x n-n+1 b 0 b 1 b N-1 Reference r n Σ y n - Σ e n *x n e n *x n-1 e n *x n-n+1 e n e e n *x n-
7 Algorytm LMS Równane fltru FIR: y N 1 b n) x. n n 0 Równane atualzacj współczynnów: [ ] 0, N 1 b n + 1) b n) +δ en xn. Wth: e r y. n n1 n1
8 Realzacja stałoprzecnowa Gdy fltr LMS jest realzowany na procesorze sygnałowym stałoprzecnowym: Doładność oblczeń jest stotna gdy rnde *x n- ) jest mnejsze nż stosowana doładność oblczeń to ne ma fltracj adaptacyjnej Zbeżność oblczeń zależy od: rou δ: węszy δ to szybsza zbeżność ale gorsza doładność oblczeń lczba współczynnów N: błąd całowty jest proporcjonalny do N
9 Kro algorytmu LMS Raz podczas wszystch teracj: oblcz błąd e n r n -y n saluj błąd przez ro adapt. δ: e n δe n. Podczas wszystch teracj, dla ażdego współczynna b: mnóż błąd przez sygnał: e e n x n- mnóż x n- b zapamętaj wyn oblcz nowe współczynn: newb b +e atualzuj współczynn: b newb.
10 Fltr adaptacyjny LMS na PS C54x Równana fltracj atualzacj współczynnów: wyonywane dla ażdego momentu n: en rn 1 yn1. y N 1 b n) x. n n 0 [ ] 0, N 1 b n + 1) b n) +δ en xn. Realzowane nstrucje LMS: B B + b *x n- ); A rnde +b ) oblcza y n oblcza poprawone b w jednym rou operacja zaorąglana jest stotna poneważ δ może być bardzo małe
11 Fltr adaptacyjny LMS na PS C54x Fltr LMS FIR): 2N cyl na zero/begun. LMS Xmem, Ymem A) + Xmem)<< A zaorąglone) B) + Xmem) x Ymem) B wyorzystuje obydwa ACCUs A B. Xmem wsazuje na b, Ymem na x n- Dane x są zachowane w buforze cylcznym.
12 Przyład fltru adapt. LMS na PS C54x Defnuj 2 secje dla danych współczynnów adr_debut_coef AR3 Data Memory h0) h1) h2) Data Memory xn-) Crcular buffer adr_debut_dat AR2.mmregs.global adr_debut_dat, adr_fn_dat.global adr_debut_coef, adr_fn_coef N.set 32 adr_debut_dat.usect "buf_data", N adr_debut_coef.usect "buf_coef", N
13 Przyład fltru adapt. LMS na PS C54x Incjalzacja.text * Intalzaton of BK, AR0,FRCT STM #N, BK STM #1, AR0 SSBX FRCT * Intalsaton of AR2, AR3, AR0 STM #adr_debut_dat),ar2 STM #adr_fn_coef),ar3 STM #1, AR0 włącza tryb zaorąglana
14 Przyład fltru adapt. LMS na PS C54x * after calculaton of error e r-y * load T wth e LD erreur, T * ntalzaton of B LD #0,B * Calculaton of yn) and update of coef STM #N-2, BRC MPY *AR2, A mnożene, dodawane LMS *AR3, *AR2+ RPTB end-1 zaorąglane ST A,*AR3+0% MPY *AR2, A LMS *AR3, *AR2+ end STH A,*AR3 STH B, *yn
15 Synteza analza sygnału mowy Sygnał mowy może być tratowany jao wyjśce fltru o zmennych w czase parametrach, tórego pobudzenem jest sygnał losowy oraz cąg mpulsów
16 Wdmo sygnału dźwęowego
17 Synteza sygnału dźwęowego Cyfrowy model generowana sygnału mowy Charaterystya wdmowa Pobudzene szum bały cąg mpulsów Fltr lnowy zmenny w czase Sygnał mowy
18 Synteza sygnału dźwęowego Cyfrowy model generowana sygnału mowy Pobudzene: szum bały cąg mpulsów Model głośn Model śceż głosowej Czynn orecj wdma Model emsj warg Sygnał mowy
19 Synteza sygnału dźwęowego Transmtancja cyfrowego modelu generowana sygnału mowy H z) 1 z K ) ct ct 1 e cos bt ) z + e z 1 Gdze b c bezpośredno zależą od częstotlwośc F szeroośc pasma B -tego formantu: b 2πF, c 2 πf Sygnał wyjścowy Sz) jest dany zależnoścą G G S z) H z) U z) U z) A z) Uz) jest pobudzenem; Az) manown w wyrażenu na Hz) )
20 Synteza sygnału dźwęowego Dla sygnału mowy o postac równana różncowego M s n) α s n 1 ) + Gu n) oraz dla fltru Az) o postac M A z ) 1 1 a z to synteza sygnału mowy sprowadza sę do wyznaczena wartośc a
21 Synteza sygnału dźwęowego W metodze lnowej predycj sygnału mowy ang. LPC) ażda próba jest lnową ombnacją poprzedzających ją próbe M n s a n s 1 ) ) ˆ błąd predycj jest zapsany jao M n s a n s n s n s n e 1 ) ) ) ˆ ) ) Co odpowada wyjścu fltru o transmtancj Az)
22 Synteza sygnału dźwęowego Dąży sę do mnmalzacj średnowadratowego błędu predycj o postac gdze 2 1 ) ) n M n s a n s E Kolejne pochodne cząstowe względem a przyrównuje sę do zera, w wynu czego uzysuje sę równane: M M j j j a 1 1,...,,0) ), Φ Φ n n s j n s j ) ) ), Φ
23 Synteza sygnału dźwęowego Mamy uład M równań z M newadomym: M 1 a Φ j, ) Φ j,0) j 1,..., M Sposób rozwązana zależy od postac tablcy Φj,); Wyróżna sę dwe metody: autoorelacj autoowarancj Dla metody autoorelacj sygnał mowy jest nezerowy dla 0 n N-1; poza tym przedzałem jego wartośc są równe zeru Wówczas można wyazać Φ j, ) R j ) gdze R ) N 1 n 0 s n) s n + )
24 Synteza sygnału dźwęowego Należy rozwązać uład równań M 1 a R ) R ) 1,..., M Metoda elmnacj Gaussa pozwala rozwązać uład M równań z M newadomym. To jest macerz Toepltza stałe wartośc na poszczególnych dagonalach), co ułatwa oblczena
25 Synteza sygnału dźwęowego Do rozwązana uładu opracowano algorytmy Levnsona Robnsona, procedurę reursyjną Durbna: 1) 2 ) 1) 1) ) ) 1) 1 1 1) 0) ) / ) ) 0) j j j j j E E j a a a a E j R a R R E dla 1 M Rozwązanem jest zbór a j a j M) przy 1 j M Metoda słada sę z dwóch etapów, najperw oblcza sę elementy macerzy uładu a następne rozwązuje powstały uład
26 Woodery LPC Kodowane sygnału mowy do zapewnena małej szybośc przesyłana danych sn) Analzator LPC Uład odowana Kanał Uład deodowana Syntezator LPC Współczynn według metody LPC atualzuje sę zwyle co 20ms. Wówczas szybość przesyłana sygnału mowy wynos rzędu 1000 btów/s
27 Rozpoznawane mowy Wyróżnamy trzy etapy: - parametryzacja sygnału - lasyfacja stopeń podobeństwa zboru parametrów do zborów bblotecznych) - podjęce decyzj sn) Pomar parametrów Klasyfacja Reguły decyzyjne Rozpoznane słowo Bblotea wzorców parametrycznych
28 Kerun rozwoju PS DaVnc Dgtal Meda Processors Mroontroler plus PS w jednym, dodatowe złącza, wspomagane przetwarzana vdeo. Transport Stream InterFace Ethernet MAC Hgh-Defnton Vdeo/Imagng Coprocessor
29 Kerun rozwoju PS np. TMS320DM355 DSPs SOCs
30 Kerun rozwoju PS Łatwejsze dołączane do zewnętrznych urządzeń
31 Kerun rozwoju PS Zastosowana PS przy przetwarzanu sygnału vdeo
32 Kerun rozwoju PS Zastosowane PS na ażdym etape przetwarzana oraz transmsj sygnału vdeo
33 Kerun rozwoju PS Nowe zastosowana rodzny TMS320C2000 Sterowane ntelgentnym urządzenam eletrycznym, pomar zużyca energ przez seć energetyczną moc oblczeń 150MIPS, szybość transmsj 100bps, zasęg do lu m
34 Kerun rozwoju PS Nowe zastosowana rodzny TMS320C2000 Sterowane dołączanem odnawalnych źródeł energ; optymalne przewarzane DC/DC
35 Kerun rozwoju PS Nowe zastosowana rodzny TMS320C2000 Zastosowane w przemyśle oraz w domach źródła energ) Możlwość montorowana zużyca energ, a taże sterowana zdalne przez modem lub nne nterfejsy Dane oprócz przetwarzana w czase rzeczywstym są równeż magazynowane do późnejszej analzy porównawczej Do przetwarzana próbe, wylczana FFT, wylczana RMS prądu, napęca, mocy, perwszej harmoncznej oraz harmoncznych wyższych rzędów ocena jaośc energ); rodzna C2000- F2833x) oraz np. TMS320C6745
36 Kerun rozwoju PS Mern zużyca energ
37 Kerun rozwoju PS Kontrola zużyca energ w przenośnych urządzenach
38 Kerun rozwoju PS Zarządzane energą w domowej nstalacj energetycznej
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystya.05.00 r. Zadane Zmenna losowa X ma rozład wyładnczy o wartośc oczewanej, a zmenna losowa Y rozład wyładnczy o wartośc oczewanej. Obe zmenne są nezależne. Oblcz E( Y X + Y =
Kier. MTR Programowanie w MATLABie Laboratorium Ćw. 12
Ker. MTR Programowane w MATLABe Laboratorum Ćw. Analza statystyczna grafczna danych pomarowych. Wprowadzene MATLAB dysponuje weloma funcjam umożlwającym przeprowadzene analzy statystycznej pomarów, czy
SYSTEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE METODY KLASYFIKACJI. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSEMY UCZĄCE SIĘ WYKŁAD 5. LINIOWE MEODY KLASYFIKACJI Częstochowa 4 Dr hab. nż. Grzegorz Dude Wydzał Eletryczny Poltechna Częstochowsa FUNKCJE FISHEROWSKA DYSKRYMINACYJNE DYSKRYMINACJA I MASZYNA LINIOWA
Metody Numeryczne 2017/2018
Metody Numeryczne 7/8 Inormatya Stosowana II ro Inżynera Oblczenowa II ro Wyład 7 Równana nelnowe Problemy z analtycznym rozwązanem równań typu: cos ln 3 lub uładów równań ja na przyład: y yz. 3z y y.
Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji
Nelnowe zadane optymalzacj bez ogranczeń numeryczne metody teracyjne optymalzacj mn R n f ( ) = f Algorytmy poszuwana mnmum loalnego zadana programowana nelnowego: Bez ogranczeń Z ogranczenam Algorytmy
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Wykład 5 12/15/2013. Problemy algebry liniowej w Matlabie
Wykład 5. Problemy algebry lnowej w Matlabe. Analza sygnałów a) w dzedzne częstotlwośc b) w dzedzne czasu c) częstotlwoścowo-czasowa d) nagrywane analza dźwęku e) Sgnal Processng Toolbox Problemy algebry
APROKSYMACJA QUASIJEDNOSTAJNA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B
Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Wstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Udoskonalona metoda obliczania mocy traconej w tranzystorach wzmacniacza klasy AB
Julusz MDZELEWSK Wydzał Eletron Techn nformacyjnych, nstytut Radoeletron, oltechna Warszawsa do:0.599/48.05.09.36 dosonalona metoda oblczana mocy traconej w tranzystorach wzmacnacza lasy AB Streszczene.
WikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO
OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze
MODELE OPTYMALNEGO PRZETWARZANIA SYGNAŁÓW LOSOWYCH
Wesław Ctko, Wesław Seńko Akadema Morska w Gdyn MODELE OPYMALNEGO PRZEWARZANIA SYGNAŁÓW LOSOWYCH Estymacja sygnałów losowych jest stotnym zagadnenem matematycznym, mającym zastosowane w welu dzedznach
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w
Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k
Metody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
Zastosowanie technik sztucznej inteligencji w analizie odwrotnej
Zastosowane technk sztucznej ntelgencj w analze odwrotnej Ł. Sztangret, D. Szelga, J. Kusak, M. Petrzyk Katedra Informatyk Stosowanej Modelowana Akadema Górnczo-Hutncza, Kraków Motywacja Dokładność symulacj
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja
Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest
Automatyzacja Statku
Poltechnka Gdańska ydzał Oceanotechnk Okrętownctwa St. nż. I stopna, sem. IV, kerunek: TRANSPORT Automatyzacja Statku ZAKŁÓCENIA RUCHU STATKU M. H. Ghaem Marzec 7 Automatyzacja statku. Zakłócena ruchu
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
1. Zmienne i dane wejściowe Algorytmu Rozdziału Obciążeń
ZAŁĄCZNIK nr Zasada dzałana Algorytmu Rozdzału Obcążeń. Zmenne dane wejścowe Algorytmu Rozdzału Obcążeń.. Zmennym podlegającym optymalzacj w procese rozdzału obcążeń są welośc energ delarowane przez Jednost
Diagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne
Zadanie na wykonanie Projektu Zespołowego
Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry
( ) + ( ) T ( ) + E IE E E. Obliczanie gradientu błędu metodą układu dołączonego
Obliczanie gradientu błędu metodą uładu dołączonego /9 Obliczanie gradientu błędu metodą uładu dołączonego Chodzi o wyznaczenie pochodnych cząstowych funcji błędu E względem parametrów elementów uładu
KONSPEKT WYKŁADU. nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA. Piotr Konderla
Studa doktorancke Wydzał Budownctwa Lądowego Wodnego Poltechnk Wrocławskej KONSPEKT WYKŁADU nt. METODA ELEMENTÓW SKOŃCZONYCH TEORIA I ZASTOSOWANIA Potr Konderla maj 2007 Kurs na Studach Doktoranckch Poltechnk
Egzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH
Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska
Programowanie Równoległe i Rozproszone
Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać
Urządzenia wejścia-wyjścia
Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
MECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Neuron liniowy. Najprostsza sieć warstwa elementów liniowych
Najprostsza jest jednostka lnowa: Neuron lnowy potraf ona rozpoznawać wektor wejścowy X = (x 1, x 2,..., x n ) T zapamętany we współczynnkach wagowych W = (w 1, w 2,..., w n ), Zauważmy, że y = W X Załóżmy,
Badanie energetyczne płaskiego kolektora słonecznego
Katedra Slnów Salnowych Pojazdów ATH ZAKŁAD TERMODYNAMIKI Badane energetyczne łasego oletora słonecznego - 1 - rowadzene yorzystane energ celnej romenowana słonecznego do celów ogrzewana, chłodzena oraz
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Zadanie 1. Rzucamy symetryczną monetą tak długo, aż w dwóch kolejnych rzutach pojawią się,,reszki. Oblicz wartość oczekiwaną liczby wykonanych rzutów.
Pradopodobeństo statystya 6..3r. Zadae. Rzucamy symetryczą moetą ta długo aż dóch olejych rzutach pojaą sę resz. Oblcz artość oczeaą lczby yoaych rzutó. (A) 7 (B) 8 (C) 9 (D) (E) 6 Wsazóa: jeśl rzuce umer
min h = x x Algorytmy optymalizacji lokalnej Nieliniowe zadanie optymalizacji bez ograniczeń numeryczne metody iteracyjne optymalizacji x x
Nelnowe zaane optymalzacj bez ogranczeń numeryczne metoy teracyjne optymalzacj mn n x R ) = f x Algorytmy poszuwana mnmum loalnego la: f zaana programowana nelnowego bez ogranczeń zaana programowana nelnowego
STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW
STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane
Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
2. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI
Część. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI.. STOPIEŃ KINEMATYCZNEJ NIEWYZNACZALNOŚCI W metodze sł w celu przyjęca układu podstawowego należało odrzucć węzy nadlczbowe. O lczbe odrzuconych węzów decydował
MARTA GAWRON * METODY SYMULACJI STATYCZNEJ SIECI GAZOWEJ
UNIWERSYTET ZIELONOGÓRSKI ZESZYTY NAUKOWE NR 144 Nr 4 INŻYNIERIA ŚRODOWISKA 011 MARTA GAWRON * METODY SYMULACJI STATYCZNEJ SIECI GAZOWEJ S t r e s z c z e n e W artyule przedstawono metody symulacj statycznej
IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6
IN YNIERIA BEZPIECZE STWA LABORATORIUM NR 6 WYBRANE ZAGADNIENIA Z TEORII LICZB 1. Wybrane zagadnena z teor lczb Do onstruowana systemów ryptografcznych u Ŝ ywa sę czę sto wyrafnowanego aparatu matematycznego,
Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym
ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE
Temat: Operacje elementarne na wierszach macierzy
Temat: Operacje elementarne na erszach macerzy Anna Rajfura Anna Rajfura Operacje elementarne na erszach macerzy n j m n A Typy operacj elementarnych. Zamana mejscam erszy oraz j, ozn.: j. Mnożene ersza
u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH
METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
Opracować model przekaźnika różnicowego do zabezpieczania transformatora dwuuzwojeniowego. Przeprowadzić analizę działania przekaźnika.
PRZKŁAD C4 Opracować model przeaźna różncowego do zabezpeczana transformatora dwuuzwojenowego. Przeprowadzć analzę dzałana przeaźna. Model fragmentu sec eletrycznej wraz z zabezpeczenem różncowym transformatora
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
Odtworzenie wywodu metodą wstępującą (bottom up)
Przeglądane wejśca od lewej strony do prawej L (k) Odtwarzane wywodu prawostronnego Wystarcza znajomosc "k" następnych symbol łańcucha wejścowego hstor dotychczasowych redukcj, aby wyznaczyc jednoznaczne
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
[d(i) y(i)] 2. Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) i=1. λ n i [d(i) y(i)] 2 λ (0, 1]
Algorytm RLS Recursive Least Squares Ogólna postać kryterium LS: J = i e 2 (i) = i [d(i) y(i)] 2 Do wyprowadzenia algorytmu RLS posłuży kryterium autokorelacyjne: J n = e 2 (i) Zmodyfikowane kryterium
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 5 - suplement
ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 5 - suplement Realizacja na procesorze sygnałowym adaptacyjnego usuwania echa w łączu telefonicznym 1. SYMULACJA ECHA W ŁĄCZU TELEFONICZNYM I JEGO
Przykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Małe drgania wokół położenia równowagi.
ałe rgana woół położena równowag. ałe rgana Anazuemy ułay a tórych potencał Vqq,q,..,q posaa mnmum a oreśonych wartośc współrzęnych uogónonych q,, -czba stopn swoboy. ożemy ta przesaować te współrzęne
5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.
Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5. PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Rozłady soowe Rozład jednopuntowy Oreślamy: P(X c) 1 gdzie c ustalona liczba. 1 EX c, D 2 X 0 (tylo ten rozład ma zerową wariancję!!!)
A. ROZLICZENIE KOSZTÓW CENTRALNEGO OGRZEWANIA CHARAKTERYSTYKA KOSZTÓW DOSTAWY CIEPŁA
REGULAMIN ndywdualnego rozlczena osztów energ ceplnej dostarczonej na potrzeby centralnego ogrzewana cepłej wody meszań w zasobach Spółdzeln Meszanowej Lębora. POSTANOIENIA OGÓLNE Regulamn oreśla zasady:
BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH
BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH. CEL ĆWICZEIA Celem ćwczena jest poznane: podstawowych pojęć dotyczących statycznych właścwośc przetwornków pomarowych analogowych cyfrowych oraz
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 13 20
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Fola Pomer. Unv. Technol. Stetn. 2009, Oeconomca 275 (57), 13 20 Iwona BĄK, Katarzyna WAWRZYNIAK BADANIE JAKOŚCI ŚRODOWISKA NATURALNEGO W WOJEWÓDZTWIE
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
BADANIA WSTĘPNE PARAMETRÓW DYNAMICZNYCH W KONSTRUKCJACH WIELOMATERIAŁOWYCH Z DODATKIEM ZEOLITU
INTERNATIONAL SCIENTIFIC CONFERENCE MODERN TECHNOLOGIES OF ZEOLITE TUFF USAGE IN INDUSTRY 0- May 0 Lvv, Ukrane BADANIA WSTĘPNE PARAMETRÓW DYNAMICZNYCH W KONSTRUKCJACH WIELOMATERIAŁOWYCH Z DODATKIEM ZEOLITU
Dr inż. Robert Smusz Politechnika Rzeszowska im. I. Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Termodynamiki
Dr nż. Robert Smusz Poltechnka Rzeszowska m. I. Łukasewcza Wydzał Budowy Maszyn Lotnctwa Katedra Termodynamk Projekt jest współfnansowany w ramach programu polskej pomocy zagrancznej Mnsterstwa Spraw Zagrancznych
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 18. ALGORYTMY EWOLUCYJNE - ZASTOSOWANIA Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska ZADANIE ZAŁADUNKU Zadane załadunku plecakowe
STATYSTYKA. Zmienna losowa skokowa i jej rozkład
STATYSTYKA Wnosowane statystyczne to proces myślowy polegający na formułowanu sądów o całośc przy dysponowanu o nej ogranczoną lczbą nformacj Zmenna losowa soowa jej rozład Zmenną losową jest welość, tóra
=(u 1.,t) dla czwórnika elektrycznego dysypatywnego o sygnale wejściowym (wymuszeniu) G k. i sygnale wyjściowym (odpowiedzi) u 2
Przyła Ułożyć równane ruchu u u,t la czwórna eletrycznego ysypatywnego o sygnale wejścowym wymuszenu G u sygnale wyjścowym opowez u. Zmenna uogólnona Współrzęna uogólnona Pręość uogólnona q Energa netyczna
7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH
WYKŁAD 7 7.8. RUCH ZMIENNY USTALONY W KORYTACH PRYZMATYCZNYCH 7.8.. Ogólne równane rucu Rucem zmennym w korytac otwartyc nazywamy tak przepływ, w którym parametry rucu take jak prędkość średna w przekroju
n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach
Problem decyzyny cel różne sposoby dzałana (decyze) warunk ogranczaące (determnuą zbór decyz dopuszczalnych) kryterum wyboru: umożlwa porównane efektywnośc różnych decyz dopuszczalnych z punktu wdzena
Zastosowania programowalnych układów analogowych isppac
Zastosowania programowalnych uładów analogowych isppac 0..80 strutura uładu "uniwersalnego" isppac0 ułady nadzorujące na isppac0, 30 programowanie filtrów na isppac 80 analiza częstotliwościowa projetowanych
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
MECHANIKA BUDOWLI 2 1. UKŁADY PRZESTRZENNE
Oga Kopacz, Adam Łodygows, Krzysztof Tymper, chał łotowa, Wojcech awłows Konsutacje nauowe: prof. dr hab. JERZY RAKOWSKI oznań / ECHANIKA BUDOWLI. UKŁADY RZESTRZENNE O przestrzennośc ne śwadczy tyo geometra