Programowanie Równoległe i Rozproszone
|
|
- Janusz Kalinowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska /38 PRR Wykład Chcemy rozwązać następujący układ równań lnowych A* where gdze A jest nesymetryczną trójdagonalnąmacerzą n * n rzędu n: są n-wymarowym wektoram: (,, 3,..., n-, n ) T (,, 3,..., n-, n ) T a A c a c c a n a n n cn n A, mają współczynnk rzeczywste. /38 PRR Wykład Jak podano na poprzednm wykładze, jednym z najwydajnejszych ( najardzej popularnych) algorytmów sekwencyjnych do rozwązywana układu równań lnowych A d opera sę na rozkładze LU macerzy A. 3/38 PRR Wykład
2 Programowane Równoległe Rozproszone Wykład A jest rozkładane na loczyn dwóch dwudagonalnych macerzy L U gdze e A LU e e n e n f * c f c f c f n c f n n Następne z równana Ly d wylcza sę y, a z równana U y wylcza sę. 4/38 PRR Wykład W tym przypadku algorytm rozkładu LU składa sę z następujących kroków : Krok: Olczene rozkładu LU macerzy A f e a / f - n - f e * c - n Krok : Wyznaczene y z Ly d y d y d e * y - n - Krok 3: Wylczene z U y używając n- y n- / f n- (y c * + ) / f n - Czas: Algorytm LU wymaga 8*n 7operacj arytmetycznych (flops). 5/38 PRR Wykład Sekwencyjny algorytm przedrostkowy (ang. Sequental pref- SP) Równane A d może zostać przedstawone jako trzyczęścowa zależność rekurencyjna: a * - + * + c * + d n oraz * + c * d a n- * n- + n- * n- d n- 6/38 PRR Wykład
3 Programowane Równoległe Rozproszone Wykład Sekwencyjny algorytm przedrostkowy (SP) Zdefnujmy a c n- - n Zgodne z powyższą konwencją, a * - + * + c * + d zachodz dla n. 7/38 PRR Wykład Bez straty ogólnośc, możemy założyć, że c W każdym nnym przypadku układ może zostać podzelony na dwa ( lu węcej) układy trójdagonalne, które możemy rozpatrywać oddzelne. 8/38 PRR Wykład Z a * - + * + c * + d n otrzymujemy a d + * * + c c c n Podstawając: a d α β χ c c c mamy + α * + β * - + χ for n. 9/38 PRR Wykład 3
4 4 Programowane Równoległe Rozproszone Wykład /38 PRR Wykład Powyższe wyrażene może zostać zapsane w postac macerzowej jako: Zdefnujmy: Możemy, węc, napsać: X + B * X for n + * χ β α B χ β α n n n X /38 PRR Wykład Równość macerzowa X + B * X for n pozwala nam na wylczene wszystkch X dla n o le tylko dany jest początkowy wektor X jest dany. Do rozpoczęca olczeń musmy tylko wylczyć. X /38 PRR Wykład Zauważmy, że powtarzając X + B * X otrzymujemy X B * X X B * X B * B * X X 3 B * X B * B * B * X... X n B n- * X n- B n- * B n- *... *B * X
5 Programowane Równoległe Rozproszone Wykład Oznaczając C B * B - *... *B n otrzymujemy X n C n- * X 3/38 PRR Wykład ale B for n Stąd 4/38 PRR Wykład B * B + + * s s s s s s 5/38 PRR Wykład 5
6 Programowane Równoległe Rozproszone Wykład Tym samym g g g C n g g g Współczynnk g j zależą od α, β oraz χ dla n 6/38 PRR Wykład Poneważ X n C n- * X n g n g g g g * g Poneważ - n, węc mnożąc perwszy wersz C n- przez otrzymujemy g * + g Stąd - g / g 7/38 PRR Wykład Poneważ mamy już X, X możemy olczyć wszystke X przy użycu prostej rekursj macerzowej: X C - * X 8/38 PRR Wykład 6
7 Programowane Równoległe Rozproszone Wykład jest następujący: Krok : Stwórz macerze B dla n Krok : Olcz łańcuch macerzy C korzystając z C B C B * C - Krok 3: Oznacz C n- wylczone w Kroku przez g g C n g g Olcz - g / g oraz g g X 9/38 PRR Wykład Krok 4: Olcz X oraz z wzoru X C * X dla n Czas: Algorytm SP wymaga 5 * n operacj arytmetycznych (flops). /38 PRR Wykład (ang. parallel pref) na hper-kostce Krok algorytmu SP jest jego kluczowym punktem. Olczene loczynu (q, q,..., q n- ) może yć wykonane w log n krokach przy użycu n procesorów Nech para ( j) reprezentuje loczyn q *q - *...* q j. (np. 7 4 reprezentujeq 7 *q 6 * q 5 *q 4 ). /38 PRR Wykład 7
8 Programowane Równoległe Rozproszone Wykład (ang. parallel pref) na hper-kostce Krok algorytmu SP jest jego kluczowym punktem. Szkc algorytmu: Jeżel element q jest początkowo przydzelony procesorow p to w k-tym kroku ( k log n) procesor p wysyła swoje dane do procesora p j, gdze j + k-. Procesor p j mnoży te dane ze swom własnym, a następne wysyła olczony loczyn do odpowednch procesów. /38 PRR Wykład Krok algorytmu SP jest jego kluczowym punktem. Algorytm dla n8 3/38 PRR Wykład Implementacja ędze wydajna, jeżel wymagana komunkacyjne algorytmu ędą mnmalne. Stąd wynka sposó, w jak zastosujemy ten algorytm na hper-kostce. 4/38 PRR Wykład 8
9 Programowane Równoległe Rozproszone Wykład MNOŻENIE MACIERZY Procesory połączone równolegle o topolog hperkostk. Jeżel p d oraz d d-... są narną reprezentacją lczy d {,,..., p-} oraz (j) - dla j < d - jest tą lczą, której reprezentacja narna ma postać d d-...ν j..., gdze ν j jest dopełnenem j, wtedy w komputerze z procesoram połączonym topologą hperkostk, procesor jest połączony ze wszystkm procesoram (j) 5/38 PRR Wykład Def. Bnary reflected Gray code Let e d-t nary numer, d d-... Bnary reflected Gray code G () g d g d-... g s defned y: g ( + + ) mod for,,..., d- g d d 6/38 PRR Wykład MNOŻENIE MACIERZY Def. Bnarny kod Gray a Nech ędze d-tową lczą w kodze narnym d d-.... Bnarny kod Gray a G () g d g d-... g jest zdefnowany następująco: g ( + + ) mod dla,,..., d-. g d d. Przykład G(9) G() 4 7/38 PRR Wykład 9
10 Programowane Równoległe Rozproszone Wykład MNOŻENIE MACIERZY Istneje funkcja odwrotna do G: G - Jak netrudno zauważyć, jeżel r r d r d-... r to G - (r) h d h d-... h, gdze h d r d oraz h (h + - r ) mod Przykład (c.d.) G - (4) G-() 9 8/38 PRR Wykład Twerdzene. Nech c ędą dwoma d-towym narnym lczam takm, że d k oraz c + k-. Wtedy odległość Hammnga d H pomędzy G() a G(c) wynos 9/38 PRR Wykład Przykład: narne Kod Gray a k c+ d H (,c) k c+ d H (,c) k3 c+ d H (,c) 3/38 PRR Wykład
11 Programowane Równoległe Rozproszone Wykład Następujący pseudokod przedstawa wymagane olczena. Kod ten dzała na wszystkch węzłach równocześne. Funkcja node_d()zwraca adres narny węzła, funkcja G() zwraca kod Gray a dla wartośc, G - () zwraca odwrotność kodu Gray a dla. Początkowo, węzeł G() zawera element q. Q oznacza ten element (lokalne dla węzła G()). Pod konec olczeń, węzeł G() zawera loczyn q *q - *...* q. Bez straty ogólnośc zakładamy, że n d. 3/38 PRR Wykład vod Parallel_Pref( nt d, quantty Q) { G - (node_d()); } for ( k ; k<d;k++) { } f ( {,..., d k- }) wysłane Q do procesora G( + k- ); f ( { k-,..., d }) Q temp_q * Q; oderane temp_q; 3/38 PRR Wykład Czas: PP na hper-kostce z n węzłam wymaga: Krok : 3 równoległe operacje arytmetyczne Krok : log n równoległych operacj arytmetycznych oraz ( * log n ) operacj komunkacyjnych Krok 3: operacja arytmetyczna Krok 4: log n operacj komunkacyjnych oraz równoległa operacja arytmetyczna 33/38 PRR Wykład
12 Programowane Równoległe Rozproszone Wykład Zazwyczaj, lcza procesorów p <<n. Nech m * p n. Przydzelamy m elementów wykonujemy na nch algorytm SP, na każdym procesorze. Potem znajdujemy przedrostk loków loczynów p stosując algorytm PP. Procesor wysyła ten loczyn do procesorów +j. Dane te są wtedy mnożone ze wszystkm, poza ostatnm, elementam na procesorze, który je oderał 34/38 PRR Wykład A A9 A9 A9 A9 A9 A9 A B B B9 B6 B6 B B B Równoległy algorytm przedrostkowy dla n oraz p 4 35/38 PRR Wykład Początkowo przydzelamy elementy : q (+)*m-, q (+)*m-,..., q *m do węzła G(). Elementy te oznaczamy jako Q m, Q m-,..., Q. Po algorytme SP otrzymujemy : Q m * Q m- *... * Q q (+)*m- * q (+)*m- *...* q *m Po algorytme PP każdy węzeł G() zawera: q *m * q *m- *... * q q (+)*m- * q (+)*m-3 *... * q *m * * q * q q (+)*m- *q (+)*m- * q (+)*m-3 *... * q *m * * q * q. 36/38 PRR Wykład
13 Programowane Równoległe Rozproszone Wykład Czas: Algorytm PP dla n m * p wymaga: 35*n /p +* log p 9 równoległych operacj arytmetycznych; 3*log p operacj komunkacyjnych. 37/38 PRR Wykład Równoległy algorytm przedrostkowy Algorytm ten przedstawl: Egecoglu, E., Koc, K., Lau, A.J., A recursve doulng algorthm for soluton of trdagonal systems on hypercue multprocessors, Journal od Comp. And Appl. Math., 7 (989), pp /38 PRR Wykład 3
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Bardziej szczegółowoDiagonalizacja macierzy kwadratowej
Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Bardziej szczegółowop Z(G). (G : Z({x i })),
3. Wykład 3: p-grupy twerdzena Sylowa. Defncja 3.1. Nech (G, ) będze grupą. Grupę G nazywamy p-grupą, jeżel G = dla pewnej lczby perwszej p oraz k N. Twerdzene 3.1. Nech (G, ) będze p-grupą. Wówczas W
Bardziej szczegółowo5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy
5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja
Bardziej szczegółowoWstęp do metod numerycznych Faktoryzacja SVD Metody iteracyjne. P. F. Góra
Wstęp do metod numerycznych Faktoryzacja SVD Metody teracyjne P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ 2013 Sngular Value Decomposton Twerdzene 1. Dla każdej macerzy A R M N, M N, stneje rozkład
Bardziej szczegółowoProjekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Bardziej szczegółowo5. Pochodna funkcji. lim. x c x c. (x c) = lim. g(c + h) g(c) = lim
5. Pocodna funkcj Defncja 5.1 Nec f: (a, b) R nec c (a, b). Jeśl stneje granca lm x c x c to nazywamy ją pocodną funkcj f w punkce c oznaczamy symbolem f (c) Twerdzene 5.1 Jeśl funkcja f: (a, b) R ma pocodną
Bardziej szczegółowoV. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Bardziej szczegółowoZestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Bardziej szczegółowoMATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
Bardziej szczegółowoPodstawy teorii falek (Wavelets)
Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc
Bardziej szczegółowoWykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Bardziej szczegółowoTwierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że
Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam
Bardziej szczegółowodr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Bardziej szczegółowoarchitektura komputerów w. 3 Arytmetyka komputerów
archtektura komputerów w. 3 Arytmetyka komputerów Systemy pozycyjne - dodawane w systeme dwójkowym 100101011001110010101 100111101000001000 0110110011101 1 archtektura komputerów w 3 1 Arytmetyka bnarna.
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze
Bardziej szczegółowoZapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Bardziej szczegółowoI. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Bardziej szczegółowoLaboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
Bardziej szczegółowoZadanie 1. Udowodnij, że CAUS PRAM. Załóżmy przetwarzanie przyczynowo spójne. Dla każdego obrazu historii hv i zachodzi zatem:
Zadane 1 Udowodnj, że CAUS PRAM Załóżmy przetwarzane przyczynowo spójne. Dla każdego obrazu hstor hv zachodz zatem: O OW O OW x X p j o O o1 o2 o1 o2 o1 j o2 ( o1 = w( x) v o2 = r( x) v) o1 o2 ( o1 o o2)
Bardziej szczegółowoMECHANIKA 2 MOMENT BEZWŁADNOŚCI. Wykład Nr 10. Prowadzący: dr Krzysztof Polko
MECHANIKA Wykład Nr 10 MOMENT BEZWŁADNOŚCI Prowadzący: dr Krzysztof Polko Defncja momentu bezwładnośc Momentem bezwładnośc punktu materalnego względem płaszczyzny, os lub beguna nazywamy loczyn masy punktu
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoStanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Bardziej szczegółowon=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa
Równanie Bessela Będziemy rozważać następujące równanie Bessela x y xy x ν )y 0 ) gdzie ν 0 jest pewnym parametrem Rozwiązania równania ) nazywamy funkcjami Bessela rzędu ν Sprawdzamy, że x 0 jest regularnym
Bardziej szczegółowoKomputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2007/08 Podstawowe fakty Równane Ax = b, x, b R N, A R N N (1) ma jednoznaczne
Bardziej szczegółowoWykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
Bardziej szczegółowoPokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
Bardziej szczegółowoPracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym
ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE
Bardziej szczegółowoProgramowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp
Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja
Bardziej szczegółowoBADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
Bardziej szczegółowoRUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Bardziej szczegółowo( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
Bardziej szczegółowoRÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI
RÓWNOLEGŁY ALGORYTM POPULACYJNY DLA PROBLEMU GNIAZDOWEGO Z RÓWNOLEGŁYMI MASZYNAMI Wojcech BOŻEJKO, Marusz UCHROŃSKI, Meczysław WODECKI Streszczene: W pracy rozpatrywany jest ogólny problem kolejnoścowy
Bardziej szczegółowoRóżniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski
Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f
Bardziej szczegółowoMETODA ELEMENTU SKOŃCZONEGO. Termokinetyka
METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)
Bardziej szczegółowoCzęść 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Bardziej szczegółowoPOLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt
Bardziej szczegółowoW praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Bardziej szczegółowoa 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Bardziej szczegółowoMacierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoWstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Bardziej szczegółowoĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO
ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz
Bardziej szczegółowoAlgorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych
Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2014/15 Znajdowanie maksimum w zbiorze
Bardziej szczegółowo( ) Elementy rachunku prawdopodobieństwa. f( x) 1 F (x) f(x) - gęstość rozkładu prawdopodobieństwa X f( x) - dystrybuanta rozkładu.
Elementy rchunku prwdopodoeństw f 0 f() - gęstość rozkłdu prwdopodoeństw X f d P< < = f( d ) F = f( tdt ) - dystryunt rozkłdu E( X) = tf( t) dt - wrtość średn D ( X) = E( X ) E( X) - wrncj = f () F ()
Bardziej szczegółowoAlgorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Bardziej szczegółowoMetody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
Bardziej szczegółowoNumeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1
Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak
Bardziej szczegółowoWeryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Bardziej szczegółowoAutomatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych
Automatyzacja procesu tworzenia sprzętowego narzędzia służącego do rozwiązywania zagadnienia logarytmu dyskretnego na krzywych eliptycznych Autor: Piotr Majkowski Pod opieką: prof. Zbigniew Kotulski Politechnika
Bardziej szczegółowoAlgorytmy dla maszyny PRAM
Instytut Informatyki 21 listopada 2015 PRAM Podstawowym modelem służącym do badań algorytmów równoległych jest maszyna typu PRAM. Jej głównymi składnikami są globalna pamięć oraz zbiór procesorów. Do rozważań
Bardziej szczegółowoTechnologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Bardziej szczegółowoSztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy
Bardziej szczegółowoPrzetwarzanie równoległe Zadanie domowe III
Przetwarzanie równoległe Zadanie domowe III Jarosław Marek Gliwiński #indeksu 7439 16 stycznia 010 1 Wstęp 1.1 Wykaz skrótów i oznaczeń W pierwszej kolejności przedstawione zostaną używane w pracy oznaczenia,
Bardziej szczegółowoKryptografia na procesorach wielordzeniowych
Kryptografia na procesorach wielordzeniowych Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Kryptografia na procesorach wielordzeniowych p. 1 Plan prezentacji
Bardziej szczegółowoUkłady równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Bardziej szczegółowoRachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ CIAŁO FUNKCJI WYMIERNYCH
ALGEBRA Z GEOMETRIĄ 1/10 CIAŁO FUNKCJI WYMIERNYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 7, 13.11.2013 Typeset by Jakub Szczepanik. Ułamki pierścienia całkowitego Cel: Wprowadzenie pojęcia funkcji
Bardziej szczegółowoWykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Bardziej szczegółowoZaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Bardziej szczegółowoMETODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Bardziej szczegółowoAlgorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Bardziej szczegółowoAnaliza efektywności przetwarzania współbieżnego. Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015
Analiza efektywności przetwarzania współbieżnego Wykład: Przetwarzanie Równoległe Politechnika Poznańska Rafał Walkowiak Grudzień 2015 Źródła kosztów przetwarzania współbieżnego interakcje między procesami
Bardziej szczegółowoCo to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.
1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory
Bardziej szczegółowoMetody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
Bardziej szczegółowoSTATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Bardziej szczegółowoDydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019
Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.
Bardziej szczegółowoWykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Bardziej szczegółowoSZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH
SZYBKI ALGORYTM Z MACIERZĄ SHURA DLA MACIERZY TRÓJDIAGONALNYCH Rozwiązujemy układ z macierzą trójdiagonalną. Założymy dla prostoty opisu, że macierz ma stałe współczynniki, to znaczy, że na głównej diagonali
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
Bardziej szczegółowoPrzykład 5.1. Kratownica dwukrotnie statycznie niewyznaczalna
rzykład.. Kratownca dwukrotne statyczne newyznaczana oecene: korzystaąc z metody sł wyznaczyć sły w prętach ponższe kratowncy. const Rozwązane zadana rozpoczynamy od obczena stopna statyczne newyznaczanośc
Bardziej szczegółowoMacierzowe algorytmy równoległe
Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa
Bardziej szczegółowoKwantowa natura promieniowania elektromagnetycznego
Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny
Bardziej szczegółowoZestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Bardziej szczegółowoInstrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy rozkroju materiałowego, zagadnienia dualne
Instrukca do ćwczeń laboratorynych z przedmotu: Badana operacyne Temat ćwczena: Problemy rozkrou materałowego, zagadnena dualne Zachodnopomorsk Unwersytet Technologczny Wydzał Inżyner Mechanczne Mechatronk
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 14968 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) W trójkacie prostokatnym
Bardziej szczegółowoWykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoEgzamin poprawkowy z Analizy II 11 września 2013
Egzamn poprawkowy z nalzy II 11 wrześna 13 Uwag organzacyjne: każde zadane rozwązujemy na osobnej kartce Każde zadane należy podpsać menem nazwskem własnym oraz prowadzącego ćwczena Na wszelk wypadek prosmy
Bardziej szczegółowoRównania rekurencyjne na dziedzinach
Marek Materzok Równana rekurencyjne na dzedznach Pommo, ż poczynłem starana, aby praca ta była możlwe kompletna wolna od błędów, ne mogę zagwarantować, że ne wkradły sę do nej żadne neścsłośc czy pomyłk.
Bardziej szczegółowoRozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Bardziej szczegółowo0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Bardziej szczegółowoNatalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Bardziej szczegółowoNatalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Bardziej szczegółowoStanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Bardziej szczegółowoKURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Bardziej szczegółowoProgramowanie dynamiczne
Programowanie dynamiczne Ciąg Fibonacciego fib(0)=1 fib(1)=1 fib(n)=fib(n-1)+fib(n-2), gdzie n 2 Elementy tego ciągu stanowią liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem
Bardziej szczegółowoFIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Bardziej szczegółowoWielomiany. dr Tadeusz Werbiński. Teoria
Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych
Bardziej szczegółowoOdtworzenie wywodu metodą wstępującą (bottom up)
Przeglądane wejśca od lewej strony do prawej L (k) Odtwarzane wywodu prawostronnego Wystarcza znajomosc "k" następnych symbol łańcucha wejścowego hstor dotychczasowych redukcj, aby wyznaczyc jednoznaczne
Bardziej szczegółowo1. Relacja preferencji
dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x
Bardziej szczegółowoPRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142033 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pole trójkata
Bardziej szczegółowoTransformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Bardziej szczegółowoUKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Bardziej szczegółowoBeata Szymańska Wojciech Topolski Marcin Tomasik KWANTYZACJA WEKTOROWA
Beata Szymańska Wocech Topolsk Marcn Tomask KWANTYZACJA WEKTOROWA 1 SPIS TREŚCI 1. Idea kwantyzac wektorowe...3 1.1 Kwantyzaca...3 1.2 Kwantyzaca wektorowa...3 1.3 Cechy kwantyzac wektorowe...3 2. Fazy
Bardziej szczegółowoPODSTAWY MATEMATYCZNE
PODSTAWY MATEMATYCZNE ALGEBRA WEKTORÓW I TENSORÓW Baza ortonormalna w E 3 : e 1, e 2, e 3 ( e, e ) j j 1 f j 0 f j Każdy wektor w E 3 może być wyrażony jako lnowa kombnacja wersorów bazowych a a e a e
Bardziej szczegółowo