1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick]
|
|
- Damian Gajda
- 6 lat temu
- Przeglądów:
Transkrypt
1 1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick] wektor x R d x =(x 1,x 2,..., x d ) T wektor, punkt w przestrzeni d-wymiarowej norma wektora własności (1) kxk > 0, kxk =0tylko wtedy, gdy x =0 (2) kaxk = a kxk (3) kx + yk 6 kxk + kyk norma typu suma kxk 1 = x 1 + x x d = dx x i nieujemna liczba rzeczywista (skalar) x2 r d=2 -r r x1 -r Okrąg o promieniu r
2 norma typu maksimum kxk =max,..,d x i nieujemna liczba rzeczywista (skalar) x2 r d=2 -r r x1 -r Okrąg o promieniu r norma euklidesowa v uut kxk 2 = x T x = x x x 2 1/2 dx d = x 2 i nieujemna liczba rzeczywista (skalar) x2 r d=2 -r r x1 -r Okrąg o promieniu r
3 2. Normy macierzy norma macierzy A R m,d indukowana przez normę wektoratypup ( ) kaxkp n o kak p =max : x 6= 0 =max kaxk kxk p : kxk p 6 1 p dla p =1 kak 1 = max j=1,...,d mx a i,j dla p =2 tzw. norma spektralna macierzy dla p = kak 2 = kak = max,...,m q λ max (A T A) dx a i,j j=1
4 3. Statystyki opisowe zmiennych losowych [Klonecki] ω zdarzenie losowe, ω Ω (Ω tzw. zbiór zdarzeń elementarnych) funkcja X(ω) R zmienna losowa (tu skalar, może być wektorem) dyskretne zmienne losowe gdy zbiór wartości przyjmowanych przez X(ω) jest przeliczalny wartość oczekiwana : EX = X ω Ω X(ω)P (ω) średnie X ważone prawdopodobieństwami (wielkość nie losowa!) wariancja varx = E (X EX) 2ª średni kwadrat odchylenia X od EX ważony prawdopodobieństwami ciagłe zmiennelosowe 4. Popularne rozkłady P (X (a, b)) = EX = f(x) funkcja gęstości prawdopodobieństwa Z Z b a f(x)dx xf(x)dx varx = rozkład jednostajny (ang. uniform distribution) U[a, b] Z (x EX) 2 f(x)dx f(x) = ½ 1 b a,gdyx (a, b) 0, w przeciwnym przypadku
5 EX = varx = Z b a Z b a x 1 b a dx = 1 b 2 a 2 b a 2 µ x a + b 2 = a + b (b a)2 dx =... = b a 12 środek przedziału rozkład normalny (ang. normal distribution) N(m, σ 2 ) rozkład wykładniczy f(x) = 1 2πσ e (x m)2 2σ 2 EX = m varx = σ 2 f(x) = ½ αe αx,gdyx > 0 0, w przeciwnym przypadku EX = 1 α varx =? zadanie domowe pakiet STATISTICA hasło dystrybuanty w indeksie pomocy 5. Eksperyment x 1,x 2,..., x N ci ag liczb losowych (np. realizacje pewnej zmiennej losowej X)
6 6. Typy zbieżności probabilistycznych Fakt zbieżności ciagów deterministycznych (nie losowych) lim a k = g ^ _ ^ a k g < ε k ε>0 k>k 0 Szybkość zbieżności ciagów deterministycznych symbol o() rzad niższy k 0 a k a k = o(b k ) lim =0(iobaci agi daż adozera) k b k symbol O() ta sama szybkość a k = O(b k ) _ c< a k 6 c b k Ciagi zmiennych losowych {κ k } tutaj operator lim k nie wystarcza, gdyż warunek a k g < ε określa pewne zdarzenie losowe Definicja 1 Ciag zmiennych losowych {κ k } jest przy k zbieżny według prawdopodobieństwa (słabo) do κ # jeśli dla każdego ε > 0 zachodzi lim P ( κ k κ # > ε) =0,lubrównoważnie lim P ( κ k κ # < ε) =1 k k Wartość κ # nazywamy granicastochastyczn aci agu {κ k } izapisujemy P lim k κ k = κ # (1) Zapis Plim N X N = X dla sekwencji wektorów losowych {X N }, oznacza, że X N X według prawdopodobieństwa, gdy N.
7 Definicja 2 Ciag zmiennych losowych {κ k } jest przy k zbieżny z prawdopodobieństwem 1 (mocno) do κ jeśli zachodzi P ( lim k κ k = κ )=1 Lemat 1 Ze zbieżności z prawdopodobieństwem 1 wynika zbieżność według prawdopodobieństwa. Definicja 3 Ciag zmiennych losowych {κ k } jest przy k zbieżny według średniej z potęga r do κ jeśli zachodzi lim E κ k κ r =0 k w szczególności jest zbieżny według średniej z kwadratem (średniokwadratowo), gdy lim E(κ k κ ) 2 =0 k Definicja 4 Ciag zmiennych losowych {κ k } ma szybkość zbieżności rzędu O(e k ) według prawdopodobieństwa przy k (tj. asymptotycznie), gdzie {e k } jest ciagiem liczb dodatnich zbieżnym do zera, tzn. n o wtedy i tylko wtedy, gdy κk e k χ k że lim k χ k =0. κ k = O(e k ) według prawdopodobieństwa jest zbieżny według prawdopodobieństwa dozeradlakażdego ciagu liczbowego {χ k },takiego Definicja 5 Ciag zmiennych losowych {κ k } ma szybkość zbieżności rzędu O(e k ) według średniej z kwadratem przy k jeżeli istnieje stała 0 c<, taka, że Eκ 2 k ce k Lemat 2 Jeżeli κ k = O(e k ) według średniej z kwadratem, to κ k = O( e k ) według prawdopodobieństwa. Definicja 6 Mówimy, że ciag zmiennych losowych X k jest zbieżny według rozkładu do zmiennej losowej X, gdy lim k F k(x) =F (x)
8 7. Relacje (zwiazki) pomiędzy różnymi typami zbieżności Lr odp. szybko P1 P odp. szybko Dowód faktu P 1= P oczywisty, skoro P (lim k κ k = κ )=1,to P k=1 P ( κ k κ < ε) < i aby szereg ten był zbieżny, musi zachodzić P ( κ k κ < ε) 0 dla k Dowód faktu Lr = P zdefinicji Z Z Z E κ k κ r = κ k κ r dω > κ k κ r dω > ε r dω = ε r P ( κ k κ > ε) azatem w szczególność dlar =2i κ = Eκ Ω { κ k κ >ε} D P ( κ k κ > ε) 6 1 ε r E κ k κ r { κ k κ >ε} P ( κ Eκ > ε) 6 1 ε 2varκ Dowód faktu P k=1 P ( κ k κ < ε) < i κ k p κ = κ k p1 κ
9 P (sup k>k 0 κ k κ > ε) =P ( κ k κ > ε dla pewnego (konkretnego) k > k 0 )=P 6 X k=k 0 P ( κ k κ > ε) 0, bo szereg jest zbieżny, zaś k 0 Przykład jeśli P ( κ k κ < ε) =O( 1 k ) wtedy zachodzi κ p k κ p1, ale nie zachodzi κ k κ Problem p jeżeli κ k κ,gdyk, to czy wtedy zachodzi g(κ k ) p g(κ ),gdyk??? Tak pod warunkiem, że g() jest funkcjaci agła w punkcie κ Ã [ k=k 0 ( κ k κ > ε)! 6
10 8. Mocne Prawo Wielkich Liczb Kołmogorowa (wersja podstawowa) Założenia (a) X 1,X 2,..., X N jest ciagiem zmiennych losowych typu i.i.d. niezależnych i o tym samym rozkładzie (ang independent and identically distributed sequence of random variables) (b) istnieje EX i = m< Teza 1 NX p1 X i m, gdyn N inne wersje MPWL patrz [Feller], [Krzyśko], [Ninness] 9. Mocne Prawo Wielkich Liczb Kołmogorowa (wersja bez wymogu i.i.d.) Założenia (a) X 1,X 2,..., X N jest ciagiem niezależnych zmiennych losowych, w ogólności o różnych rozkładach (b) istnieja EX i = m i < (c) istnieja varx i = σ 2 i < (d) P σ 2 i i < 2 Teza 1 NX X i 1 NX p1 m i 0, gdyn N N
11 10. Centralne Twierdzenie Graniczne Lindenberga Levy ego Założenia (a) X 1,X 2,..., X N ci ag typu i.i.d. (maja ten nam, ale dowolny rozkład! niekoniecznie normalny) (b) istnieje EX i = m< (c) istnieje varx i = σ 2 < Teza P N X i Nm σ D N (0, 1), gdyn N Wnioski fundamentalne dla zagadnienia estymacji 1 P N N X i m D 1 σ N (0, 1) N N Oszacowanie dokładności przybliżenia nierówność Barry-Essena P N oznaczmy κ N = X i Nm σ N sup F κn (x) Φ(x) 6 33 x 4 E X i m 3 σ 3 N NX = O X i D N (m, σ 2 N ) µ 1 N
12 11. Analiza korelacyjna procesów kowariancja miara zależności liniowej cov(x, Y )=E {(X EX)(Y EY )} cov(x, Y ) 6 varxvary korelacja (znormalizowana kowariancja) ξ(x, Y )= cov(x, Y ) varxvary ξ(x, Y ) 6 1 pojęcie procesu losowego (stochastycznego) X(ω,t) dla ustalonego momentu czasu t = t 0 otrzymujemy zmiennalosow a X t0 (ω) funkcja autokowariancji procesu losowego (stacjonarnego) miara zależności liniowej pomiędzy X t0 o τ zmienna X t0 +τ o przesunięta A X (τ) =cov(x t0,x t0 +τ), A X (0) = σ 2 X funkcja autokorelacji procesu losowego r X (τ) = cov(x t 0,X t0 +τ) p varxt0 varx t0 +τ = A X(τ) σ 2, r X (0) = 1 X funkcja kowariancji wzajemnej dwóch procesów X(ω,t) i Y (ω,t) W X,Y (τ) =cov(x t0,y t0 +τ) funkcja korelacji wzajemnej dwóch procesów X(ω,t) i Y (ω,t) r X,Y (τ) = W X,Y (τ) σ X σ Y
13 12. Przejście białego szumu przez układ dynamiczny y k = X γ i u k i Założenia (a) {u k } proces typu i.i.d. (b) układ jest asymptotycznie stabilny tzn. P γ i < (c) dla uproszczenia prezentacji niech Eu k =0i varu k =1 Autokowariancja procesu u k ½ = varuk =1,dlaτ =0 A u (τ) = Eu k u k+τ = =0,dlaτ 6= 0(na podstawie niezależności u k i u k+τ izałożenia (c)) r u (τ) = A u (τ) (patrz założenie (c)) Własości procesu y k X X Ey k = E γ i u k i = Eγ i u k i = Eu k vary k = var à X! γ i u k i = X γ i =0 X var (γ i u k i )=varu k à X A y (τ) = Ey k y k+τ = E γ i u k i X j=0 γ j u k+τ j! = X γ 2 i X = E {(γ 0 u k + γ 1 u k 1 + γ 2 u k )(γ 0 u k+τ + γ 1 u k+τ 1 + γ 2 u k+τ γ τ u k + γ τ+1 u k )} = varu k γ i γ i+τ
14 13. Popularne nierówności Nierówność Czebyszewa P ( κ Eκ > ε) 6 1 ε 2varκ Nierówność Barry-Essena oznaczmy κ N = P N X i Nm σ N Nierówność Jensena g() funkcja wypukła Nierówność Höldera sup F κn (x) Φ(x) 6 33 x 4 E X i m 3 σ 3 N Eg(X) > g(ex) = O µ 1 N kxk p = (EX p ) 1/p tzw. p-norma zmiennej losowej Nierówność Schwartza(p =2, p 0 =2) E XY 6 kxk p ky k p 0,gdzie 1 p + 1 p 0 =1 EXY 6 E XY 6 EX 2 EY 2 Nierówność Rao-Cramera E(θ N θ ) 2 > N R ³ f(x,θ ) θ 1 2 f(x, θ )dx
Powtórka z algebry i statystyki
2. Powtórka z algebry i statystyki 1. Pojęcie normy, normy wektora [Kiełbasiński, Schwetlick] wektor x R d x =(x1,x2,..., xd) T wektor, punkt w przestrzeni d-wymiarowej norma wektora własności (1) kxk
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA
PEWNE FAKTY Z RACHUNKU PRAWDOPODOBIEŃSTWA 1. Trójkę (Ω, F, P ), gdzie Ω, F jest σ-ciałem podzbiorów Ω, a P jest prawdopodobieństwem określonym na F, nazywamy przestrzenią probabilistyczną. 2. Rodzinę F
Wykład 3 Jednowymiarowe zmienne losowe
Wykład 3 Jednowymiarowe zmienne losowe Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną Definicja 1 Jednowymiarowa zmienna losowa (o wartościach rzeczywistych), określoną na przestrzeni probabilistycznej
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
5 Przegląd najważniejszych rozkładów
5 Przegląd najważniejszych rozkładów 5. Rozkład Bernoulliego W niezmieniających się warunkach wykonujemy n razy pewne doświadczenie. W wyniku każdego doświadczenia może nastąpić zdarzenie A lub A. Zakładamy,
Prawdopodobieństwo i statystyka
Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014 Zmienne losowe i ich rozkłady Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Prawa wielkich liczb, centralne twierdzenia graniczne
, centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne
Szkice do zajęć z Przedmiotu Wyrównawczego
Szkice do zajęć z Przedmiotu Wyrównawczego Matematyka Finansowa sem. letni 2011/2012 Spis treści Zajęcia 1 3 1.1 Przestrzeń probabilistyczna................................. 3 1.2 Prawdopodobieństwo warunkowe..............................
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo
1 Wykład 4. Proste Prawa wielkich liczb, CTG i metody Monte Carlo 1.1 Rodzaje zbieżności ciagów zmiennych losowych Niech (Ω, F, P ) będzie przestrzenia probabilistyczna na której określony jest ciag {X
Wartość oczekiwana Mediana i dominanta Wariancja Nierówności związane z momentami. Momenty zmiennych losowych Momenty wektorów losowych
Przykład(Wartość średnia) Otrzymaliśmy propozycję udziału w grze polegającej na jednokrotnym rzucie symetryczną kostką. Jeśli wypadnie 1 wygrywamy2zł,;jeśliwypadnie2,płacimy1zł;za3wygrywamy 4zł;za4płacimy5zł;za5wygrywamy3złiwreszcieza6
Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład
Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu.
Ćwiczenia 7 - Zmienna losowa i jej rozkład. Parametry rozkładu. A Teoria Definicja A.1. Niech (Ω, F, P) będzie przestrzenią probabilistyczną. Zmienną losową określoną na przestrzeni Ω nazywamy dowolną
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW
PRAWDOPODOBIEŃSTWO. ZMIENNA LOSOWA. TYPY ROZKŁADÓW Rachunek prawdopodobieństwa (probabilitis - prawdopodobny) zajmuje się badaniami pewnych prawidłowości (regularności) zachodzących przy wykonywaniu doświadczeń
Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.
Statystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 19 października 2016r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Wykład 3 Momenty zmiennych losowych.
Wykład 3 Momenty zmiennych losowych. Wrocław, 18 października 2017r Momenty zmiennych losowych Wartość oczekiwana - przypomnienie Definicja 3.1: 1 Niech X będzie daną zmienną losową. Jeżeli X jest zmienną
Zadania z Rachunku Prawdopodobieństwa III - 1
Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o
Przestrzeń probabilistyczna
Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty
Statystyka i eksploracja danych
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Statystyka i eksploracja
WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.
Tematy: WSTĘP 1. Wprowadzenie do przedmiotu. Próbkowe odpowiedniki wielkości populacyjnych. Modele statystyczne i przykładowe zadania wnioskowania statystycznego. Statystyki i ich rozkłady. 2. Estymacja
Matematyka dla biologów Zajęcia nr 13.
Matematyka dla biologów Zajęcia nr 13. Dariusz Wrzosek 16 stycznia 2019 Matematyka dla biologów Zajęcia 13. 16 stycznia 2019 1 / 34 Plan: 1 Rachunek prawdopodobienstwa-zmienne losowe o rozkładzie ciagłym
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są
Statystyka matematyczna. Wykład III. Estymacja przedziałowa
Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności
Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
Procesy stochastyczne
Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane
Prawdopodobieństwo i statystyka
Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne
Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.2. Momenty rozkładów łącznych. Katarzyna Rybarczyk-Krzywdzińska rozkładów wielowymiarowych Przypomnienie Jeśli X jest zmienną losową o rozkładzie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie
Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w
Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów
Wykład 6 Estymatory efektywne. Własności asymptotyczne estymatorów Wrocław, 30 listopada 2016r Powtórzenie z rachunku prawdopodobieństwa Zbieżność Definicja 6.1 Niech ciąg {X } n ma rozkład o dystrybuancie
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa
STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła
Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy
Statystyka. Magdalena Jakubek. kwiecień 2017
Statystyka Magdalena Jakubek kwiecień 2017 1 Nauka nie stara się wyjaśniać, a nawet niemal nie stara się interpretować, zajmuje się ona głównie budową modeli. Model rozumiany jest jako matematyczny twór,
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Statystyka matematyczna
Statystyka matematyczna Wykład 6 Magdalena Alama-Bućko 8 kwietnia 019 Magdalena Alama-Bućko Statystyka matematyczna 8 kwietnia 019 1 / 1 Rozkłady ciagłe Magdalena Alama-Bućko Statystyka matematyczna 8
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Losowe zmienne objaśniające. Rozszerzenia KMRL. Rozszerzenia KMRL
MNK z losową macierzą obserwacji Równanie modelu y = X β + ε Jeżeli X zawiera elementy losowe to należy sprawdzić czy E(b β) = E[(X X ) 1 X ε]? = E[(X X ) 1 X ]E(ε) Przypomnienie: Nieskorelowane zmienne
2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.
Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.
Funkcja tworząca Funkcja charakterystyczna. Definicja i własności Funkcja tworząca momenty
momenty Oprócz omówionych już do tej pory charakterystyk rozkładów bardzo wygodnym i skutecznym narzędziem badanie zmiennej losowej są tzw. transformaty jej rozkładu: funkcje tworzące i funkcje charakterystyczne.
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Jednowymiarowa zmienna losowa
1 Jednowymiarowa zmienna losowa Przykład Doświadczenie losowe - rzut kostką do gry. Obserwujemy ilość wyrzuconych oczek. Teoretyczny model eksperymentu losowego - przestrzeń probabilistyczna (Ω, S, P ),
Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.
Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na
1 Elementy kombinatoryki i teorii prawdopodobieństwa
1 Elementy kombinatoryki i teorii prawdopodobieństwa 1.1 Elementy kombinatoryki W rozwiązywaniu pewnych problemów związanych z obliczaniem prawdopodobieństwa o skończonej liczbie zdażeń elementarnych bardzo
WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady
WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału
Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału Magdalena Frąszczak Wrocław, 22.02.2017r Zasady oceniania Ćwiczenia 2 kolokwia (20 punktów każde) 05.04.2017 oraz 31.05.2017 2 kartkówki
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski
Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 4 Przekształcenia zmiennej losowej, momenty Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 4 / 9 Przekształcenia zmiennej losowej X
Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2
Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,
Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015
Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20
Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe
Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości
1 Podstawy rachunku prawdopodobieństwa
1 Podstawy rachunku prawdopodobieństwa Dystrybuantą zmiennej losowej X nazywamy prawdopodobieństwo przyjęcia przez zmienną losową X wartości mniejszej od x, tzn. F (x) = P [X < x]. 1. dla zmiennej losowej
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory
Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl
x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()
. Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów
6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x ()
Zadania z Rachunku Prawdopodobieństwa II Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podać przykład
Elementy Rachunek prawdopodobieństwa
Elementy rachunku prawdopodobieństwa Rachunek prawdopodobieństwa zajmuje się analizą praw rządzących zdarzeniami losowymi Pojęciami pierwotnymi są: zdarzenie elementarne ω oraz zbiór zdarzeń elementarnych
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Rozkłady i ich dystrybuanty 16 marca F X (t) = P (X < t) 0, gdy t 0, F X (t) = 1, gdy t > c, 0, gdy t x 1, 1, gdy t > x 2,
Wykład 4. Rozkłady i ich dystrybuanty 6 marca 2007 Jak opisać cały rozkład jedną funkcją? Aby znać rozkład zmiennej X, musimy umieć obliczyć P (a < X < b) dla dowolnych a < b. W tym celu wystarczy znać
Podstawowe modele probabilistyczne
Wrocław University of Technology Podstawowe modele probabilistyczne Maciej Zięba maciej.zieba@pwr.edu.pl Rozpoznawanie Obrazów, Lato 2018/2019 Pojęcie prawdopodobieństwa Prawdopodobieństwo reprezentuje
Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012
Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Metody probabilistyczne
Metody probabilistyczne Teoria estymacji Jędrzej Potoniec Bibliografia Bibliografia Próba losowa (x 1, x 2,..., x n ) Próba losowa (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) Próba losowa (x 1, x 2,...,
3. Podać przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II - Mówimy, że i) ciąg miar probabilistycznych µ n zbiega słabo do miary probabilistycznej µ (ozn. µ n µ), jeśli fdµ n fdµ dla dowolnej funkcji ciągłej ograniczonej
Seria 1. Zbieżność rozkładów
Seria Zbieżność rozkładów We wszystkich poniższych zadaniach (E, ρ) jest przestrzenią metryczną Wykazać, że dla dowolnych x, x n, δ xn δ x wtedy i tylko wtedy, gdy x n x Sprawdzić, że n nk= δ k n λ, gdzie
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Zadania z Rachunku Prawdopodobieństwa II Podaj przykład rozkładów prawdopodobieństwa µ n, µ, takich, że µ n µ,
Zadania z Rachunku Prawdopodobieństwa II -. Udowodnij, że dla dowolnych liczb x n, x, δ xn δ x wtedy i tylko wtedy, gdy x n x.. Wykaż, że n n k= δ k/n λ, gdzie λ jest miarą Lebesgue a na [, ].. Podaj przykład
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA. Piotr Wiącek
PODSTAWOWE ROZKŁADY PRAWDOPODOBIEŃSTWA Piotr Wiącek ROZKŁAD PRAWDOPODOBIEŃSTWA Jest to miara probabilistyczna określona na σ-ciele podzbiorów borelowskich pewnej przestrzeni metrycznej. σ-ciało podzbiorów
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA
STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.
Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie
STATYSTYKA
Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym
Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga
RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
12DRAP - parametry rozkładów wielowymiarowych
DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 4 - zagadnienie estymacji, metody wyznaczania estymatorów Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 4 1 / 23 ZAGADNIENIE ESTYMACJI Zagadnienie
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/
Matematyka z el. statystyki, # 3 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Akademicka 15, p.211a bud. Agro II, e-mail: zdzislaw.otachel@up.lublin.pl
Zmienne losowe ciągłe i ich rozkłady
Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu
Rozkłady statystyk z próby
Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny
Statystyka. Wydział Zarządzania Uniwersytetu Łódzkiego
Statystyka Wydział Zarządzania Uniwersytetu Łódzkiego 2017 Zmienna losowa i jej rozkład Mając daną przestrzeń probabilistyczną, czyli parę (&, P) stanowiącą model pewnego doświadczenia losowego (gdzie
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 08/9 Zarządzanie e-mail: www: konsultacje: rafal.kucharski@ue.katowice.pl http://web.ue.katowice.pl/rkucharski/ Piątki, 5:0-6:0,
Rachunek prawdopodobieństwa i statystyka
Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.
STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1
1 STYSTYSTYKA dla ZOM II dr inż Krzysztof Bryś Wykad 1 Klasyczny Rachunek Prawdopodobieństwa. 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany. Posiadamy
Rozkłady prawdopodobieństwa zmiennych losowych
Rozkłady prawdopodobieństwa zmiennych losowych Rozkład dwumianowy Rozkład normalny Marta Zalewska Zmienna losowa dyskretna (skokowa) jest to zmienna, której zbór wartości jest skończony lub przeliczalny.
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody