ROBOTYKA. Odwrotne zadanie kinematyki - projekt.
|
|
- Michalina Turek
- 9 lat temu
- Przeglądów:
Transkrypt
1 ROBOTYKA Odwrotne zadanie kinematyki - projekt
2 Zawartość. Wstęp Proste zadanie kinematyki cel Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki Projekt manipulatora Notacja Denavita-Hartenberga Obliczenia trajektorii w programie MATAB Kolejne pozycje manipulatora dla zmian zmiennych konfiguracyjnych..... Odwrotne zadanie kinematyki Ogólna postać macierzy transformacji Macierze transformacji kolejnych układów Obliczanie trajektorii w programie MATAB Analiza statyczna manipulatora.... 8
3 . Wstęp. Przedstawiony tutaj projekt z robotyki jest kompletnym rozwiązaniem odwrotnego zadania kinematyki. Przedmiotem projektu jest przykładowy manipulator(robot). Aby była możliwość obliczenia odwrotnego zadania kinematyki konieczne jest rozwiązanie prostego zadania kinematyki robota zgodnie z notacją Denavita-Hartenberga. Dodatkowo poza rozwiązanym prostym zadaniem kinematyki oraz odwrotnym zadaniem kinematyki wykreślone są trajektorie ruchu manipulatora. Obliczenie trajektorii zostało wykonane w programie MATAB. W projekcie jest kompletny kod źródłowy za pomocą którego można wykonać obliczenia a następnie wykreślić wyniki symulacji... Proste zadanie kinematyki cel. Proste zadanie kinematyki można w skrócie opisać jako przypadek gdy znane są kąty i przesunięcia kolejnych członów manipulatora a w wyniku uzyskać chcemy współrzędne ostatniego układu współrzędnych w układzie bazowym. Dane: zukane:.. Odwrotne zadanie kinematyki cel. W odwrotnym zadaniu kinematyki danymi wejściowymi jest pozycja jaką chcemy aby uzyskał ostatni układ współrzędnych w układzie bazowym. Znając pozycję zadaną ostatniego układu współrzędnych jako wynik chcemy uzyskać kąty ugięć lub długości przesunięć kolejnych napędów manipulatora. Dane: zukane:. Analiza statyczna robota. W projekcie tym przeprowadzona będzie analiza statyczna robota. Przeprowadzenie analizy statycznej robota da odpowiedź jakie siły lub momenty muszą być przyłożone do kolejnych napędów robota jak znajduje się on w stanie spoczynku. Ponadto w wyniku uzyskamy wzory na wartości sił i momentów jakie będzie musiała wytrzymać konstrukcja. Zaznaczam że jest to tylko analiza statyczna. W trakcie normalnej pracy robota dochodzą jeszcze obciążenia dynamiczne. Analiza obciążeń dynamicznych jest przedstawiona w innym projekcie, który traktuje tylko i wyłącznie o dynamice robota. Projekt dotyczący dynamiki robota można znaleźć na stronie w dziale dotyczącym robotyki.
4 . Proste zadanie kinematyki... Projekt manipulatora. O "" ) (t O "" O "" )) (t ) (t (t) 4 O "5" P "4" ) (t 5 Rysunek. Model robota. 4
5 .. Notacja Denavita-Hartenberga. Tabela. Notacja Denavita-Hartenberga tabelka. i α i- a i- d i θ i ⁰ θ (t) ⁰ l θ (t) ⁰ l θ (t) 4 9⁰ d 4 (t) 8⁰ 5 9⁰ l 4 θ 5 (t).. Obliczenia trajektorii w programie MATAB. function[t]=ma_trans(alfa,a,d,theta) ca=cos(alfa); sa=sin(alfa); cq=cos(theta); sq=sin(theta); T=[ cq -sq a ; sq*ca cq*ca -sa -sa*d ; sq*sa cq*sa ca ca*d ; ] ; >> [T]=ma_trans(,,,) T = 5
6 >> [T]=ma_trans(,8,,) T = 8 >> [T]=ma_trans(,8,,) T = 8 >> [T4]=ma_trans(pi/,,,pi) T4 = >> [T54]=ma_trans(pi/,7,,) T54 =
7 >> P5=[4 ]' P5 = 4 >> P=TTT*T4*T54*P5 P = >> plot (T, 'DisplayName','T', 'YDataource', 'T'); figure(gcf) >> P5=[4 ]' P5 = 4 >> P=TTT*T4*T54*P5 P = >> t=:.:5; [m n]=size(t); 7
8 for i=::n if t(i)<5 theta(i)=; theta(i)=; theta(i)=; d4(i)=t(i); theta5(i)=; elseif t(i)< theta(i)=; theta(i)=pi/t(i)-pi/; theta(i)=; d4(i)=5; theta5(i)=; elseif t(i)<5 theta(i)=; theta(i)=pi/; theta(i)=; d4(i)=5; theta5(i)=-pi/t(i)+pi; elseif t(i)< theta(i)=; theta(i)=pi/; theta(i)=pi/5*t(i)-*pi; d4(i)=5; theta5(i)=-pi/; else theta(i)=-pi/t(i)+*pi; theta(i)=pi/; theta(i)=pi; d4(i)=5; theta5(i)=-pi/; end% if end%i subplot(5,,),plot(t,theta8/pi) subplot(5,,),plot(t,theta*8/pi) subplot(5,,),plot(t,theta*8/pi) subplot(5,,4),plot(t,d4) subplot(5,,5),plot(t,theta5*8/pi); 8
9 q(t) d4(t) q(t) q(t) q(t) Rysunek. Trajektorie zmian zmiennych konfiguracyjnych dla prostego zadania kinematyki. Osie rzędnych przedstawionych powyżej wykresów opisane są innymi symbolami, odpowiadają one następującym zmiennym: 9
10 %zadajemy parametry manipulatora =8; =8; =; 4=5; 5=4; P5=[5,,,]'; %pozycja końcówki w ostatnim układzie %powiązanie poszczególnych parametrów z czasem i wcześniejszymi wyliczeniami for j = :n alfa = [ pi/ pi/]; wcześniejszych wyliczeń %tabelka D-H zmienne zależne od czasu (j) brane od a = [ 4 ]; d = [ d4(j) ]; theta = [theta(j) theta(j) theta(j) pi theta5(j)]; Tpom = eye(4); %tworzenie końcowej macierzy for i = :5 %wywołanie kolejnych wartości zadanych sq = sin(theta(i)); cq = cos(theta(i)); sa = sin(alfa(i)); ca = cos(alfa(i)); %wyliczenia T = [ cq -sq a(i) ; sq*ca cq*ca -sa -sa*d(i); sq*sa cq*sa ca ca*d(i); ];
11 Tpom = Tpom * T; end % i P = Tpom * P5; %wyliczenie końcowej pozycji xx(j) = P(); zz(j) = P(); end % j figure; plot(zz,xx) %no i w końcu rysujemy Rysunek. Ruch narzędzia manipulatora w płaszczyźnie XY dla zadanych zmiennych konfiguracyjnych.
12 .4. Kolejne pozycje manipulatora dla zmian zmiennych konfiguracyjnych. t t 4 t t t 5 Rysunek 4. Rzut trajektorii i pozycji członów manipulatora w płaszczyźnie XY.
13 Ustawienie początkowe dla t=. i α i- a i- d i θ i ⁰ ⁰ ⁰ l ⁰ ⁰ l ⁰ 4 9⁰ 8⁰ 5 9⁰ l 4 ⁰
14 Ustawienie po czasie t d 4 m t t t t t4 t5 4
15 Ustawienie po czasie t t t t t t4 t
16 Ustawienie po czasie t t t t t t4 t Ustawienie po czasie t 4 6
17 t t t t t4 t
18 Ustawienie po czasie t t t t t t4 t
19 . Odwrotne zadanie kinematyki. W opracowaniu tym odwrotne zadanie kinematyki zostanie wyznaczone tylko do układu współrzędnych nr. Ograniczenie to spowodowane jest złożonością zadania. W oparciu o uzyskane w tym projekcie obliczenia czytelnik może w własnym zakresie wykonać odwrotne zadanie kinematyki uwzględniając wszystkie układy współrzędnych. elem odwrotnego zadania jest znaleźć w oparciu o zadaną pozycję kartezjańską względem układu bazowego, kąty ugięć lub przesunięcia kolejnych członów manipulatora. Jak wyżej wspomniano ostatnim układem będzie tutaj układ współrzędnych nr... Ogólna postać macierzy transformacji. Macierz opisuje transformację z układu i do układu i- [ ] W macierzy przyjęto skrócone zapisy funkcji trygonometrycznych.. Macierze transformacji kolejnych układów. Macierz transformacji z układu współrzędnych do [ ] Gdzie: Macierz transformacji z układu współrzędnych do [ ] Gdzie: 9
20 Macierz transformacji z układu współrzędnych do [ ] Gdzie: Znając kolejne macierze transformacji można wyznaczyć macierz transformacji z układu współrzędnych nr do układu współrzędnych nr. Po kolejnych operacjach mnożenia macierzy otrzymamy: * * * * * * * * * * * T Otrzymana macierz w zapisie symbolicznym opisuje złożenie rotacji i przesunięcia układu współrzędnych nr względem układu współrzędnych nr [ ] Gdzie: [ ] W modelu manipulatora będącego przedmiotem tego opracowania ruch odbywa się w dwóch wymiarach.
21 Macierz w przypadku ogólnym dla ruchu w dwóch wymiarach wygląda następująco: [ ] Macierz nazywana jest też macierzą zadaną. Aby możliwe było wyrażenie kątów lub przesunięć kolejnych członów manipulatora w funkcjach współrzędnych kartezjańskich względem układu bazowego porównać trzeba macierz z otrzymaną wcześniej macierzą. Poprzez porównanie rozumiemy porównanie indeksów tych macierzy a następnie przyrównaniem ich do siebie. W efekcie otrzymujemy następujący układ równań: * * * * * * Y Y X x T Y X T D { Po skorzystaniu z trygonometrycznych wzorów redukcyjnych dwa pierwsze równania uproszczą się, w wyniku otrzymamy: { Gdzie:, Następnie zmienimy zapis równań na i na następujący: { Podnosimy teraz powyższe równania do kwadratu i dodajemy stronami: {
22 Wymnażamy teraz kolejne wyrazy w równaniach: korzystamy z zależności: Zastosujemy podstawienia: Po uwzględnieniu podstawień można pierwsze równanie zapisać: ( ) Wobec tego: Gdzie:
23 Po wstawieniu do wzoru ogólnego otrzymujemy: ( ) ( ) Analogicznie postępujemy z pozostałymi zmiennymi: ( ) ( ) ( ) Na tym etapie znamy już zależności zmiennych konfiguracyjnych w funkcji zmiennych kartezjańskich. Konieczne jest teraz wyznaczenie dziedzin funkcji. Bez kłopotu możemy stwierdzić, że na pewno wartości długości ramion muszą być większe od zero. ; Oczywiście nie jest to koniec wyznaczania dziedziny. Dalsze wyznaczenie dziedziny pozostawiam czytelnikowi. Podczas wyznaczania dziedziny(przedziału wartości kątów) należy zwrócić uwagę na kolizje jakie mogą nastąpić przy różnych pozycjach manipulatora.
24 .. Obliczanie trajektorii w programie MATAB. clear clc clear =8; =8; t=:.:; [m n]=size(t); for i=::n if t(i)<5 x(i)=; y(i)=-*t(i)+5; elseif t(i)< x(i)=t(i)-4; y(i)=-5; elseif t(i)<5 x(i)=6; y(i)=*t(i)-5; else x(i)=-t(i)+; y(i)=5; end% if end% i figure() subplot(,,),plot(t,x) subplot(,,),plot(t,y) subplot(,,),plot(y,x) 4
25 X Y X t t Y Rysunek 5. Zadana trajektoria w zmiennych kartezjańskich. fi=; t=:.:;% vector of time [m n]=size(t); for j=::n th(j)=*atan( ( y(j)+sqrt( y(j)^-x(j)^- ( (x(j)^+y(j)^-^+^)/(*) )^ ) )/ ( x(j)+( (x(j)^+y(j)^-^+^)/(*) ) ) ); th(j)=*atan((cos(th(j))+sqrt((cos(th(j)))^-(sin(th(j)))^-((y(j)- sin(th(j))*)/())^))/ (sin(th(j))+((y(j)-sin(th(j))*)/()))); th(j)=*atan( (-cos(th(j))*sin(th(j))-sin(th(j))*cos(th(j))+sqrt((-cos(th(j))*sin(th(j))- sin(th(j))*cos(th(j)))^-(cos(th(j))*cos(th(j))-sin(th(j))*sin(th(j)))^-cos(fi)^))/ (cos(th(j))*cos(th(j))-sin(th(j))*sin(th(j))+cos(fi)) ); end % j 5
26 figure() subplot(,,),plot(t,th) xlabel('t[s]'); ylabel('theta[rad]'); subplot(,,),plot(t,th) xlabel('t[s]'); ylabel('theta[rad]'); subplot(,,),plot(t,th) xlabel('t[s]'); ylabel('theta[rad]'); Rysunek 6. Kąty ugięcia ramion dla zadanego ruchu w układzie bazowym. 6
27 P = [5 ] ; for k=::n c=cos(th(k)); s=sin(th(k)); c=cos(th(k)); s=sin(th(k)); c=cos(th(k)); s=sin(th(k)); T= [ (cc-ss)*c+(-cs-sc)*s (cc-ss)*(-s)+(-cs-sc)*c (cc- ss)*+c ; (sc+cs)*c+(-ss+cc)*s (sc+cs)*(-s)+(-ss+cc)*c (sc+cs)*+s ; ; ]; P = T*P; xx(k)=p(); yy(k)=p(); end %k plot(yy,xx) 7
28 4. Analiza statyczna manipulatora. elem analizy statycznej jest uzyskanie informacji o siłach jakie będą działać na jego konstrukcję oraz napędy podczas spoczynku robota. iła działająca w narzędzie robota przedstawiona w postaci ogólnej: [ ] Przejście z siłą do układu Ponieważ wirtualny układ nr 6 jest identyczny jak układ nr 5 więc Obliczenie momentu w układzie Ponieważ Gdzie to wersory jednostkowe układu Wyznaczenie wartości momentu napędowego dla układu [ ] [ ] Wyznaczanie obciążeń w układzie Obciążenia wyznaczone w układzie będą występowały również w układzie, wobec tego będą uwzględnione w wzorach ogólnych. 8
29 Rotacja pomiędzy układami oraz jest opisana następującą macierzą rotacji: [ ] [ ] [ ] [ ] [ ] [ ] [ ] Wyznaczenie wartości siły napędowej dla układu [ ] [ ] Wyznaczanie obciążeń w układzie Obciążenia wyznaczone w układzie będą występowały również w układzie, wobec tego będą uwzględnione w wzorach ogólnych. Rotacja pomiędzy układami oraz jest opisana następującą macierzą rotacji: [ ] [ ] [ ] [ ] [ ] [ ] [ ] 9
30 Wyznaczenie wartości momentu napędowego dla układu [ ] [ ] Wyznaczanie obciążeń w układzie Obciążenia wyznaczone w układzie będą występowały również w układzie, wobec tego będą uwzględnione w wzorach ogólnych. Rotacja pomiędzy układami oraz jest opisana następującą macierzą rotacji: [ ] [ ] [ ] [ ] [ ] [ ] [ ] Wyznaczenie wartości siły napędowej dla układu [ ] [ ]
31 Wyznaczanie obciążeń w układzie Obciążenia wyznaczone w układzie będą występowały również w układzie, wobec tego będą uwzględnione w wzorach ogólnych. Rotacja pomiędzy układami oraz jest opisana następującą macierzą rotacji: [ ] [ ] [ ] [ ] [ ] [ ] [ ] Wyznaczenie wartości momentu napędowego dla układu [ ] [ ]
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
Bardziej szczegółowoManipulatory i roboty mobilne AR S1 semestr 5
Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych
Bardziej szczegółowoRozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Bardziej szczegółowoPodstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora
Podstawy Robotyki Określenie kinematyki oraz dynamiki manipulatora AiR V sem. Gr. A4/ Wicher Bartłomiej Pilewski Wiktor 9 stycznia 011 1 1 Wstęp Rysunek 1: Schematyczne przedstawienie manipulatora W poniższym
Bardziej szczegółowoMETODA SIŁ KRATOWNICA
Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..
Bardziej szczegółowoRozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C.
Instrukcja laboratoryjna do WORKING MODEL 2D. 1.Wstęp teoretyczny. Do opisu kinematyki prostej niezbędne jest podanie równańkinematyki robota. Zadanie kinematyki prostej można określićnastępująco: posiadając
Bardziej szczegółowoEgzamin 1 Strona 1. Egzamin - AR egz Zad 1. Rozwiązanie: Zad. 2. Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same
Egzamin 1 Strona 1 Egzamin - AR egz1 2005-06 Zad 1. Rozwiązanie: Zad. 2 Rozwiązanie: Koła są takie same, więc prędkości kątowe też są takie same Zad.3 Rozwiązanie: Zad.4 Rozwiązanie: Egzamin 1 Strona 2
Bardziej szczegółowoMODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
Bardziej szczegółowoFUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(
Zad Przedstaw funkcję kwadratową w postaci ogólnej Przykład y = ( x ) + 5 (postać kanoniczna) FUNKCJA KWADRATOWA Postać ogólna funkcji kwadratowej to: y = ax + bx + c;( a 0) Aby ją uzyskać pozbywamy się
Bardziej szczegółowo1. PODSTAWY TEORETYCZNE
1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych
Bardziej szczegółowoo współrzędnych (x i są punktami Steinera minimalizującymi długość sieci łączącej punkty P 1 ), i = 1, 2, 3, 4. Punkty pośrednie P 5 , y i , P 2
Najkrótsza droga W 34 numerze Świata Matematyki zamieściliśmy zadanie w którym należało znaleźć najkrótszą drogę pomiędzy trzema platformami wiertnczymi Sieć dróg wymagała znalezienia dodatkowego punktu
Bardziej szczegółowo4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ
4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów
Bardziej szczegółowoPolitechnika Białostocka
Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:
Bardziej szczegółowoKINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Bardziej szczegółowoPrzedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem
Bardziej szczegółowo1. Obciążenie statyczne
. Obciążenie statyczne.. Obliczenie stopnia kinematycznej niewyznaczalności n = Σ ϕ + Σ = + = p ( ) Σ = w p + d u = 5 + 5 + 0 0 =. Schemat podstawowy metody przemieszczeń . Schemat odkształceń łańcucha
Bardziej szczegółowoDynamika manipulatora. Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska. Podstawy robotyki wykład VI
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Cybernetyki Technicznej Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu w postaci
Bardziej szczegółowoOPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
Bardziej szczegółowoFUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c
FUNKCJA KWADRATOWA 1. Definicje i przydatne wzory DEFINICJA 1. Funkcja kwadratowa lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax + bx + c taką, że a, b, c R oraz a 0. Powyższe wyrażenie
Bardziej szczegółowoPrzekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Bardziej szczegółowoJakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są
Bardziej szczegółowoWYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Bardziej szczegółowoAlgebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Bardziej szczegółowo2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
Bardziej szczegółowoDRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Bardziej szczegółowo5. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY
Część 2. METODA PRZEMIESZCZEŃ PRZYKŁAD LICZBOWY.. METODA PRZEMIESZCZEŃ - PRZYKŁAD LICZBOWY.. Działanie sił zewnętrznych Znaleźć wykresy rzeczywistych sił wewnętrznych w ramie o schemacie i obciążeniu podanym
Bardziej szczegółowoLiczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Bardziej szczegółowo3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Bardziej szczegółowoAutor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE
METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody
Bardziej szczegółowoPodstawy robotyki wykład VI. Dynamika manipulatora
Podstawy robotyki Wykład VI Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Dynamika opisuje sposób zachowania się manipulatora poddanego wymuszeniu
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Bardziej szczegółowoSymulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8
Bardziej szczegółowoDefi f nicja n aprę r żeń
Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie
Bardziej szczegółowoANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA
Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono
Bardziej szczegółowoPRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU
Bardziej szczegółowogruparectan.pl 1. Kratownica 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Strona:1
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek konieczny geometrycznej
Bardziej szczegółowo5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Bardziej szczegółowoPrzykład 4.1. Ściag stalowy. L200x100x cm 10 cm I120. Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym
Przykład 4.1. Ściag stalowy Obliczyć dopuszczalną siłę P rozciagającą ściąg stalowy o przekroju pokazanym na poniższym rysunku jeśli naprężenie dopuszczalne wynosi 15 MPa. Szukana siła P przyłożona jest
Bardziej szczegółowoRÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
Bardziej szczegółowo6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
Bardziej szczegółowoStateczność ramy - wersja komputerowa
Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych
Bardziej szczegółowoMETODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03
METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego
Bardziej szczegółowoPROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA
POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych
Bardziej szczegółowo6. WYZNACZANIE LINII UGIĘCIA W UKŁADACH PRĘTOWYCH
Część 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6. 6. WYZNCZNIE LINII UGIĘCI W UKŁDCH PRĘTWYCH 6.. Wyznaczanie przemieszczeń z zastosowaniem równań pracy wirtualnej w układach prętowych W metodzie pracy
Bardziej szczegółowoPODSTAWY RACHUNKU WEKTOROWEGO
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)
Bardziej szczegółowoGNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
Bardziej szczegółowoRozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie
Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań
Bardziej szczegółowoRedukcja dowolnego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci
Redukcja dowolnego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Twierdzenie o redukcji: ażdy układ wektorów równoważny jest układowi złożonemu ze sumy o początku w dowolnym punkcie
Bardziej szczegółowo1. Silos Strona:1 Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu ...
1. Silos Dla danego układu wyznaczyć MTN metodą sił Rys. Schemat układu... Przyjęto przekrój podstawowy: I= 3060[cm4] E= 205[GPa] Globalne EI= 6273[kNm²] Globalne EA= 809750[kN] Strona:1 2. Ustalenie stopnia
Bardziej szczegółowo1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Bardziej szczegółowoWYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać
Bardziej szczegółowoFUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH
FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest
Bardziej szczegółowoStateczność ramy. Wersja komputerowa
Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel
Bardziej szczegółowoKRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Bardziej szczegółowoOBLICZANIE RAM METODĄ PRZEMIESZCZEŃ WERSJA KOMPUTEROWA
POLECHNA POZNAŃSA WYDZAŁ BUDOWNCWA NŻYNER ŚRODOWSA NSYU ONSRUCJ BUDOWLANYCH ZAŁAD ECHAN BUDOWL OBLCZANE RA EODĄ PRZEESZCZEŃ WERSJA OPUEROWA Ćwiczenie projektowe nr z echani budowli Wykonał: aciej BYCZYŃS
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowoWstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Bardziej szczegółowo1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x
WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Bardziej szczegółowoZakłócenia w układach elektroenergetycznych LABORATORIUM 3
Zakłócenia w układach elektroenergetycznych LABORATORIUM 3 Przekształcenie 0-1- Dane są napięcia w trzech fazach (symetryczne): U = V U A = U max sin(ωt + 11. ) U B = U max sin(ωt + 11. ) U C = U max sin(ωt
Bardziej szczegółowoMacierzowe algorytmy równoległe
Macierzowe algorytmy równoległe Zanim przedstawimy te algorytmy zapoznajmy się z metodami dekompozycji macierzy, możemy wyróżnić dwa sposoby dekompozycji macierzy: Dekompozycja paskowa - kolumnowa, wierszowa
Bardziej szczegółowoPLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)
PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi
Bardziej szczegółowoPolitechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Bardziej szczegółowoWprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z
Wprowadzenie układu ramowego do programu Robot w celu weryfikacji poprawności uzyskanych wyników przy rozwiązaniu zadanego układu hiperstatycznego z wykorzystaniem Metody Sił Temat zadania rozwiązanie
Bardziej szczegółowoRachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
Bardziej szczegółowoPolitechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie
Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e
Bardziej szczegółowoPróbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Bardziej szczegółowoĆwiczenie nr 3. Obliczanie układów statycznie niewyznaczalnych metodą sił.
Ewa Kloczkowska, KBI 1, rok akademicki 006/007 Ćwiczenie nr 3 Obliczanie układów statycznie niewyznaczalnych metodą sił. Dla układu prętowego przedstawionego na rysunku naleŝy: 1) Obliczyć i wykonać wykresy
Bardziej szczegółowoMatematyka licea ogólnokształcące, technika
Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem
Bardziej szczegółowoPodstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1
Podstawy programowania. Wykład 7 Tablice wielowymiarowe, SOA, AOS, itp. Krzysztof Banaś Podstawy programowania 1 Tablice wielowymiarowe C umożliwia definiowanie tablic wielowymiarowych najczęściej stosowane
Bardziej szczegółowoUkłady równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Bardziej szczegółowoTEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 3 BADANIE CHARAKTERYSTYK CZASOWYCH LINIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia są pomiary i analiza
Bardziej szczegółowo[ A i ' ]=[ D ][ A i ] (2.3)
. WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy
Bardziej szczegółowoPLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Bardziej szczegółowoMathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje
Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje
Bardziej szczegółowoROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
Bardziej szczegółowoRozdział 3. Tensory. 3.1 Krzywoliniowe układy współrzędnych
Rozdział 3 Tensory 3.1 Krzywoliniowe układy współrzędnych W kartezjańskim układzie współrzędnych punkty P są scharakteryzowane przez współrzędne kartezjańskie wektora wodzącego r = x 1 i 1 + x 2 i 2 +
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie
Bardziej szczegółowoFunkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Bardziej szczegółowoDla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów
1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek
Bardziej szczegółowoOgłoszenie. Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz
Laboratorium Badań Technoklimatycznych i Maszyn Roboczych Ogłoszenie Egzaminy z TEORII MASZYN I MECHANIZMÓW dla grup 12A1, 12A2, 12A3 odbędą się w sali A3: I termin 1 lutego 2017 r. godz. 9 00 12 00. II
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim
Bardziej szczegółowo1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Bardziej szczegółowoO MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
Bardziej szczegółowoWymagania eduka cyjne z matematyki
Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na
Bardziej szczegółowoUKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
Bardziej szczegółowoProgramowanie: grafika w SciLab Slajd 1. Programowanie: grafika w SciLab
Programowanie: grafika w SciLab Slajd 1 Programowanie: grafika w SciLab Programowanie: grafika w SciLab Slajd 2 Plan zajęć 1. Wprowadzenie 2. Wykresy 2-D 3. Wykresy 3-D 4. Rysowanie figur geometrycznych
Bardziej szczegółowoSzukanie rozwiązań funkcji uwikłanych (równań nieliniowych)
Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości
Bardziej szczegółowoWYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Bardziej szczegółowoI. Liczby i działania
I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,
Bardziej szczegółowoNarysować wykresy momentów i sił tnących w belce jak na rysunku. 3ql
Narysować wykresy momentów i sił tnących w belce jak na rysunku. q l Określamy stopień statycznej niewyznaczalności: n s = r - 3 - p = 5-3 - 0 = 2 Przyjmujemy schemat podstawowy: X 2 X Zakładamy do obliczeń,
Bardziej szczegółowo6. FUNKCJE. f: X Y, y = f(x).
6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Bardziej szczegółowoUkłady równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
Bardziej szczegółowoKONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Bardziej szczegółowo3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
Bardziej szczegółowoLOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Bardziej szczegółowo