Układy równań i nierówności liniowych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Układy równań i nierówności liniowych"

Transkrypt

1 Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X a 1d X n = b 1 (1) a m1 X a md X n = b m gdzie m N, a ij R, i = 1,, m, j = 1,, n Oznaczmy a 11 a 1d a 11 a 1n b 1 b 1 A =, [A B] =, b =, a i = a m1 a md a m1 a mn b m b m a 1i, a mi dla i = 1,, n Macierz A nazywamy macierzą układu (1), macierz [A B] nazywamy macierzą rozszerzoną układu (1), wektor b wektorem (kolumną) wyrazów wolnych, a a i, i = 1,, n, kolumnami współczynników Układ (1) można zapisać w równoważnej postaci wektorowej oraz równoważnej postaci macierzowej DEFINICJA 12 Układ równań liniowych (1) nazywamy (i) niejednorodnym, gdy b 0; (ii) jednorodnym, gdy b = 0 a 1 X a n X n = b (2) AX = b (3) DEFINICJA 13 Rozwiązaniem układu równań liniowych (1) (czasami nazywane rozwiązaniem szczególnym) nazywamy każdy ciąg liczb rzeczywistych x = (x 1,, x n ) taki, że a 11 x a 1n x n = b 1 a m1 x a mn x n = b m 1

2 Układy równań i nierówności liniowych 2 Rozwiązanie nazywamy nieujemnym rozwiązaniem układu, jeśli x 0 Zbiorem rozwiązań (odpowiednio, nieujemnych) układu równań liniowych (1) nazywamy zbiór wszystkich rozwiązań (odpowiednio, nieujemnych) układu (1), tj zbiór {x R n : Ax = b} (odpowiednio, zbiór {x R n : x 0, Ax = b}) WNIOSEK 11 Zbiór rozwiązań układu równań liniowych jest zbiorem afinicznym UWAGA 11 Czasami zbiór rozwiązań układu równań liniowych (1) nazywamy rozwiązaniem ogólnym układu równań (1) WNIOSEK 12 Jeżeli układ równań posiada dwa różne rozwiązania, to posiada nieskończenie wiele rozwiązań DEFINICJA 14 Układ równań liniowych (1) nazywa sie sprzecznym, gdy nie posiada żadnego rozwiązania, w przeciwnym przypadku nazywa się niesprzecznym DEFINICJA 15 Niesprzeczny układ równań liniowych (1) nazywa sie: (i) oznaczonym, gdy posiada dokładnie jedno rozwiązanie; (ii) nieoznaczonym, gdy posiada nieskończenie wiele rozwiązań TWIERDZENIE 13 (Kroneckera-Capelliego) Układ równań liniowych (1) jest niesprzeczny iff r(a) = r([a B]) Ponadto, (i) jeżeli r(a) = r([a B]) = n, to układ jest oznaczony; (ii) jeżeli r(a) = r([a B]) = r < n, to układ jest nieoznaczony, przy czym rozwiązania zależą od n r parametrów przebiegających zbiór liczb rzeczywistych DEFINICJA 16 Układ równań liniowych (1) nazywa sie układem Cramera, jeżeli n = m oraz det(a) 0 TWIERDZENIE 14 (Cramer) Układ równań liniowych Cramera ma dokładnie jedno rozwiązanie tj jest układem oznaczonym, a jego rozwiązanie (x 1,, x n ) T jest zadane wzorem x i = det(a i), i = 1,, n, det(a) gdzie macierz A i oznacza macierz powstałą z macierzy A przez zastąpienie i-tej kolumny przez kolumnę wyrazów wolnych DEFINICJA 17 Układ równań liniowych (1) nazywa sie jednorodnym, gdy wektor wyrazów wolnych jest wektorem zerowym TWIERDZENIE 15 Układ jednorodny równań liniowych jest zawsze układem niesprzecznym (posiada zawsze rozwiązanie zerowe) Ponadto, (i) jeżeli r(a) = n, to układ jest oznaczony; (ii) jeżeli r(a) = r < n, to układ jest nieoznaczony, przy czym rozwiązania zależą od n r parametrów przebiegających zbiór liczb rzeczywistych

3 Układy równań i nierówności liniowych 3 Następujące operacje wykonywane na równaniach układu równań liniowych: (i) przestawienie miejscami dwóch dowolnych równań układu; (ii) pomnożenie obu stron dowolnego równania przez liczbę różną od zera; (iii) dodanie do dowolnego równania układu, innego równania tego układu pomnożonego przez liczbę różną od zera; (iv) zamiana w każdym z równań tych samych dwóch zmiennych miejscami (łącznie z występującymi z nimi współczynnikami przekształcają wyjściowy układ równań w układ równań równoważnych Powyższym operacjom na równaniach układu równań odpowiadają analogiczne przekształcenia na wierszach macierzy rozszerzonej Noszą one nazwę operacji elementarnych Dlatego zamiast dokonywania operacji na równania układu można przekształcać wiersze macierzy rozszerzonej Przekształcenia te stanowią podstawę metody rozwiązywania układów równań linowych zw metodą eliminacji Gaussa lub metodę operacji elementarnych Mówi o tym następujące twierdzenie TWIERDZENIE 16 Stosując metodę operacji elementarnych na wierszach macierzy rozszerzonej ( przestawiając ewentualnie dodatkowo kolumny macierzy układu) możemy sprowadzić macierz rozszerzoną układu do jednej z czterech postaci kanonicznych [I C 1 ], [I M C 1 ], [ ] [ I C1 I M, 0 C 2 0 ] C 1 C 2 gdzie I oznacza macierz jednostkową, M tzw macierz resztową, a macierze C 1 i C 2 powstają z przekształcania kolumny wyrazów wolnych za pomocą przekształceń elementarnych W pierwszych dwóch przypadkach układ równań jest niesprzeczny, z tym że w pierwszym przypadku jest to układ oznaczony, a w drugim nieoznaczony Natomiast w dwóch pozostałych przypadkach układ jest niesprzeczny iff macierz C 2 jest macierzą zerową W trzecim przypadku jest to układ oznaczony, a w czwartym nieoznaczonym LEMAT 17 Niech V będzie podprzestrzenią R n oraz b R n Wtedy zachodzi dokładnie jedno z następujących stwierdzeń: a) b V ; b) istnieje u V taki, że b, u = 1 Dowód Dla b R n mamy rozkład b = b 1 + b 2, gdzie b 1 V oraz b 2 V Możliwe są dwa przypadki: 1) b 2 = 0 Wtedy b = b 1 V 2) b 2 0 Wtedy b, b 2 = b 2 2 > 0,

4 Układy równań i nierówności liniowych 4 Lemat ten jest szczególnym przypadkiem lematu Farkasa (twierdzenie??) W języku rozwiązań układów równań liniowych lemat ten ma następującą postać TWIERDZENIE 18 Niech A będzie m d-macierzą oraz b R n Wtedy zachodzi dokładnie jedno z następujących stwierdzeń: albo 1 zbiór rozwiązań w R n układu jest niepusty; Au = 0, b T u = 1 (4) albo 2 zbiór rozwiązań w R m układu jest niepusty A T v = b (5) Dowód Niech a T 1,, a T m oznaczają wiersze macierzy A Oznaczmy V = lin{a 1,, a m } Zauważmy, że wówczas (i) b V iff istnieje v R m takie, że Av = b; (ii) u V iff Au = 0 Dlatego dowód wynika natychmiast z lematu 17 DEFINICJA 18 Rozwiązanie x R m układu równań (1) nazywa się bazowym, gdy zbiór {a i : x i 0} składa się z wektorów liniowo niezależnych Współczynniki niezerowe w rozwiązaniu bazowym nazywają się zmiennymi bazowymi, a zerowe zmiennymi niebazowymi WNIOSEK 19 Niech układ równań liniowych (1) będzie układem oznaczonym Wtedy jedyne rozwiązanie tego układu jest rozwiązaniem bazowym WNIOSEK 110 Dla każdego podzbioru składającego się z wektorów liniowo niezależnych zbioru a 1,, a n } istnieje co najwyżej jedno rozwiązanie bazowe równania (1) WNIOSEK 111 1) Sprzeczny układ równań liniowych ma zero rozwiązań bazowych 2) Liczba rozwiązań bazowych niesprzecznego układu równań liniowych (1) jest zawarta pomiędzy 1, a ( ) n r, gdzie r = r(a) Dowód Liczba podzbiorów zbioru a 1,, a n } składających sie z wektorów niezależnych jest ograniczona z góry przez ( ) n r, gdzie r = r(a) Każde rozwiązanie bazowe jest rozwiązaniem układu równań powstałego z układu (1) przez wstawienie przy n r kolumnach współczynników zer

5 Układy równań i nierówności liniowych 5 Przykład 11 Rozważamy układ równań liniowych postaci x 1 + 2x 2 + x 3 2x 4 = 6 x 1 + x 2 + 2x 3 x 4 = 8 Jego rozwiązaniami bazowymi są następujące wektory: (4, 0, 2, 0) T, (10, 2, 0, 0) T, (10, 0, 0, 2) T, (0, 0, 10/3, 4/3) T, (0, 4/3, 10/3, 0) T Zauważmy, że ( ) 4 2 = 6, ale zmienne x2 i x 4 nie mogą być jednocześnie bazowe, gdyż wektory (2, 1) T i ( 2, 1) T nie są niezależne TWIERDZENIE 1