Algorytmy i struktury danych. Wykład 4
|
|
- Wacława Marciniak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej Algorytmy i struktury danych W4 1
2 Obliczanie wartości wielomianu Postać ogólna wielomianu n go stopnia: w n x a 0 x n a 1 x n1... a n1 x a n (4.1) Po wyłączeniu przed nawias zmiennej x z prawie wszystkich składników wyrażenia otrzymuje się: w n n1 n2 a 0x a1x... an 1 x an Po kolejnych takich wyłączeniach przed nawias zmiennej x wyrażenie (4.1) przyjmie postać: w n x a0 x a1x a2 x an 1 x an (4.2) Jest to tzw. schemat Hornera - najszybszy sposób obliczania wartości wielomianu Algorytmy i struktury danych W4 2
3 Obliczenie wartości y wielomianu n go stopnia wg powyższego schematu dla zadanej wartości zmiennej niezależnej x przebiega zatem wg następującego algorytmu: Dane: n - stopień wielomianu, a 0, a 1,..., a n - współczynniki, x - argument Wynik: Wartość wielomianu (4.1) 1 0 Zmiennej y przypisz wartość współczynnika a 0 przy najwyższej potędze argumentu. 2 0 Dla kolejnych wartości i = 1, 2,..., n obliczaj y := yx + a i Jest to algorytm typu iteracyjnego. Jego schemat blokowy pokazano na rys Algorytmy i struktury danych W4 3
4 Rys.4.1. Schemat blokowy algorytmu Hornera w wersji iteracyjnej Algorytmy i struktury danych W4 5
5 Wyrażenie (4.1) można zapisać również w postaci rekurencyjnej jako: w n n 1x x an ( x) w (4.3) Wartość wielomianu n go stopnia obliczamy wówczas według reguły: w x w n a x 0 n 0 n (4.4) 1 x an n 1 Warunkiem zakończenia jest osiągnięcie wartości 0 przez zmniejszaną w każdej kolejnej rekurencji wartość n. Schemat blokowy tej wersji rekurencyjnej schematu Hornera przedstawia rysunek Algorytmy i struktury danych W4 6
6 Rys.4.2. Schemat blokowy algorytmu Hornera w wersji rekurencyjnej Algorytmy i struktury danych W4 7
7 Szybkie potęgowanie Jak obliczyć np. wartość x 6. Wykonywanie kolejnych mnożeń x -x -x -x -x -x to pięć działań. Liczbę działań można zmniejszyć korzystając z równości 6 = 2 * 3; najpierw podnieść x do kwadratu, a następnie wynik - do trzeciej potęgi. Zamiast pięciu mnożeń, należy wykonać tylko trzy. Jeśli mielibyśmy podnieść x do potęgi 16, to wtedy wystarczyłoby wykonać tylko cztery mnożenia, zamiast piętnastu! Jeżeli na dodatek użyjemy binarnej postaci wykładnika potęgi 6 = (110) 2 i skorzystamy ze schematu Homera, to otrzymamy: x 6 x 1* 2 1* x x Algorytmy i struktury danych W4 8
8 Każdą liczbę naturalną można przedstawić w postaci binarnej opisany sposób podnoszenia do potęgi ma charakter uniwersalny można go użyć dla dowolnego naturalnego wykłanika potęgi. Zasada tzw. binarnego potęgowania od lewej do prawej: najbardziej znaczący bit w rozwinięciu binarnym wykładnika - jest zawsze równy 1 odpowiada rozpoczęciu obliczeń od przyjęcia podstawy potęgi liczby za jej początkową wartość, każda następna pozycja w rozwinięciu odpowiada podniesieniu częściowego wyniku do kwadratu i pomnożeniu przez x, jeżeli bit rozwinięcia na tej pozycji jest równy 1, w przeciwnym przypadku mnożenia nie wykonujemy Algorytmy i struktury danych W4 9
9 Kolejne kroki binarnego algorytmu potęgowania od-lewej-do-prawej: Dane: Liczba naturalna m (wykładnik potęgi) w postaci binarnej (m n m n-1...m 1 m 0 ) 2 i dowolna liczba x podstawa potegi. Wynik: Wartość y := x m. 1 o. y : = x. Ustalenie początkowej wartości potęgi. 2 o. Dla i = n l, n - 2,..., l, 0 - wykonuj: jeśli m i = 1, to y : = y*y*x, przeciwnym przypadku y : = y*y. Schemat blokowy tego algorytmu pokazuje rys Algorytmy i struktury danych W4 10
10 Rys.4.3. Szybkie potęgowanie metodą od lewej do prawej Algorytmy i struktury danych W4 11
11 Ile mnożeń należy wykonać, aby obliczyć x m? Wszystkie działania są wykonywane w kroku 2 o, dla kolejnych bitów w binarnym rozwinięciu wykładnika, z wyjątkiem bitu najbardziej znaczącego. Na każdej pozycji, bez względu na wartość bitu, wykonuje się mnożenie y*y, oraz, jeśli bit wynosi 1, to również dodatkowe mnożenie przez x. Liczba mnożeń w całym algorytmie jest równa liczbie wszystkich bitów w binarnej reprezentacji wykładnika, minus jeden, plus liczba jedynek w tej reprezentacji, również minus jeden, gdyż najbardziej znaczącej jedynce odpowiada początkowa wartość y = x i nie wykonuje się żadnego mnożenia Algorytmy i struktury danych W4 12
12 Algorytm potęgowania binarnego metodą od lewej do prawej ma pewną wadę. Rozwinięcie binarne liczby tworzy się od najmniej znaczącego bitu, czyli od prawej do lewej. Liczby naturalne są pamiętane w komputerze w postaci binarnej, dana jest zatem binarna reprezentacja wykładnika. Aby jednak z niej skorzystać, należy "dotrzeć" do poszczególnych bitów. Najłatwiej to zrobić, stosując algorytm, który tworzy na bieżąco taką właśnie reprezentację bit po bicie. Jak? Inny algorytm potęgowania też korzysta binarnej reprezentacji wykładnika, ale tworzy ją w trakcie obliczania potęgi, w takiej kolejności jak przy konwersji liczby z systemu dziesiętnego na dwójkowy czyli od prawej do lewej (kolejno od bitu najmniej znaczącego do najbardziej znaczącego) Algorytmy i struktury danych W4 13
13 Opis binarnego algorytmu potęgowania od prawej do lewej ma postać: Dane: Liczba naturalna m wykładnik i dowolna liczba x - podstawa. Wynik: Wartość potęgi y := x m, 1 o Ustalenie początkowych wartości potęgi i zmiennych: y := 1, z := x, p := m. 2 o q := p mod 2 - czy p jest parzyste? (operator mod oblicza resztę z dzielenia; w C/C++, C# operator %) 3 o p:=p div 2. Jeżeli q = 1, to przejdź do 4 o, w przeciwnym przypadku idź do 6 o (operator div oblicza część całkowitą ilorazu) 4 o y:=y *z. 5 o Jeżeli p = 0, to zakończ obliczenia - wynikiem jest bieżąca wartość y. 6 o z : = z * z. i wróć do 2 o. Rysunek 4.4 przedstawia schemat blokowy opisanego wyżej algorytmu Algorytmy i struktury danych W4 14
14 Rys.4.4. Algorytm szybkiego potęgowania metodą od prawej do lewej Algorytmy i struktury danych W4 15
15 Istnieje też, rekurencyjna wersja algorytmu szybkiego obliczania potęgi x m. Wykorzystano w niej następującą definicję m. tej potęgi liczby x: x m x m x 2 m1 2 x m 1 2 m parzyste 2 m nieparzyst e x Rekurencyjnie obliczana będzie wartość kwadratu liczby x dla kolejno malejących wartości wykładnika. Warunkiem zakończenia obliczeń jest osiągnięcie przez zmienną m wartości 1. Schemat blokowy tej wersji algorytmu pokazano na rys Algorytmy i struktury danych W4 16
16 Rys Wersja rekurencyjna algorytmu potęgowania od prawej do lewej Algorytmy i struktury danych W4 17
17 Algorytm Euklidesa, liczby pierwsze Algorytm Euklidesa został odkryty jako jeden z najwcześniejszych, jeszcze w starożytności, właśnie przez Euklidesa. Największym wspólnym dzielnikiem dwóch nieujemnych liczb całkowitych n i m jest taka największa liczba całkowita k, przez którą dzielą się bez reszty liczby n oraz m. Liczbę k będziemy dalej oznaczać jako wartość funkcji NWD(n, m), a jej wartość pozwala wyznaczyć algorytm Euklidesa. Załóżmy dalej, że n m. Po podzieleniu n przez m otrzymamy: n = qm + r, gdzie 0 r < m (4.5) W równaniu tym q jest całkowitą wartością ilorazu (największa liczba całkowita, nie większa niż n/m), a r - resztą z dzielenia Algorytmy i struktury danych W4 18
18 Jeżeli r = 0, to NWD(n, m) = m - mniejsza z dwóch danych liczb jest ich największym wspólnym dzielnikiem, a jeżeli r 0, to wyrażenie (4.5) można zapisać w postaci r = n - qm co oznacza, że każda liczba dzieląca n i m dzieli całe wyrażenie po prawej stronie, dzieli również r. Największy wspólny dzielnik n i m dzieli również resztę r: NWD(n, m) = NWD(m, r) gdzie NWD(0, q) = q. Działania algorytmu Euklidesa przebiegają wg następującego schematu: Dane: Dwie liczby naturalne n i m (n m). Wynik: NWD(n, m) - największy wspólny dzielnik n i m 1 o Jeżeli m = 0, to n jest szukanym dzielnikiem. 2 o Oblicz r := n mod m i podstaw n := m, m := r. Wróć do 1 o Schemat blokowy przedstawia rys Algorytmy i struktury danych W4 19
19 Rys.4.6. Algorytm Euklidesa znajdowania największego wspólnego podzielnika Algorytmy i struktury danych W4 20
20 Rekurencyjna wersja algorytmu obliczania największego wspólnego podzielnika dwóch liczb naturalnych wynika ze stwierdzenia, że: NWD n, m NWD n m, n mod m m m 0 0 Schemat blokowy rekurencyjnej wersji algorytmu Euklidesa przedstawia rys.4.7. Rys.4.7. Rekurencyjna wersja Algorytmu Euklidesa Algorytmy i struktury danych W4 21
21 Wykonując działania na ułamkach musimy znaleźć wartość najmniejszej wspólnej wielokrotności (NWW) dwóch liczb naturalnych n oraz m. Związek pomiędzy wartością NWW(n, m) oraz NWD(n, m) przedstawia wzór: NWW n, m mn NWD n, m a obliczenia przebiegają wg schematu: Dane: Liczby naturalne n, m (n m) Wynik: Najmniejsza wspólna wielokrotność NWW(n, m) 1 o Oblicz NWD(n, m) wg algorytmu Euklidesa 2 o Oblicz NWW(n, m) jako równe m*(n div NWD(n, m)) Algorytmy i struktury danych W4 22
22 Liczba naturalna jest pierwsza, jeśli dzieli się tylko przez 1 i przez samą siebie. Liczbę naturalną, która nie jest pierwszą, nazywa się liczbą złożoną. Liczba złożona ma dzielniki, które są różne od 1 i od niej samej na przykład, 24 nie jest liczbą pierwszą, gdyż jest podzielna przez liczby: 2, 3, 4, 6, 8 i 12. Czynnikiem liczby złożonej jest jej dzielnik, który jest liczbą pierwszą. Czynnikami liczby 24 są tylko liczby 2 i 3, gdyż pozostałe jej dzielniki nie są liczbami pierwszymi. Rozkładem liczby na czynniki (pierwsze) lub jej faktoryzacją nazywa się przedstawienie liczby w postaci iloczynu jej czynników pierwszych z uwzględnieniem ich krotności. Liczba 24 ma rozkład na czynniki 2 * 2 * 2 * 3 = 2 3 * Algorytmy i struktury danych W4 23
23 Najczęściej działania z liczbami pierwszymi sprowadzają się do rozwiązania jednego z dwóch problemów: Należy sprawdzić, czy dana liczba naturalna n jest liczbą pierwszą, a jeżeli nie jest, to podać jej rozkład na czynniki pierwsze. Znaleźć wszystkie liczby pierwsze w zadanym przedziale [m, n]. Algorytm sprawdzania, czy dana liczba naturalna n > 1 jest liczbą pierwszą przebiega według następującego schematu: Dane: Liczba naturalna n > 1 Wynik: Wartość prawda jeżeli n jest liczbą pierwszą i fałsz w przeciwnym przypadku. 1 o Przyjmij m = 2 2 o Oblicz r := n mod m, jeżeli r = 0, to n nie jest liczbą pierwszą. Zakończ z wartością fałsz, w przeciwnym przypadku przejdź do 3 o 3 o Podstaw n := n div m m 4 o Sprawdź czy jeżeli tak, to zwiększ m o 1 i wróć do 2 o, w przeciwnym przypadku zakończ z wartością prawda. Schemat blokowy przedstawia rys.4.8 n Algorytmy i struktury danych W4 24
24 Rys.4.8. Sprawdzanie czy n jest liczbą pierwszą (sqrt(n) to funkcja, która oblicza pierwiastek kwadratowy z liczby n Algorytmy i struktury danych W4 25
25 Algorytm faktoryzacji liczby naturalnej n czyli przedstawienia jej w postaci n = p 1 p 2 p k gdzie p 1 p 2 p k są kolejnymi liczbami pierwszymi składa się z następujących kroków: Dane: Liczba naturalna n oraz ciąg jej możliwych dzielników: 2 = d 0 < d 1 < d 2 <..., który zawiera wszystkie liczby pierwsze mniejsze lub równe oraz liczbę, która nie jest mniejsza od. n Ponieważ znajdowanie ciągu kolejnych liczb pierwszych jest pracochłonne, w algorytmie stosujemy ciąg dzielników, który oprócz liczb pierwszych może zawierać jeszcze inne liczby. Wynik: Rozkład liczby n na czynniki lub informacja, że n jest liczbą pierwszą Algorytmy i struktury danych W4 26
26 1 o Ustal początkowe wartości indeksów czynników i dzielników k := 0, i := 0; 2 o Jeśli n = 1, to zakończ działania. 3 o Dzielenie przez kolejny dzielnik: q : = n div d i, r: = n mod d i. 4 o Jeśli r 0, to przejdź do 6 o. 5 o Znaleziono kolejny czynnik: k := k + 1, p k := d t ; n := q. Wróć do 2 o. 6 o Jeśli q > d i, to przypisz i := i + 1 i przejdź do 3 o. 7 o n jest ostatnim dzielnikiem - przypisz k := k + 1 oraz p k := n i zakończ pracę Algorytmy i struktury danych W4 27
27 Rysunek 4.9 przedstawia schemat blokowy zmodyfikowanej wersji przedstawionego wyżej algorytmu faktoryzacji zadanej liczby naturalnej. W rozwiązaniu tym nie podaje się początkowych wartości możliwych dzielników liczby n. Kolejne dzielniki liczby pierwsze dla każdego kolejnego ilorazu generuje funkcja Czynnik. Funkcja Pierwsza sprawdza, czy podana jako jej argument liczba jest pierwsza (zwraca wartość prawda), czy nie (zwraca fałsz). Kolejno wyznaczone czynniki pierwsze zapisuje się w tablicy C Algorytmy i struktury danych W4 28
28 Rys.4.9. Algorytm faktoryzacji liczby naturalnej Algorytmy i struktury danych W4 29
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoWstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 5. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 5 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji Algorytm Euklidesa Liczby pierwsze i złożone Metody
Bardziej szczegółowoZadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Bardziej szczegółowo1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)
1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu:
ALGORYTMY MATEMATYCZNE Ćwiczenie 1 Na podstawie schematu blokowego pewnego algorytmu (rys 1), napisz listę kroków tego algorytmu: Rys1 Ćwiczenie 2 Podaj jaki ciąg znaków zostanie wypisany po wykonaniu
Bardziej szczegółowoLuty 2001 Algorytmy (8) 2000/2001
Algorytm Euklidesa Danymi są dwie nieujemne liczby całkowite m i n. Liczba k jest największym wspólnym dzielnikiem m i n, jeśli dzieli m oraz n i jest największą liczbą o tej własności - oznaczamy ją przez
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoWykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Bardziej szczegółowoZadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5.
Zadanie 1. Zmiana systemów. Zadanie 2. Szyfr Cezara. Zadanie 3. Czy liczba jest doskonała. Zadanie 4. Rozkład liczby na czynniki pierwsze Zadanie 5. Schemat Hornera. Wyjaśnienie: Zadanie 1. Pozycyjne reprezentacje
Bardziej szczegółowoWstęp do informatyki- wykład 1
MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoKOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO
Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Bardziej szczegółowoDr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoFunkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Bardziej szczegółowoZadanie 1. Test (6 pkt) Zaznacz znakiem X w odpowiedniej kolumnie P lub F, która odpowiedź jest prawdziwa, a która fałszywa.
2 Egzamin maturalny z informatyki Zadanie 1. Test (6 pkt) Zaznacz znakiem X w odpowiedniej kolumnie lub, która odpowiedź jest prawdziwa, a która fałszywa. a) rzeanalizuj poniższy algorytm (:= oznacza instrukcję
Bardziej szczegółowoPierścień wielomianów jednej zmiennej
Rozdział 1 Pierścień wielomianów jednej zmiennej 1.1 Definicja pierścienia wielomianów jednej zmiennej Definicja 1.1 Niech P będzie dowolnym pierścieniem. Ciąg nieskończony (a 0, a 1,..., a n,...) elementów
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Bardziej szczegółowoFunkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Bardziej szczegółowoZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM.
ZESTAW PYTAŃ SPRAWDZAJĄCYCH WIADOMOŚCI MATEMATYCZNE UCZNIÓW KLAS III GIMNAZJUM. Publikacja zawiera przykłady krótkich sprawdzianów wiadomości z zakresu zbiorów liczbowych oraz praw i działań w tych zbiorach
Bardziej szczegółowoAlgorytm Euklidesa. Największy wspólny dzielnik dla danych dwóch liczb całkowitych to największa liczba naturalna dzieląca każdą z nich bez reszty.
Algorytm Euklidesa Algorytm ten, jak wskazuje jego nazwa, został zaprezentowany przez greckiego matematyka - Euklidesa, żyjącego w w latach około 300r. p.n.e., w jego podstawowym dziele pt. Elementy. Algorytm
Bardziej szczegółowoPowtórzenie podstawowych zagadnień. związanych ze sprawnością rachunkową *
Powtórzenie podstawowych zagadnień związanych ze sprawnością rachunkową * (Materiały dydaktyczne do laboratorium fizyki) Politechnika Koszalińska październik 2010 Spis treści 1. Zbiory liczb..................................................
Bardziej szczegółowoTreść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
Bardziej szczegółowoWykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Bardziej szczegółowoZadania do wykonania. Rozwiązując poniższe zadania użyj pętlę for.
Zadania do wykonania Rozwiązując poniższe zadania użyj pętlę for. 1. apisz program, który przesuwa w prawo o dwie pozycje zawartość tablicy 10-cio elementowej liczb całkowitych tzn. element t[i] dla i=2,..,9
Bardziej szczegółowoWYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII
WYMAGANIA NA POSZCZEGÓLNE OCENY MATEMATYKA KL.VII ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 2. odczytuje liczby naturalne dodatnie zapisane w
Bardziej szczegółowoPodstawy programowania. Wykład: 13. Rekurencja. dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD
Podstawy programowania Wykład: 13 Rekurencja 1 dr Artur Bartoszewski -Podstawy programowania, sem 1 - WYKŁAD Podstawy programowania Rekurencja - pojęcie 2 Rekurencja - pojęcie Rekurencja (rekursja) wywołanie
Bardziej szczegółowo0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Bardziej szczegółowoLiczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1
Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić
Bardziej szczegółowoWYRAŻENIA ALGEBRAICZNE
WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.
Bardziej szczegółowo1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Bardziej szczegółowo2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. 11 października 2008 r. 19. Wskazać takie liczby naturalne m,
Bardziej szczegółowo2. DZIAŁANIA NA WIELOMIANACH
WIELOMIANY 1. Stopieo wielomianu. Działania na wielomianach 2. Równość wielomianów. 3. Pierwiastek wielomianu. Rozkład wielomianu na czynniki 4. Równania wielomianowe. 1.STOPIEŃ WIELOMIANU Wielomian to
Bardziej szczegółowoZADANIE 1. Ważenie (14 pkt)
ZADANIE 1. Ważenie (14 pkt) Danych jest n przedmiotów o niewielkich gabarytach i różnych wagach. Jest też do dyspozycji waga z dwiema szalkami, ale nie ma odważników. Kładąc na wadze przedmioty a i b,
Bardziej szczegółowoProjekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Bardziej szczegółowoWymagania edukacyjne z matematyki w klasie VII szkoły podstawowej
Wymagania edukacyjne z matematyki w klasie VII szkoły podstawowej ROZDZIAŁ I LICZBY Uczeń otrzymuje ocenę dopuszczającą jeśli: 1. rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie
Bardziej szczegółowoLiczby. Wymagania programowe kl. VII. Dział
Wymagania programowe kl. VII Dział Liczby rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane w systemie rzymskim w zakresie do
Bardziej szczegółowoPrzypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z?
Przypomnienie wiadomości dla trzecioklasisty C z y p a m i ę t a s z? Liczby naturalne porządkowe, (0 nie jest sztywno związane z N). Przykłady: 1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne
Bardziej szczegółowoMaciej Grzesiak. Wielomiany
Maciej Grzesiak Wielomiany 1 Pojęcia podstawowe Wielomian definiuje się w szkole średniej jako funkcję postaci f(x) = a 0 + a 1 x + a 2 x + + a n x n Dogodniejsza z punktu widzenia algebry jest następująca
Bardziej szczegółowoNajwiększy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) WZAiP1: Chińskie twierdzenie o resztach
Największy wspólny dzielnik Algorytm Euklidesa (także rozszerzony) Chińskie twierdzenie o resztach Wybrane zagadnienia algorytmiki i programowania I 27 października 2010 Największy wspólny dzielnik - definicja
Bardziej szczegółowo1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Bardziej szczegółowoMatematyka z kluczem. Szkoła podstawowa nr 18 w Sosnowcu. Przedmiotowe zasady oceniania klasa 7
Matematyka z kluczem Szkoła podstawowa nr 18 w Sosnowcu Przedmiotowe zasady oceniania klasa 7 KlasaVII wymagania programowe- wymagania na poszczególne oceny ROZDZIAŁ I LICZBY 1. rozpoznaje cyfry używane
Bardziej szczegółowoKongruencje pierwsze kroki
Kongruencje wykład 1 Definicja Niech n będzie dodatnią liczbą całkowitą, natomiast a i b dowolnymi liczbami całkowitymi. Liczby a i b nazywamy przystającymi (kongruentnymi) modulo n i piszemy a b (mod
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VII Ocena Dopuszczający Osiągnięcia ucznia rozpoznaje cyfry używane do zapisu liczb w systemie rzymskim w zakresie do 3000 odczytuje liczby naturalne dodatnie zapisane
Bardziej szczegółowoMADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
Bardziej szczegółowoCałka nieoznaczona, podstawowe wiadomości
Całka nieoznaczona, podstawowe wiadomości Funkcją pierwotną funkcji w przedziale nazywamy funkcję taką, że dla każdego punktu z tego przedziału zachodzi Różnica dwóch funkcji pierwotnych w przedziale danej
Bardziej szczegółowo2.8. Algorytmy, schematy, programy
https://app.wsipnet.pl/podreczniki/strona/38766 2.8. Algorytmy, schematy, programy DOWIESZ SIĘ co oznaczają pojęcia: algorytm, schemat blokowy, język programowania, jakie są sposoby obliczania największego
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowo1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:
1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące
Bardziej szczegółowoTeoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Bardziej szczegółowoBukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
Bardziej szczegółowoArytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska,
Arytmetyka Magdalena Lemańska System dziesiętny System dziesiętny Weźmy liczbę 178. Składa się ona z jednej setki, siedmiu dziesiątek i ośmiu jedności. System dziesiętny System dziesiętny Weźmy liczbę
Bardziej szczegółowo... (środowisko) ... ... 60 minut
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB Z AUTYZMEM, W TYM Z ZESPOŁEM ASPERGERA (A2) WYBRANE:... (środowisko)... (kompilator)...
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoWybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Bardziej szczegółowoDZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Bardziej szczegółowoPodstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoTwierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoWstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Bardziej szczegółowoWielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1
XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1 Definicja Definicja Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję W (x) = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1 x + a 0 gdzie
Bardziej szczegółowoMatematyka Dyskretna Zestaw 2
Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Bardziej szczegółowo0 --> 5, 1 --> 7, 2 --> 9, 3 -->1, 4 --> 3, 5 --> 5, 6 --> 7, 7 --> 9, 8 --> 1, 9 --> 3.
(Aktualizacja z dnia 3 kwietnia 2013) MATEMATYKA DYSKRETNA - informatyka semestr 2 (lato 2012/2013) Zadania do omówienia na zajęciach w dniach 21 i 28 kwietnia 2013 ZESTAW NR 3/7 (przykłady zadań z rozwiązaniami)
Bardziej szczegółowoObliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl http://orion.fis.agh.edu.pl/~grazyna/ D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Plan wykładu 2 Wprowadzenie, trochę historii, systemy liczbowe
Bardziej szczegółowo11. Liczby rzeczywiste
. Liczby rzeczywiste Zdający: Wymagania, jakie stawia przed Tobą egzamin maturalny z przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem
Bardziej szczegółowoZestaw zadań dotyczących liczb całkowitych
V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.
Bardziej szczegółowoEGZAMIN MATURALNY Z INFORMATYKI
ARKUSZ ZAWIERA INORMACJE RAWNIE CHRONIONE DO MOMENTU ROZOCZĘCIA EGZAMINU! Miejsce na naklejkę EGZAMIN MATURALNY Z INORMATYKI MIN-R1_1-092 MAJ ROK 2009 OZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 minut Instrukcja
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013
Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje
Bardziej szczegółowoWymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019
Wymagania edukacyjne z matematyki na poszczególne do klasy VII szkoły podstawowej na rok szkolny 2018/2019 LICZBY Uczeń otrzymuje ocenę dopuszczającą, jeśli: rozpoznaje cyfry używane do zapisu liczb w
Bardziej szczegółowoWHILE (wyrażenie) instrukcja;
INSTRUKCJE ITERACYJNE WHILE, DO WHILE, FOR Instrukcje iteracyjne pozwalają powtarzać daną instrukcję programu określoną liczbę razy lub do momentu osiągnięcia określonego skutku. Pętla iteracyjna while
Bardziej szczegółowo5. Rekurencja. Przykłady
5. Rekurencja Uwaga! W tym rozdziale nie są omówione żadne nowe konstrukcje języka C++. Omówiona jest za to technika wykorzystująca funkcje, która pozwala na rozwiązanie pewnych nowych rodzajów zadań.
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoZadanie 1. Algorytmika ćwiczenia
Zadanie 1 Algorytmika ćwiczenia Zadanie 2 Zadanie 3 Zadanie 4 Zadanie 5 Zadanie 6 Zadanie 7 Wiązka zadań Ułamki dwójkowe W systemach pozycyjnych o podstawie innej niż 10 można zapisywać nie tylko liczby
Bardziej szczegółowoWymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
Bardziej szczegółowoALGORYTMY Algorytm poprawny jednoznaczny szczegółowy uniwersalny skończoność efektywność (sprawność) zmiennych liniowy warunkowy iteracyjny
ALGORYMY Algorytm to przepis; zestawienie kolejnych kroków prowadzących do wykonania określonego zadania; to uporządkowany sposób postępowania przy rozwiązywaniu zadania, problemu, z uwzględnieniem opisu
Bardziej szczegółowoWymagania edukacyjne niezbędne do uzyskania rocznych ocen klasyfikacyjnych z matematyki w klasie VII.
Przedmiotowy system oceniania z matematyki w klasie VII. Ocena roczna Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza
Bardziej szczegółowoObóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych
Bardziej szczegółowo1. Wielomiany Podstawowe definicje i twierdzenia
1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowoJednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).
Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany
Bardziej szczegółowoCzas pracy: 60 minut
EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ARKUSZ I PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) WYBRANE:... (środowisko)... (kompilator)... (program użytkowy)
Bardziej szczegółowo2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.
2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,
Bardziej szczegółowoRozwiązanie: Zastosowanie twierdzenia o kątach naprzemianległych
GEOMETRYCZNE 1) Dany jest prostokąt ABCD. Bok AB podzielono na trzy równe odcinki: AX, XY i YB. Wyznaczono trójkąty DAX, DXY i DYB. Uzasadnij, że wyznaczone trójkąty mają równe pola. Wizualizacja zadania
Bardziej szczegółowoKONSPEKT FUNKCJE cz. 1.
KONSPEKT FUNKCJE cz. 1. DEFINICJA FUNKCJI Funkcją nazywamy przyporządkowanie, w którym każdemu elementowi zbioru X odpowiada dokładnie jeden element zbioru Y Zbiór X nazywamy dziedziną, a jego elementy
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowoPróbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
Bardziej szczegółowo