UKŁADY RÓWNAŃ LINIOWYCH
|
|
- Patryk Józef Chmielewski
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wykłady z matematyki inżynierskiej JJ, 08
2 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m
3 OZNACZENIA a 11 a 12 a 1n a 21 a 22 a 2n Macierz główna układu: A = a m1 a m2 a mn Macierz uzupełniona układu: a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 U = a m1 a m2 a mn b m
4 Twierdzenie Kroneckera - Capellego TWIERDZENIE Układ ( ) ma rozwia zanie wtedy i tylko wtedy, gdy R(A) = R(U); ponadto: gdy R(A) = R(U) = n, to układ ma dokładnie jedno rozwia zanie; gdy R(A) = R(U) = r < n, to układ ma nieskończenie wiele rozwia zań zależnych od n r parametrów UWAGA W przypadku, gdy R(A) = R(U) = r, układ ( ) jest równoważny układowi Cramera r równań z r niewiadomymi (oraz z n r parametrami)
5 Twierdzenie Cramera TWIERDZENIE Gdy m = n w układzie ( ) oraz gdy det A 0, to układ (nazywany wtedy układem Cramera) ma dokładnie jedno rozwia zanie opisane wzorami: x 1 = det A 1 det A,, x n = det A n det A, gdzie A i to macierz powstała przez zasta pienie w macierzy A kolumny i-tej kolumna wyrazów wolnych
6 Wzory Cramera PRZYKŁAD Stosuja c wzory Cramera rozwia ż układ: x y + z = 0 x + y 2z = 1 2x y + 2z = 2
7 Wzory Cramera PRZYKŁAD Stosuja c wzory Cramera rozwia ż układ: det A = x y + z = 0 x + y 2z = 1 2x y + 2z = = 3,
8 Wzory Cramera PRZYKŁAD Stosuja c wzory Cramera rozwia ż układ: det A = x y + z = 0 x + y 2z = 1 2x y + 2z = = 3, det A 1 = = 3,
9 Wzory Cramera PRZYKŁAD Stosuja c wzory Cramera rozwia ż układ: x y + z = 0 x + y 2z = 1 2x y + 2z = 2 det A = det A 2 = = 3, det A 1 = = 6, = 3,
10 Wzory Cramera PRZYKŁAD Stosuja c wzory Cramera rozwia ż układ: x y + z = 0 x + y 2z = 1 2x y + 2z = 2 det A = det A 2 = = 3, det A 1 = = 3, = 6, det A 3 = = 3, 2 1 2
11 Wzory Cramera PRZYKŁAD Stosuja c wzory Cramera rozwia ż układ: x y + z = 0 x + y 2z = 1 2x y + 2z = 2 det A = det A 2 = = 3, det A 1 = = 3, = 6, det A 3 = = 3, zatem x = det A 1 det A = 3 3 = 1, y = 6 3 = 2, z = 3 3 = 1
12 Metoda eliminacji METODA ELIMINACJI (Gaussa) polega na eliminowaniu kolejnych zmiennych z kolejnych równań PRZYKŁAD Rozwia ż układ równań: 2x + y + 2z + t = 2 x y z + 2t = 2 4x + y + 2z + 2t = 3 3x + 3y + z + 5t = 1
13 2x + y + 2z + t = 2 x y z + 2t = 2 4x + y + 2z + 2t = 3 3x + 3y + z + 5t = 1 Na przykład drugie równanie dodajemy do pierwszego, dodajemy do trzeciego oraz mnożymy przez 3 i dodajemy do czwartego ( eliminujemy y ) otrzymuja c: 3x + z + 3t = 0 5x + z + 4t = 1 6x 2z + 11t = 5 Teraz równanie pierwsze mnożymy przez 1 i dodajemy do drugiego oraz { mnożymy przez 2 i dodajemy 2x + t = 1 do trzeciego ( eliminujemy z ): 12x + 17t = 5 Pierwsze równanie mnożymy przez 6 i dodajemy do drugiego: 11t = 11 Zatem t = 1 i, kolejno, x = 1, z = 0, y = 1
14 Metoda eliminacji w układzie Cramera n równań Nieco krótszą formą zapisu jest pominięcie niewiadomych Zamiast układu zapisujemy macierz uzupełnioną U - pamiętając, że liczby w pierwszej kolumnie to współczynniki przy pierwszej zmiennej, liczby w ostatniej kolumnie, to wyrazy po znaku = Działając tylko na wierszach: zamieniając wiersze miejscami, dzieląc lub mnożąc wszystkie wyrazy dowolnego wiersza przez dowolną stałą różną od zera, dodając do elementów dowolnego wiersza odpowiedne elementy innego wiersza pomnożone przez dowolną stała, doprowadzamy do macierzy, której każda z pierwszych n kolumn składa się z jednej jedynki i n 1 zer (ewentualnie do macierzy, której pierwsze n kolumn tworzy I n ; wtedy pierwsza niewiadoma jest równa pierwszej liczbie w ostatniej kolumnie, )
15 Metoda eliminacji PRZYKŁAD Rozwia ż układ równań: Macierz uzupełniona tego układu to: 2x + y + 2z + t = 2 x y z + 2t = 2 4x + y + 2z + 2t = 3 3x + 3y + z + 5t =
16 Metoda eliminacji Postępujemy tak samo jak przy poprzedniej metodzie rozwiązywania układu (to jedna z wielu możliwości) Drugi wiersz (odpowiadający drugiemu równaniu) dodajemy do pierwszego, dodajemy do trzeciego oraz mnożymy przez 3 i dodajemy do czwartego:
17 Metoda eliminacji Następnie pierszy wiersz dodajemy do drugiego, mnożymy przez 1 i dodajemy do trzeciego, mnożymy przez 2 i dodajemy do czwartego
18 Metoda eliminacji Trzeci wiersz mnożymy przez 3/2 i dodajemy do pierwszego, mnożymy przez 2 i dodajemy do drugiego, mnożymy przez 6 i dodajemy do czwartego /2 3/
19 Metoda eliminacji /2 3/ Wszystkie wyrazy czwartego wiersza dzielimy przez 11, trzeciego przez 1, drugiego przez /2 3/ /2 1/
20 Metoda eliminacji /2 3/ /2 1/ Czwarty wiersz mnożymy przez 1/2 i dodajemy do trzeciego, mnożymy przez 3 i dodajemy do drugiego, mnożymy przez 3/2 i dodajemy do pierwszego
21 Metoda eliminacji /2 3/ /2 1/ Czwarty wiersz mnożymy przez 1/2 i dodajemy do trzeciego, mnożymy przez 3 i dodajemy do drugiego, mnożymy przez 3/2 i dodajemy do pierwszego Zatem z = 0, y = 1, x = 1, t = 1
22 Metoda eliminacji /2 3/ /2 1/ Czwarty wiersz mnożymy przez 1/2 i dodajemy do trzeciego, mnożymy przez 3 i dodajemy do drugiego, mnożymy przez 3/2 i dodajemy do pierwszego Zatem z = 0, y = 1, x = 1, t = 1
23 Metoda eliminacji /2 3/ /2 1/ Czwarty wiersz mnożymy przez 1/2 i dodajemy do trzeciego, mnożymy przez 3 i dodajemy do drugiego, mnożymy przez 3/2 i dodajemy do pierwszego Zatem z = 0, y = 1, x = 1, t = 1
24 Metoda eliminacji /2 3/ /2 1/ Czwarty wiersz mnożymy przez 1/2 i dodajemy do trzeciego, mnożymy przez 3 i dodajemy do drugiego, mnożymy przez 3/2 i dodajemy do pierwszego Zatem z = 0, y = 1, x = 1, t = 1
25 Metoda eliminacji Mogliśmy oczywiście zamienić wiersze miejscami uzyskując macierz: Jak wiemy, liczby w pierwszej kolumnie to współczynniki przy pierwszej zmiennej (w układzie równoważnym), liczby w drugiej kolumnie, to współczynniki przy drugiej zmiennej, liczby w ostatniej kolumnie, to wyrazy po znaku = Zatem x = 1, y = 1, z = 0, t = 1
26 Metoda macierzowa rozwiązywania układów Cramera Gdy X = x 1 x 2 x m, B = b 1 b 2 b m zapisać w postaci macierzowej, to układ ( ) można A X = B Gdy jest to układ Cramera (det A 0), to mnożąć lewostronnie (mnożenie macierzy nie jest przemienne) przez A 1 otrzymamy A 1 A X = A 1 B Jak wiadomo A 1 A = I oraz I X = X, zatem X = A 1 B
27 PRZYKŁAD Rozwiąż układ x + 2y = 0 3x + 4y = 2 metodą macierzową Układ ten zapisujemy w postaci macierzowej [ ] [ ] [ ] 1 2 x 0 = Macierzą odwrotną do macierzy 3 4 y 2 [ ] [ ] A = jest A = Zatem 3/2 1/2 [ ] [ ] [ ] [ ] [ ] x = 3 y 2 1 = = 1 Rozwiązania to x = 2 oraz y = 1
28 Twierdzenie Kroneckera - Capellego PRZYKŁAD Rozwiąż układ x + 5y = 1 2x + 4y = 1 3x + 3y = 1 4x + 2y = 1 5x + y = 2 Badamy rząd macierzy głównej i macierzy uzupełnionej układu R(A) = R 3 3 = 2, R(U) = R = Kolorowe minory są różne od zera R(A) R(U); układ jest sprzeczny (nie ma rozwiązania)
29 Twierdzenie Kroneckera - Capellego PRZYKŁAD Rozwiąż układ x + 5y = 1 2x + 4y = 1 3x + 3y = 1 4x + 2y = 1 5x + y = 1 Badamy rząd macierzy głównej i macierzy uzupełnionej układu R(A) = R 3 3 = 2, R(U) = R = R(A) = R(U) = n = 2; układ ma (dokładnie jedno) rozwiązanie Tworzymy układ Cramera (dwóch równań z dwiema niewiadomymi) równoważny naszemu układowi Jedną z możliwości jest odrzucenie trzech ostatnich równań
30 Twierdzenie Kroneckera - Capellego Układ równoważny: { x + 5y = 1 2x + 4y = 1 Oczywiście wyznacznik macierzy głównej tego układu Rozwiązujemy ten układ dowolną metodą 2 4 (podstawiania, eliminacji, stosując wzory Cramera lub zgadywania ) otrzymując rozwiązanie: x = 1 6, y = 1 6
31 Twierdzenie Kroneckera - Capellego PRZYKŁAD Rozwiąż układ { x + 2y + 3z + 4t + 5u = 1 5x + 4y + 3z + 2t + u = 1 Badamy rząd macierzy głównej i macierzy uzupełnionej układu [ ] R(A) = R = 2, [ ] R(U) = R = R(A) = R(U) = 2 < n = 5; układ ma nieskończenie wiele rozwiązań zależnych od trzech (5 2) parametrów
32 Twierdzenie Kroneckera - Capellego PRZYKŁAD Rozwiąż układ { x + 2y + 3z + 4t + 5u = 1 5x + 4y + 3z + 2t + u = 1 Badamy rząd macierzy głównej i macierzy uzupełnionej układu [ ] R(A) = R = 2, [ ] R(U) = R = R(A) = R(U) = 2 < n = 5; układ ma nieskończenie wiele rozwiązań zależnych od trzech (5 2) parametrów Tworzymy układ Cramera dwóch równań z dwiema niewiadomymi i trzema parametrami równoważny naszemu układowi Jedną z możliwości jest przeniesienie trzech ostatnich niewiadomych na prawą stronę i potraktowanie ich jak parametrów
33 PRZYKŁAD Rozwiąż układ x + 2y + 3z + 4t + 5u = 1 5x + 4y + 3z + 2t + u = 1 Podstawiamy (by wyglądały na parametry) z = λ, t = µ, u = η Układ równoważny: { x + 2y = 1 3λ 4µ 5η 5x + 4y = 1 3λ 2µ η Oczywiście wyznacznik nowej macierzy głównej różny od zera Rozwiązujemy układ dowolną metodą otrzymując: x = λ + 2µ + 3η, y = 2 2λ 3µ 4η 3 jest
34 PRZYKŁAD Rozwiąż układ x + 2y + 3z + 4t + 5u = 1 5x + 4y + 3z + 2t + u = 1 Rozwiązania (dokładniej: nieskończenie wiele rozwiązań zależnych od trzech parametrów): x = λ + 2µ + 3η y = 2 3 2λ 3µ 4η z = λ, t = µ u = η gdzie λ R, µ R, η R
35 Wektory własne DEFINICJA Załóżmy, że A jest macierzą kwadratową stopnia n, λ jest wartością własną tej macierzy, I jest macierzą jednostkową n-tego stopnia, a O to jednokolumnowa, n wierszowa macierz złożona z samych zer Wektorem własnym macierzy A nazywamy każde rozwiązanie X = (A λi) X = O x 1 x n O równania PRZYKŁAD Znajdź wektory własne macierzy A = [ Wartościami własnymi tej macierzy są λ 1 = 0 oraz λ 2 = 5 ]
36 Dla λ 1 = 0 A λ 1 I = [ ] 0 [ ] = [ Rozwiązujemy równanie (A λ 1 I) X = O, czyli [ ] [ ] [ ] 1 2 x 0 = Mamy więc do rozwiązania układ 2 4 y 0 { x + 2y = 0 Układ ten ma nieskończenie wiele 2x + 4y = 0 rozwiązań (zależnych od jednego parametru): Nas interesują tylko µ R \ {0} x = µ, y = 1 µ, µ R 2 ]
37 Dla λ 2 = 5 A λ 2 I = [ ] 5 Rozwiązujemy równanie [ ] [ ] [ 4 2 x 0 = 2 1 y 0 [ ] ], czyli = [ ] { 4x + 2y = 0 2x y = 0 Układ ten ma nieskończenie wiele rozwiązań: x = η, y = 2η, η R Nas interesują η R \ {0} Wybieramy, na przykład, µ = 2 oraz η = 1 [ ] [ 2 1 Wektorami własnymi macierzy A są, 1 2 oraz dowolne niezerowe krotności tych wektorów ]
Układy równań liniowych i metody ich rozwiązywania
Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...
Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Układy równań i nierówności liniowych
Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +
Układy równań liniowych
Układy równań liniowych ozważmy układ n równań liniowych o współczynnikach a ij z n niewiadomymi i : a + a +... + an n d a a an d a + a +... + a n n d a a a n d an + an +... + ann n d n an an a nn n d
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4
17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,
Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.
. Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21
13 Układy równań liniowych
13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
3. Macierze i Układy Równań Liniowych
3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x
Układy równań. Kinga Kolczyńska - Przybycień 22 marca Układ dwóch równań liniowych z dwiema niewiadomymi
Układy równań Kinga Kolczyńska - Przybycień 22 marca 2014 1 Układ dwóch równań liniowych z dwiema niewiadomymi 1.1 Pojęcie układu i rozwiązania układu Układem dwóch równań liniowych z dwiema niewiadomymi
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
1 Układy równań liniowych
II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie
Metoda eliminacji Gaussa. Autorzy: Michał Góra
Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego
Układy równań liniowych
Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1
Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem
Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,
; B = Wykonaj poniższe obliczenia: Mnożenia, transpozycje etc wykonuję programem i przepisuję wyniki. Mam nadzieję, że umiesz mnożyć macierze...
Tekst na niebiesko jest komentarzem lub treścią zadania. Zadanie. Dane są macierze: A D 0 ; E 0 0 0 ; B 0 5 ; C Wykonaj poniższe obliczenia: 0 4 5 Mnożenia, transpozycje etc wykonuję programem i przepisuję
Rozwiązywanie układów równań liniowych
Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy
wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów
KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją
Krótkie wprowadzenie do macierzy i wyznaczników
Radosław Marczuk Krótkie wprowadzenie do macierzy i wyznaczników 12 listopada 2005 1. Macierze Macierzą nazywamy układ liczb(rzeczywistych, bądź zespolonych), funkcji, innych macierzy w postaci: A a 11
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
9 Układy równań liniowych
122 II PRZESTRZENIE WEKTOROWE 9 Układy równań liniowych 1 Istnienie rozwiązań układu równań liniowych W tym paragrafie przerwiemy chwilowo ogólną analizę struktur pojawiających się w przestrzeniach wektorowych,
UKŁADY RÓWNAŃ LINIOWYCH
Projekt dofinansowała Fundacja mbanku UKŁADY RÓWNAŃ LINIOWYCH CZĘŚĆ I Układ równań to przynajmniej dwa równania spięte z lewej strony klamrą, np.: x + 0 Każde z równań musi zawierać przynajmniej jedną
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy
Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową
Układy równań liniowych. Ax = b (1)
Układy równań liniowych Dany jest układ m równań z n niewiadomymi. Liczba równań m nie musi być równa liczbie niewiadomych n, tj. mn. a a... a b n n a a... a b n n... a a... a b m m mn n m
MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ
MATEMATYKA I SEMESTR ALK (PwZ). Sumy i sumy podwójne : Σ i ΣΣ.. OKREŚLENIE Ciąg liczbowy = Dowolna funkcja przypisująca liczby rzeczywiste pierwszym n (ciąg skończony), albo wszystkim (ciąg nieskończony)
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:
Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,
Macierze. Układy równań.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Układy równań liniowych. Krzysztof Patan
Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub
"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.
Metoda eliminacji Gaussa
Metoda eliminacji Gaussa Rysunek 3. Rysunek 4. Rozpoczynamy od pierwszego wiersza macierzy opisującej nasz układ równań (patrz Rys.3). Zakładając, że element a 11 jest niezerowy (jeśli jest, to niezbędny
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można
det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...
Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i
Wykład 5. Metoda eliminacji Gaussa
1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
det A := a 11, ( 1) 1+j a 1j det A 1j, a 11 a 12 a 21 a 22 Wn. 1 (Wyznacznik macierzy stopnia 2:). = a 11a 22 a 33 +a 12 a 23 a 31 +a 13 a 21 a 32
Wyznacznik Def Wyznacznikiem macierzy kwadratowej nazywamy funkcj, która ka»dej macierzy A = (a ij ) przyporz dkowuje liczb det A zgodnie z nast puj cym schematem indukcyjnym: Dla macierzy A = (a ) stopnia
METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój
METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin
Wyznaczniki 3.1 Wyznaczniki stopni 2 i 3
3 Wyznaczniki 31 Wyznaczniki stopni 2 i 3 Wyznacznik macierzy 2 2 Dana jest macierz [ ] a b A Mat c d 2 2 (R) Wyznacznikiem macierzy A nazywamy liczbę mamy a A c b ad bc d Wyznacznik macierzy A oznaczamy
Macierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
3. FUNKCJA LINIOWA. gdzie ; ół,.
1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta
= i Ponieważ pierwiastkami stopnia 3 z 1 są (jak łatwo wyliczyć) liczby 1, 1+i 3
ZESTAW I 1. Rozwiązać równanie. Pierwiastki zaznaczyć w płaszczyźnie zespolonej. z 3 8(1 + i) 3 0, Sposób 1. Korzystamy ze wzoru a 3 b 3 (a b)(a 2 + ab + b 2 ), co daje: (z 2 2i)(z 2 + 2(1 + i)z + (1 +
1 Macierz odwrotna metoda operacji elementarnych
W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera
Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera
Wyk lad 7 Metoda eliminacji Gaussa Wzory Cramera Metoda eliminacji Gaussa Metoda eliminacji Gaussa polega na znalezieniu dla danego uk ladu a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n =
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
0 + 0 = 0, = 1, = 1, = 0.
5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Przykład 2 układ o rozwiązaniu z parametrami. Rozwiążemy następujący układ równań:
Przykład 2 układ o rozwiązaniu z parametrami Rozwiążemy następujący układ równań: Po zapisaniu układu w postaci macierzy rozszerzonej będziemy dążyć do uzyskania macierzy jednostkowej po lewej stronie
12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.
matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań.
Macierze Lekcja V: Wzory Cramera. Macierzowe układy równań. Wydział Matematyki Politechniki Wrocławskiej Układy Cramerowskie Układem Cramera nazywamy układ równań liniowych: AX = B, w którym A jest macierzą
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.
Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
A A A A A A A A A n n
DODTEK NR GEBR MCIERZY W dodatku tym podamy najważniejsze definicje rachunku macierzowego i omówimy niektóre funkcje i transformacje macierzy najbardziej przydatne w zastosowaniach numerycznych a w szczególności
1 Działania na macierzach
1 Działania na macierzach Dodawanie macierzy Dodawać można tylko macierze o tych samych wymiarach i robi to się następująco: [ 1 3 4 5 6 ] + [ 0 3 1 3 7 8 ] = [1 + 0 + 3 3 + 1 4 3 5 + 7 6 + 8 ] = [1 5
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Funkcje liniowe i wieloliniowe w praktyce szkolnej. Opracowanie : mgr inż. Renata Rzepińska
Funkcje liniowe i wieloliniowe w praktyce szkolnej Opracowanie : mgr inż. Renata Rzepińska . Wprowadzenie pojęcia funkcji liniowej w nauczaniu matematyki w gimnazjum. W programie nauczania matematyki w
2 Rachunek macierzowy, metoda eliminacji Gaussa-Jordana Wprowadzenie teoretyczne Zadania... 9
Spis treści 1 Podstawowe struktury algebraiczne 2 11 Grupa, pierścień, ciało 2 12 Grupy permutacji 4 13 Pierścień wielomianów, algorytm Euklidesa, największy wspólny dzielnik 6 14 Zadania 7 2 Rachunek
Pendolinem z równaniami, nierównościami i układami
Pendolinem z równaniami, nierównościami i układami 1. Równaniem nazywamy równość dwóch wyrażeń algebraicznych. Równaniami z jedną niewiadomą są, np. równania: 2 x+3=5 x 2 =4 2x=4 9=17 x 3 2t +3=5t 7 Równaniami
Wykład 4. Informatyka Stosowana. Magdalena Alama-Bućko. 25 marca Magdalena Alama-Bućko Wykład 4 25 marca / 25
Wykład 4 Informatyka Stosowana Magdalena Alama-Bućko 25 marca 2019 Magdalena Alama-Bućko Wykład 4 25 marca 2019 1 / 25 Macierze Magdalena Alama-Bućko Wykład 4 25 marca 2019 2 / 25 Macierza wymiaru m n
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ Maciej Burnecki opracowanie strona główna Spis treści I Zadania Wyrażenia algebraiczne indukcja matematyczna Geometria analityczna na płaszczyźnie Liczby zespolone 4 Wielomiany
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY
OPERACJE NA MACIERZACH DODAWANIE I ODEJMOWANIE MACIERZY Dodawanie i odejmowanie macierzy jest możliwe tylko dla dwóch macierzy o takich samych wymiarach! Wynikiem tych operacji jest macierz o takich samych
Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Faktoryzacja LU P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Wprowadzenie do Scilab: macierze
Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra
Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele
Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym
1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji
Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego
Wyk lad 8 Rzad macierzy i twierdzenie Kroneckera-Capellego 1 Określenie rz edu macierzy Niech A bedzie m n - macierza Wówczas wiersze macierzy A możemy w naturalny sposób traktować jako wektory przestrzeni
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Algebra liniowa. Macierze i układy równań liniowych
Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,
Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0
Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.
Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki
Algebra liniowa z geometria
Algebra liniowa z geometria Materiały do ćwiczeń Zespół matematyków przy WEEiA Spis treści 1 Macierze i wyznaczniki 5 11 Macierze i ich rodzaje 5 12 Operacje na macierzach 6 13 Wyznacznik macierzy 8 14
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..
Wykład z równań różnicowych
Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.
Metody i analiza danych
2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach
Lokalna odwracalność odwzorowań, odwzorowania uwikłane
Lokalna odwracalność odwzorowań, odwzorowania uwikłane Katedra Matematyki i Ekonomii Matematycznej Szkoła Główna Handlowa 17 maja 2012 Definicja Mówimy, że odwzorowanie F : X R n, gdzie X R n, jest lokalnie
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
Metody numeryczne. materiały do wykładu dla studentów
Metody numeryczne materiały do wykładu dla studentów. Metody dokładne rozwiązywania układów równań liniowych.. Układy równań o macierzach trójkątnych.. Metoda eliminacji Gaussa.3. Metoda Gaussa-Jordana.4.