Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Wielkość: px
Rozpocząć pokaz od strony:

Download "Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):"

Transkrypt

1 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu liczb używa się skończonego zbioru znaków, zwanych cyframi. Rozróżnić można systemy liczbowe pozycyjne i addytywne. do systemów pozycyjnych zalicza się m.in.: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. do systemów addytywnych zalicza się m.in.: rzymski, alfabetyczny, hieroglificzny. Czym jest liczba? Jest to po pojęcie abstrakcyjne, najczęściej używane w matematyce. Pozycyjny system liczbowy - sposób zapisywania liczb za pomocą skończonego zbioru znaków (cyfry arabskie, litery alfabetu), w którym wartość liczbowa zależy od jej umiejscowienia (pozycji) względem sąsiednich znaków. W systemie pozycyjnym charakterystyczna jest liczba zwana podstawą systemu pozycyjnego, określająca liczbę używanych cyfr (znaków). Wzór ogólny Zakładamy, że: p - podstawa systemu pozycyjnego, c n - cyfra systemu pozycyjnego i n - pozycja cyfry Wtedy wartość reprezentowaną przez symbol liczby zapisujemy jako sumę iloczynów postaci: c n * p n c 2 * p 2 + c 1 * p 1 + c 0 * p 0 Do najpopularniejszych systemów liczbowych należą: dziesiętny (decymalny), dwójkowy (binarny), ósemkowy (oktalny) i szesnastkowy (heksadecymalny). System dziesiętny (decymalny) -> DEC Jest to najczęściej używany system liczbowy przez ludzi. W systemie tym podstawę stanowi liczba 10, a do zapisu liczb używa się dziesięciu symboli cyfr arabskich {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Każdemu z tych symboli przyporządkowana jest pewna wartość. Z tych prostych symboli tworzymy elementy bardziej złożone ustawiając cyfry na tzw. pozycjach, szeregując je od prawej do lewej. Najbardziej skrajna, prawa pozycja to pozycja jedności, następna to pozycja dziesiątek, dalej są pozycje setek, tysięcy itd. Przykład: pozycja setek pozycja dziesiątek pozycja jedności 579 = 5 * * * 1 Liczbę dziesiętną możemy zapisać na trzy sposoby. Pierwszy, najczęściej stosowany w życiu codziennym to np Zapisy, które będzie stosować będą następujące: 149 D lub 149 (10). Mateusz Pańkowski 1

2 System dwójkowy (binarny) -> BIN System ten jest wykorzystywany przez cyfrowe urządzenia elektroniczne. Podstawą jest liczba 2, natomiast liczby zapisuje się za pomocą cyfr arabskich {0, 1}. Mimo, że zapis liczby dwójkowej jest dłuższy niż liczby dziesiętnej, to jednak dzięki niemu nastąpiła rewolucja świata techniki i powstała taka dziedzina jak informatyka. Stosowanie tylko dwóch cyfr znacznie ułatwiło budowanie układów cyfrowych, w których cyfry te symbolizują np. dwa stany: 1 - stan wysoki (np. przepływ prądu, włączony) 0 - stan niski (np. brak przypływu prądu, wyłączony) Liczby w systemie dwójkowym zapisujemy w postaci: 1011 (czyt. jeden zero jeden jeden, nie tysiąc jedenaście!!!) Jako, że system ten podobnie jak dziesiętny, jest systemem pozycyjnym, to bez problemu można dokonać konwersji liczb binarnych na dziesiętne i odwrotnie. Liczby dwójkowe zapisywać będziemy w postaci B lub (2). Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): Dokonaj zamiany liczby dziesiętnej 74 (10) na binarną (DEC -> BIN). 74 (10) = X (2) 74 (10) = 74 : 2 = 37 r. = 0 = (2) 37 : 2 = 18 r. = 1 18 : 2 = 9 r. = 0 9 : 2 = 4 r. = 1 4 : 2 = 2 r. = 0 2 : 2 = 1 r. = 0 1 : 2 = 0 r. = 1 74 (10) = (2) O co tu chodzi? Aby dokonać zamiany liczby dziesiętnej na postać binarną, należy po prostu wykonać cykliczne dzielenie z resztą. Dzielną jest liczba dziesiętna, natomiast dzielnikiem jest podstawa systemu binarnego, czyli 2. Wynik z pierwszego dzielenia (74 : 2) ponownie dzielony jest przez 2, i tak aż do uzyskania 0. Liczba binarna powstaje poprzez zapisanie reszt z dzielenia zapisanych w odwrotnej kolejności (od dołu do góry). Skąd reszta? Jeśli dzielimy liczbę nieparzystą przez 2, to nie ma możliwości aby dwójka zmieściła się tam pełną ilość razy i zostanie nam reszta 1, np.: 7 : 2 - dwójka w siedmiu zmieści się 3 razy i wtedy zostanie nam 1. W jedynce dwójka się nie zmieści. W ten sposób ta jedynka staje się resztą z dzielenia. 6 : 2 - dwójka mieści się tu 3 razy i nic nam nie zostaje, czyli reszta to 0. W momencie gdy dochodzimy do sytuacji, gdy nasza dzielna będzie wynosić 1, to jeszcze nie kończymy i ją również dzielimy przez dwa. Ale w tym przypadku należy pamiętać, że wynik tego dzielenia to 0, a jako resztę przepisujemy 1. Mateusz Pańkowski 2

3 Przykład zamiany liczby binarnej na dziesiętną (BIN -> DEC): Dokonaj zamiany liczby binarnej (2) na dziesiętną (BIN -> DEC) (2) = X (10) (2) = 1* * * * * *2 5 = = 1*1 + 1*2 + 0*4 + 1*8 + 0*16 + 1*32 = = 43 (10) (2) = 43 (10) Zamiana jest bardzo prosta. Kolejne cyfry w liczbie binarnej należy ponumerować, zaczynając od pierwszej z prawej strony (otrzymuje ona numer pozycji 0, następna 1, kolejna 2 itd.). Numeracja pozycji dla powyższego przykładu będzie wyglądała następująco: pozycja: liczba binarna: (2) Następnie każdą z cyfr mnoży się przez wagę otrzymaną z podstawy podniesionej do potęgi równej pozycji. Po przemnożeniu cyfr przez wagi należy je zsumować. Otrzymana liczba powinna odpowiadać liczbie binarnej. Dla uproszczenia: liczba binarna 1 * * waga, czyli podstawa podniesiona do potęgi potęga, czyli pozycja, na której znajduje się cyfra Aby szybko móc przekształcać liczby binarne na postać dziesiętną warto zapamiętać wartości poszczególnych wag systemu binarnego. Wygląda to następująco: System szesnastkowy (heksadecymalny) -> HEX System ten wykorzystywany jest najczęściej do uproszczonego zapisu długich liczb binarnych. Podstawę systemu heksadecymalnego stanowi 16 cyfr. Pierwsze dziesięć cyfr to cyfry arabskie od 0 do 9, a pozostałe sześć, to litery alfabetu łacińskiego A do F (10-15). Liczba w systemie szesnastkowym zapisywana jest przy pomocy liczb ze zbioru {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} i wygląda następująco: 1A4B H lub 1A4B (16). Przy wykonywaniu konwersji liczb pomiędzy systemami DEC/BIN/HEX najłatwiej posłużyć się tabelką: dziesiętna binarna szesnastkowa dziesiętna binarna szesnastkowa A B C D E F TABELA KONWERSJI LICZB Mateusz Pańkowski 3

4 Przykład zamiany liczby dziesiętnej na szesnastkową (DEC -> HEX): Dokonaj zamiany liczby dziesiętnej 1221 (2) na szesnastkową (DEC -> HEX) (10) = X (16) 1221 (10) = 1221 : 16 = 76 r. = 5 = 4C5 (16) 76 : 16 = 4 r. = 12 (C) 4 : 16 = 0 r. = (10) = 4C5 (16) W tym przypadku zamiany, również dokonujemy dzielenia z resztą. Dzielną jest liczba dziesiętna, dzielnikiem - podstawa systemu szesnastkowego, czyli 16. Wynik pierwszego dzielenia ponownie dzielimy przez 16, aż do uzyskania 0. Nasza liczba szesnastkowa odpowiadająca dziesiętnej, powstaje poprzez zapisanie reszt w kolejności od dołu do góry. Jeśli wartość reszty jest większa od 9, to zapisujemy ją przy pomocy litery alfabetu (A, B, C, D, E i F). Aby szybko obliczyć resztę z dzielenia (np : 16) wystarczy pomnożyć część całkowitą (76) wyniku (w 1221 mieście się 76,3125 szesnastek) przez 16. Następnie wynik mnożenia trzeba odjąć od dzielnej ( (76*16)) i otrzymamy resztę 5. Przykład zamiany liczby szesnastkowej na dziesiętną (HEX -> DEC): Dokonaj zamiany liczby szesnastkowej 14AC (16) na dziesiętną. 14AC (16) = X (10) 14AC (16) = C* A* * *16 3 = 12*1 + 10*16 + 4* *4096 = = 5292 (10) 14AC (16) = 5292 (10) Zamiany liczby szesnastkowej na dziesiętną dokonujemy analogicznie jak zamianę liczby binarnej na dziesiętną, z tym że w tym przypadku mnożymy każdą cyfrę (również od prawej strony) przez podstawę (16) podniesioną do potęgi. Potęga jest równa pozycji, na której znajduje się dana liczba. W naszym przypadku pozycje są następujące: pozycja: liczba szesnastkowa: 1 4 A C (16) Przykład zamiany liczby binarnej na szesnastkową (BIN -> HEX): Dokonaj zamiany liczby binarnej (2) na szesnastkową (2) = X (16) Zamianę liczby binarnej na szesnastkową powinniśmy zacząć od pogrupowania jej na części po 4 cyfry. Grupowanie rozpoczynamy od strony prawej i kontynuujemy do końca liczby. Jeżeli w ostatniej części jest mniej niż 4 cyfry, to należy uzupełnić ją o zera na pustych pozycjach: = (2) = Mateusz Pańkowski 4

5 = (2) Teraz wykorzystamy tabelkę konwersji liczb i wszystkie, czterocyfrowe, pogrupowane znaki zamieniamy na odpowiadające im cyfry szesnastkowe: F 5 D (2) = 2F5D05 (16) Tak więc, w bardzo prosty sposób otrzymaliśmy liczbę szesnastkową. Przykład zamiany liczby szesnastkowej na binarną (HEX -> BIN): Dokonaj zamiany liczby szesnastkowej A4B9F0 (16) na binarną. A4B9F0 (16) = X (2) Konwersja w tą stronę jest jeszcze prostsza. Również i tu wykorzystamy tabelę konwersji liczb. Aby dokonać zamiany, wystarczy zamiast cyfr heksadecymalnych podstawić odpowiadające im ciągi binarne (po cztery cyfry) i połączyć później w jedną liczbę. Mamy liczbę A4B9F0 (16) : A 4 B 9 F Łączymy czterocyfrowe ciągi binarne w całość i zapisujemy liczbę binarną. Wynik jest następujący: A4B9F0 (16) = (2) Konwertowanie BIN -> HEX / HEX -> BIN w przedstawiony sposób jest o wiele łatwiejsze, niż mielibyśmy zamieniać BIN -> DEC -> HEX / HEX -> DEC -> BIN. Nie dość, że obliczenia wykonujemy znacznie szybciej, to przy okazji zmniejsza się prawdopodobieństwo popełnienia gdzieś błędu w obliczeniach. System ósemkowy (oktalny) -> OCT Pozycyjny system liczbowy w którym podstawą jest liczba 8. Liczby zapisuje się przy pomocy kolejnych cyfr arabskich {0, 1, 2, 3, 4, 5, 6, 7}. Mimo, że system ten jest dużo rzadziej stosowany niż poprzednie systemy liczbowe, to jednak warto znać. Typowym zastosowaniem systemu ósemkowego w informatyce jest nadawanie uprawnień dostępu do plików w systemie Linux przy pomocy polecenia chmod. Konwersja liczb ósemkowych na postać dziesiętną i odwrotnie, jest wykonywana analogicznie jak konwersja w systemach binarnych i heksadecymalnych. Mateusz Pańkowski 5

6 ĆWICZENIA 1) Dokonaj konwersji liczb dziesiętnych na binarne. a) 389 (10) b) 693 (10) c) 1732 (10) d) 2214 (10) 2) Dokonaj konwersji liczb binarnych na dziesiętne. a) (2) b) (2) c) (2) d) (2) 3) Dokonaj konwersji liczb binarnych na szesnastkowe a) (2) b) (2) c) (2) d) (2) 4) Dokonaj konwersji liczb szesnastkowych na binarne a) C56E (16) b) ABCDE (16) c) 66BF13A (16) d) FF99CB61AA (16) Mateusz Pańkowski 6

Systemy liczbowe. 1. System liczbowy dziesiętny

Systemy liczbowe. 1. System liczbowy dziesiętny Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

ZAMIANA SYSTEMÓW LICZBOWYCH

ZAMIANA SYSTEMÓW LICZBOWYCH SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL. 0 12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl; Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

LICZENIE NA LICZYDLE

LICZENIE NA LICZYDLE www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych

Ćwiczenie nr 3. Wyświetlanie i wczytywanie danych Ćwiczenie nr 3 Wyświetlanie i wczytywanie danych 3.1 Wstęp Współczesne komputery przetwarzają dane zakodowane za pomocą ciągów zerojedynkowych. W szczególności przetwarzane liczby kodowane są w systemie

Bardziej szczegółowo

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko

Jednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Podstawy Systemów Liczbowych

Podstawy Systemów Liczbowych HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)

SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka) SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

ZMIERZYĆ SIĘ Z KALKULATOREM

ZMIERZYĆ SIĘ Z KALKULATOREM ZMIERZYĆ SIĘ Z KALKULATOREM Agnieszka Cieślak Wyższa Szkoła Informatyki i Zarządzania z siedzibą w Rzeszowie Streszczenie Referat w prosty sposób przedstawia niekonwencjonalne sposoby mnożenia liczb. Tematyka

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Wstęp do Informatyki dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura 1. Brookshear, J. G. (2003). Informatyka w ogólnym zarysie. WNT, Warszawa. 3. Małecki, R. Arendt D. Bryszewski A. Krasiukianis

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin

Wymagania edukacyjne. Hasło z podstawy programowej 1. Liczby naturalne 1 Liczby naturalne, cechy podzielności. Liczba godzin . Liczby rzeczywiste (3 h) PRZEDMIOT: Matematyka KLASA: I zasadnicza szkoła zawodowa Dział programowy Temat Wymagania edukacyjne Liczba godzin Hasło z podstawy programowej. Liczby naturalne Liczby naturalne,

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Matematyka, kl. 4. Uczeń:

Matematyka, kl. 4. Uczeń: Matematyka, kl. 4 Liczby i działania Program Matematyka z plusem Ocena Uczeń: Zna: pojęcia składnika, sumy, odjemnej, odjemnika, różnicy, czynnika, iloczynu, dzielnej, dzielenia, ilorazu, niewykonalność

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji

Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji Technologie informacyjne (wyk. 1) Podstawowe pojęcia związane z informatyką, zarys historii informatyki, komputerowy zapis informacji dr Tomasz Ordysiński ordych@wneiz.pl tomaszordysinski.pl Podstawowe

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste

Bardziej szczegółowo

Matematyka, kl. 5. Konieczne umiejętności

Matematyka, kl. 5. Konieczne umiejętności Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie

Bardziej szczegółowo

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny)

MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) MNOŻENIE W SYSTEMACH UZUPEŁNIENIOWYCH PEŁNYCH (algorytm uniwersalny) SPOSÓB 1 (z rozszerzeniem mnożnika): Algorytm jak zwykle jest prosty: lewostronne rozszerzenie mnożnej o kilka cyfr (na pewno wystarczy

Bardziej szczegółowo

Ćwiczenie 3. Konwersja liczb binarnych

Ćwiczenie 3. Konwersja liczb binarnych 1 Laboratorium Architektury Komputerów Ćwiczenie 3 Konwersja liczb binarnych Komputery wykonują operacje przetwarzania danych na wartościach binarnych, podczas gdy współczesna cywilizacja posługuje się

Bardziej szczegółowo

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 6 szkoły podstawowej. Łódź

Czesław i Łukasz Kuncewicz. matematyka. sprawdziany kompetencji. dla klasy 6 szkoły podstawowej. Łódź matematyka sprawdziany kompetencji dla klasy 6 szkoły podstawowej Łódź Korekta Grażyna Pysznicka-Kozik Projekt okładki Jacek Wilk Skład Krzysztof Jodłowski Copyright by Piątek Trzynastego, Łódź 00 Wszelkie

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk

Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk Podręcznik Kwalifikacja E.12. Montaż i eksploatacja komputerów osobistych oraz urządzeń peryferyjnych. Podręcznik do nauki zawodu technik informatyk omawia treści ujęte w nowej podstawie programowej. Jest

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

Klasa 5. Liczby i działania

Klasa 5. Liczby i działania Klasa 5. Liczby i działania gr. A str. 1/3... imię i nazwisko...... klasa data 1. Ilu cyfr potrzeba do zapisania liczby siedem miliardów trzysta tysięcy osiemnaście? Ile wśród nich jest zer? Ile zer będzie

Bardziej szczegółowo

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI

PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MIN-R1_1P-091 PRÓBNY EGZAMIN MATURALNY Z INFORMATYKI STYCZEŃ ROK 2009 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Proponujemy, by omawiając dane zagadnienie programowe lub rozwiązując

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY VI : 1. zamieni ułamek zwykły na dziesiętny dowolnym sposobem 2. porówna ułamek zwykły i dziesiętny 3.

Bardziej szczegółowo

Scenariusz zajęć z edukacji wczesnoszkolnej

Scenariusz zajęć z edukacji wczesnoszkolnej Scenariusz zajęć z edukacji wczesnoszkolnej 1. Informacje wstępne: Data 29 V 2013 Klasa II c 2. Realizowany program nauczania Gra w kolory program nauczania edukacji wczesnoszkolnej Autorka Ewa Stolarczyk

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym

Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym S t r o n a 1 Bożena Ignatowska Przykłady zastosowań funkcji tekstowych w arkuszu kalkulacyjnym Wprowadzenie W artykule zostaną omówione zagadnienia związane z wykorzystaniem funkcji tekstowych w arkuszu

Bardziej szczegółowo

1 TEMAT LEKCJI: 2 CELE LEKCJI: 3 METODY NAUCZANIA 4 ŚRODKI DYDAKTYCZNE. Scenariusz lekcji. 2.1 Wiadomości: 2.2 Umiejętności: Scenariusz lekcji

1 TEMAT LEKCJI: 2 CELE LEKCJI: 3 METODY NAUCZANIA 4 ŚRODKI DYDAKTYCZNE. Scenariusz lekcji. 2.1 Wiadomości: 2.2 Umiejętności: Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Pozycyjne systemy liczbowe 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać pozycyjny zapis liczby w systemie dziesiętnym; podać pozycyjny zapis liczby w systemie dwójkowym;

Bardziej szczegółowo

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY. Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE LICZBY RZECZYWISTE - POZIOM PODSTAWOWY Zad1 ( 5 pkt) 1 0 8 1 2 11 5 4 Dane są liczby x 5, y 5 2 2 1 5 a) Wyznacz liczbę, której 60% jest równe x Wynik podaj z dokładnością do 0,01 b)

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut

EGZAMIN MATURALNY Z INFORMATYKI 17 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 14:00 CZĘŚĆ I WYBRANE: Czas pracy: 90 minut Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2013 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z INFORMATYKI POZIOM ROZSZERZONY

Bardziej szczegółowo

Zestaw Edukacyjny Atmega-8 (AJAWe-0711) Porty wejścia-wyjścia.

Zestaw Edukacyjny Atmega-8 (AJAWe-0711) Porty wejścia-wyjścia. Zestaw Edukacyjny Atmega-8 (AJAWe-0711) LEKCJA 4 Porty wejścia-wyjścia W poprzedniej lekcji napisaliśmy pierwszy program, który zapalił nam jedną diodę led Teraz omówimy szczegółowo działanie niniejszego

Bardziej szczegółowo

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST

Wojewódzki Przedmiotowy Konkurs z informatyki dla uczniów szkół gimnazjalnych ETAP REJONOWY 2010/2011 TEST TEST. Test składa się z 35 zadań. Na jego rozwiązanie masz 90 minut. W każdym zadaniu wybierz jedną, najlepszą według Ciebie odpowiedź i zaznacz na karcie odpowiedzi znakiem x. Do dyspozycji masz wszystkie

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Matematyka z plusem dla szkoły podstawowej ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV

Matematyka z plusem dla szkoły podstawowej ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu roku: 130 Matematyka z plusem dla szkoły podstawowej ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice.

Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice. Informacja o języku. Osadzanie skryptów. Instrukcje, komentarze, zmienne, typy, stałe. Operatory. Struktury kontrolne. Tablice. Język PHP Język interpretowalny, a nie kompilowany Powstał w celu programowania

Bardziej szczegółowo

MATeMAtyka cz.1. Zakres podstawowy

MATeMAtyka cz.1. Zakres podstawowy MATeMAtyka cz.1 Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną.

Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną. Matematyka klasa 4 Wymagania edukacyjne na ocenę śródroczną. Każda wyższa ocena zawiera wymagania dotyczące ocen niższych. Wymagania na ocenę dopuszczającą obejmują wiadomości i umiejętności umożliwiające

Bardziej szczegółowo

Informacja dla ucznia

Informacja dla ucznia Informacja dla ucznia Test, który będziesz rozwiązywać, składa się z zadań o róŝnym stopniu trudności. W zadaniach tych wystarczy znaleźć jedyną prawidłową odpowiedź spośród czterech podanych (oznaczonych

Bardziej szczegółowo

XXI Krajowa Konferencja SNM

XXI Krajowa Konferencja SNM 1 XXI Krajowa Konferencja SNM AKTYWNOŚCI MATEMATYCZNE Ewa Szelecka (Częstochowa) ewaszel@poczta.onet.pl Małgorzata Pyziak (Rzeszów) mmpskarp@interia.pl Projekty, gry dydaktyczne i podręcznik interaktywny

Bardziej szczegółowo

RÓŻNE SPOSOBY ZAPISU LICZB. Zapraszamy do obejrzenia naszej prezentacji

RÓŻNE SPOSOBY ZAPISU LICZB. Zapraszamy do obejrzenia naszej prezentacji RÓŻNE SPOSOBY ZAPISU LICZB Zapraszamy do obejrzenia naszej prezentacji SYSTEMY LICZBOWE *binarny- do zapisu potrzebne są cyfry zero i jeden *trójkowy- do zapisu potrzebne są cyfry zero, jeden i dwa *czwórkowy-

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

Akademia Techniczno-Humanistyczna w Bielsku-Białej

Akademia Techniczno-Humanistyczna w Bielsku-Białej Akademia Techniczno-Humanistyczna w Bielsku-Białej Wydział Budowy Maszyn i Informatyki Laboratorium z sieci komputerowych Ćwiczenie numer: 2 Temat ćwiczenia: Maska sieci, podział sieci na podsieci. 1.

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Przedmiotowe zasady oceniania dla klasy 4 Matematyka z plusem

Przedmiotowe zasady oceniania dla klasy 4 Matematyka z plusem Przedmiotowe zasady oceniania dla klasy 4 Matematyka z plusem 1. Przedmiotowe zasady oceniania (PZO) to podstawowe zasady wewnątrzszkolnego oceniania uczniów zgodny z podstawą programową oraz wewnątrzszkolnymi

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

Wprowadzenie do informatyki ćwiczenia

Wprowadzenie do informatyki ćwiczenia Podstawowe działania na liczbach binarnych dr inż. Izabela Szczęch WSNHiD 2010/2011 Ćwiczenia z wprowadzenia do informatyki Dodawanie Odejmowanie Mnoż enie Dzielenie Plan zajęć 2 Izabela Szczęch 1 Dodawanie

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY

ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY ADAM KONSTANTYNOWICZ MATEMATYKA KOREPETYCJE GIMNAZJALISTY Redaktor serii: Marek Jannasz Redakcja: Inga Linder-Kopiecka Korekta: Marek Kowalik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt

Bardziej szczegółowo

Informacja dot. kodów kreskowych służących do identyfikacji przesyłek pocztowych w obrocie krajowym(wyciąg z Zarządzenia nr 122/2010 z późn. zm.

Informacja dot. kodów kreskowych służących do identyfikacji przesyłek pocztowych w obrocie krajowym(wyciąg z Zarządzenia nr 122/2010 z późn. zm. Informacja dot. kodów kreskowych służących przesyłek pocztowych w obrocie krajowym(wyciąg z Zarządzenia nr 122/2010 z późn. zm.) ZAWARTOŚĆ KODU KRESKOWEGO GS1-128 SŁUŻĄCEGO DO IDENTYFIKACJI PRZESYŁEK POCZTOWYCH

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Elektronika (konspekt)

Elektronika (konspekt) Elektronika (konspekt) Franciszek Gołek (golek@ifd.uni.wroc.pl) www.pe.ifd.uni.wroc.pl Wykład 12 Podstawy elektroniki cyfrowej (kody i układy logiczne kombinacyjne) Dwa znaki wystarczają aby w układach

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie

Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie Wymagania edukacyjne z matematyki Klasa I I. Liczby wymierne dodatnie. Ocena dopuszczająca: Uczeń: zna pojęcie liczby naturalnej, rozumie pojęcie dziesiątkowego systemu liczenia, rozumie pojęcie pozycyjnego

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Informacja. Informacja. Informacja. Informacja/wiadomość. Zbiór danych zebranych w celu ich przetworzenia i otrzymania wyników (nowych informacji).

Informacja. Informacja. Informacja. Informacja/wiadomość. Zbiór danych zebranych w celu ich przetworzenia i otrzymania wyników (nowych informacji). Informacja Informacja Czynnik, któremu człowiek może przypisać określony sens (znaczenie) w celu wykorzystania do różnych celów. Wszystko to, co może być zużytkowane do bardziej sprawnego wyboru działań

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2015/2016 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 05/06 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody Przedmiot: MATEMATYKA Klasa I (60 godz) Rozdział. Liczby rzeczywiste Numer

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Strumienie, pliki. Sortowanie. Wyjątki.

Strumienie, pliki. Sortowanie. Wyjątki. Strumienie, pliki. Sortowanie. Wyjątki. Operacje I/O w Javie Serializacja Zapisuje całą klasę Plik binarny Delimiter nieokreślony Nie da się podglądać Pliki tekstowe Zapisuje wybrane informacje Plik tekstowy

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013 PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH ROK SZKOLNY 2012/2013 OPRACOWAŁY NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM Bratkowska

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV

ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV ZAŁOŻENIA DO PLANU WYNIKOWEGO Z MATEMATYKI DLA KLASY IV Program nauczania: Matematyka z plusem, numer dopuszczenia programu DKW 4014 138/99 Liczba godzin nauki w tygodniu: 4 Planowana liczba godzin w ciągu

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo