Zasady doboru mikrosilników prądu stałego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zasady doboru mikrosilników prądu stałego"

Transkrypt

1 Jakub Wierciak Zasady doboru Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

2 Typowy profil prędkości w układzie napędowym (Wierciak 2000) Prędkość ω Praca z ustaloną prędkością Przyspieszanie Hamowanie Czas t

3 Przykładowy profil prędkości w układzie o pracy ciągłej (Wierciak 2000) Prędkość ω Czas t

4 Mikrosilnik z wirnikiem bezrdzeniowym (Kenjo, Nagamori 1989) 1 - tuleja, 2 - wałek, 3 - obudowa, 4 - magnes, 5 - twornik, 6 - szczotka, 7 - wyprowadzenie, 8 - komutator, 9 - piasta, 10 - łożysko

5 Moment elektromagnetyczny w mikrosilniku (Kenjo, Nagamori 1989) siła elektrodynamiczna F F BIL strumień magnetyczny Ф przenikający przez zwoje Φ RLB moment M rozwijany przez silnik z M Φ I 2 L - długość przewodnika I prąd, B - indukcja pola magnetycznego R - promień wirnika Z - liczba zwojów wirnika stała momentu K T K T z Φ 2 M K T I

6 Napięcie indukowane w mikrosilniku (Kenjo, Nagamori 1989) siła elektromotoryczna E indukowana w przewodniku E BL siła elektromotoryczna U ind indukowana w wirniku silnika Uind K E stała napięcia K E K E z Φ 2 B - indukcja pola magnetycznego K E - stała napięcia silnika L długość elementu przewodzącego U ind napięcie indukowane w uzwojeniu silnika ν prędkość elementu przewodzącego ω kątowa prędkość wirnika

7 Statyczny model mikrosilnika prądu stałego (Wierciak 2000) Równanie napięć U z RtI KE Rt I Równanie momentów Uz K T I K M D F M r Uind U z stałe napięcie zasilania silnika R t - całkowita rezystancję obwodu twornika K D - stała tłumienia lepkiego w silniku M F - moment tarcia statycznego w silniku M r zewnętrzny moment obciążenia

8 Obciążeniowe charakterystyki mikrosilnika (Wierciak 2000) Prędkość kątowa ω Prąd I Moc oddawana P 2 Sprawność η ω η P 2 I M r Moment silnika M M s

9 Dane katalogowe silników - parametry funkcjonalne (Portescap 2005)

10 Dobór mikrosilnika z do napędu bezpośredniego

11 Struktura elektrycznego układu napędowego (Wierciak 2000) UKŁAD NAPĘDOWY Sygnały sprzężenia zwrotnego Obciążenie elektryczne Zredukowane obciążenie Obciążenie Sygnały sterujące Sterownik Mikrosilnik Układ przeniesienia napędu Napędzany mechanizm Napięcia sterujące Moc mechaniczna Moc mechaniczna Moc elektryczna

12 Napęd bezpośredni z mikrosilnikiem elektrycznym (Wierciak 2008) Sygnały sterujące Sygnały sprzężenia zwrotnego Sterownik Obciążenie elektryczne Mikrosilnik Moment obciążający M mech Napędzany mechanizm Napięcia sterujące Prędkość kątowa ω mech Moc elektryczna

13 Typowe wymagania dla napędu bezpośredniego (Wierciak 2005) Wymagania funkcjonalne - tarciowy moment oporów mechanizmu M mechf, - prędkość obrotową n mech (ω mech ); Wymagania związane z warunkami pracy - temperatura otoczenia silnika T ot, - maksymalne napięcie zasilania silnika U zmax.

14 Algorytm doboru mikrosilnika do napędu bezpośredniego (Portescap 1996) 1. Dobranie silnika zdolnego do rozwijania w sposób ciągły wymaganego momentu obciążającego M mech i spełniającego inne kryteria (geometryczne, elektryczne ) 2. Obliczenie prądu pobieranego przez silnik pod danym obciążeniem. 3. Obliczenie wymaganego napięcia sterującego. 4. Sprawdzenie warunku cieplnego i skorygowanie wartości napięcia sterującego. 5. Obliczenie wymaganej mocy elektrycznej.

15 Karta katalogowa silników - przykład (Portescap 2005)

16 Dane katalogowe silników - parametry funkcjonalne i zalecenia (Portescap 2005)

17 Obliczenie prądu silnika (Portescap 2005) I M K s T M mech K T I - prąd silnika [A] K T - stała momentu silnika [Nmm/A] M s - moment rozwijany przez silnik [Nmm] M mech - moment wymagany do napędu mechanizmu [Nmm]

18 Obliczenie napięcia sterującego (Portescap 2005) U z R 0 I K E s R 0 I K E mech I - prąd silnika [A] K E - stała napięcia silnika [V/rad/s] R 0 - rezystancja wirnika w temp. odniesienia (22 ºC) [Ω] U z - napięcie zasilania (sterujące) ω s - prędkość kątowa wirnika [rad/s] ω mech - prędkość kątowa na wejściu mechanizmu [rad/s]

19 Sprawdzenie warunku cieplnego (Portescap 2005)

20 Zmiana wartości rezystancji uzwojeń (Pełczewski ) R t R 0 1 Cu T u T 0 R 0 - rezystancja twornika w temp. T 0 [Ω] R t - całkowita rezystancja obwodu twornika [Ω] T 0 - temperatura odniesienia parametrów silnika [K] T u - chwilowa temperatura uzwojeń [K] α Cu - cieplny współczynnik rezystywności uzwojeń [1/K] dla miedzi Cu 0,0039 1/K

21 Obliczanie ustalonych przyrostów temperatury (API Portescap 2000) α Cu - temperaturowy wsp. rezytywności miedzi I - prąd pobierany przez silnik [A] P w - moc cieplna wydzielająca się w wirniku [W] R t - chwilowa rezystancja obwodu twornika [Ω] R 0 - rezystancja obwodu twornika w temp. T 0 [Ω] R ws - opór cieplny między wirnikiem i stojanem [K/W] R so - opór cieplny między stojanem i otoczeniem [K/W] T 0 - temperatura odniesienia [K] T w - temperatura wirnika [K] T s - temperatura stojana [K] T ot - temperatura otoczenia [K] Przyrost temperatury wirnika ΔT wot T w T ot P w R wo Moc wydzielająca się w wirniku 2 Pw Rt I Rezystancja uzwojenia R t R R wot 0 1 R ws Cu R ( T T0) so w Całkowity opór cieplny

22 Ustalony przyrost temperatury wirnika (API Portescap 2000) Temperatura wirnika T w R 0 I 2 R wot 1 1T Cu R I Cu R wot T ot Rezystancja uzwojenia R t R 0 1 T w T 0 Wymagane napięcie zasilania U z R I t K E mech

23 Dobór mikrosilnika z przekładnią do pracy w warunkach ustalonych

24 Typowy profil prędkości w układzie napędowym (Wierciak 2000) Prędkość ω Praca z ustaloną prędkością Przyspieszanie Hamowanie Czas t

25 Przykładowy profil prędkości w układzie o pracy ciągłej (Wierciak 2000) Prędkość ω Czas t

26 Miniaturowy siłownik liniowy (Ultra Motion 2005)

27 Struktura elektrycznego układu napędowego (Wierciak 2000) UKŁAD NAPĘDOWY Sygnały sprzężenia zwrotnego Obciążenie elektryczne Zredukowane obciążenie Obciążenie Sygnały sterujące Sterownik Mikrosilnik Układ przeniesienia napędu Napędzany mechanizm Napięcia sterujące Moc mechaniczna Moc mechaniczna Moc elektryczna

28 Algorytm doboru układu napędowego z silnikiem do pracy ustalonej (Portescap 1996) 1. Dobranie reduktora zdolnego do przenoszenia w sposób ciągły wymaganego momentu obciążającego M obc. 2. Obliczenie przełożenia przekładni przy założeniu maksymalnej dopuszczalnej prędkości na jej wałku wejściowym oraz wybór przełożenia z oferowanego szeregu. 3. Obliczenie momentu M red zredukowanego do wałka silnika i prędkości n silnika. 4. Wybranie silnika (silników) przeznaczonego do współpracy z wytypowaną przekładnią i zdolnego do trwałego rozwijania obliczonego momentu. 5. Obliczenie prądu pobieranego przez silnik. 6. Obliczenie napięcia sterującego. 7. Sprawdzenie warunku cieplnego.

29 Dobór reduktora na podstawie dopuszczalnego momentu (Portescap 2005)

30 Obliczenie i dobór przełożenia reduktora (Portescap 1996) i i obl n n red i obl max mech i obl - minimalne przełożenie przekładni i red - wybrane przelożenie reduktora n max - maksymalna dopuszczalna prędkość wejściowego wałka przekładni n mech - wymagana prędkość na wałku wyjściowym

31 Obliczenie prędkości silnika i momentu zredukowanego (Portescap 1996) Prędkość silnika n s n mech i red Moment zredukowany do wałka silnika M s M red mech red i obl - minimalne przełożenie przekładni i red - wybrane przelożenie reduktora n max - maksymalna dopuszczalna prędkość wejściowego wałka przekładni n mech - wymagana prędkość na wałku wyjściowym n s - prędkość obrotowa wałka silnika M mech - moment wymagany do napędu mechanizmu M s - moment zredukowany do wałka silnika - sprawność przekładni η red i

32 Sprawność reduktora (Portescap 1996)

33 Dobór silnika (Portescap 2005)

34 Karta katalogowa silników - przykład (Portescap 2005)

35 Dane katalogowe silników - parametry funkcjonalne i zalecenia (Portescap 2005)

36 Obliczenie prądu silnika (Portescap 2005) I M K s T M mech K T I - prąd silnika [A] K T - stała momentu silnika [Nmm/A] M s - moment rozwijany przez silnik [Nmm] M mech - moment wymagany do napędu mechanizmu [Nmm]

37 Dane katalogowe silników - parametry funkcjonalne (Portescap 2005)

38 Obliczenie napięcia sterującego (Portescap 2005) U z R 0 I K E s R 0 I K E mech I - prąd silnika [A] K E - stała napięcia silnika [V/rad/s] R 0 - rezystancja wirnika w temp. odniesienia (22 ºC) [Ω] U z - napięcie zasilania (sterujące) ω s - prędkość kątowa wirnika [rad/s] ω mech - prędkość kątowa na wejściu mechanizmu [rad/s]

39 Ustalony przyrost temperatury wirnika (API Portescap 2000) Temperatura wirnika T w R 0 I 2 R wot 1 1T Cu R I Cu R wot T ot Rezystancja uzwojenia R t R 0 1 T w T 0 Wymagane napięcie zasilania U z R I t K E mech

40 Dobór mikrosilnika do układu pozycjonującego

41 Dynamiczny model mikrosilnika prądu stałego (Wierciak 2000) Równanie napięć Równanie momentów K T di u Rti L K E dt d i ( Js Jr ) KD ( MF sgn( ) Mr ) dt i - prąd twornika (A) M F - moment tarcia statycznego J r - zredukowany moment bezwładności napędzanych zespołów (kg m 2 ) J s - moment bezwładności wirnika (kg m 2 ) w silniku (N m), M r - zredukowany moment obciążający (N m), R t - całkowita rezystancja obwodu twornika (Ω), K D - stała tłumienia lepkiego w silniku (N m s) K E - stała napięcia (V s) K T - stała momentu (N m/a) L - indukcyjność uzwojenia twornika (H), u - ω - napięcie zasilania (V), prędkość kątowa wirnika (rad/s) M F - moment tarcia statycznego w silniku (N m),

42 Zastępcze parametry mikrosilnika prądu stałego (Wierciak 2000) Stała czasowa elektromagnetyczna T e L R t ω ω 0 Stała czasowa elektromechaniczna 0,632 ω 0 T m Rt K K E T J s T m t J s - masowy moment bezwładności wirnika (kg m 2 ) K E - stała napięcia (V s) K T - stała momentu (N m/a) L - indukcyjność uzwojenia twornika (H) R t - całkowita rezystancja obwodu twornika (Ω) Idealny przebieg zmian prędkości silnika podczas rozruchu ω 0 - ustalona prędkość obrotowa wirnika

43 Profil prędkości przy pozycjonowaniu na krótkiej drodze (Wierciak 2000) Prędkość ω Hamowanie Przyspieszanie Czas t

44 Algorytm doboru silnika (Portescap 2003) A. Wyznaczenie przyspieszenia kątowego B. Wyznaczenie momentu napędowego C. Dobór silnika D. Wyznaczenie prądu silnika E. Wyznaczenie temperatury wirnika F. Obliczenie rezystancji wirnika G. Wyznaczenie maksymalnej prędkości silnika H. Wyznaczenie napięcia sterującego

45 Wyznaczenie przyspieszenia kątowego (Portescap 2003) ω m Prędkość ω ε a -ε a a T p 2 1 T 4 2 p T p Czas t i a Prąd i T p - długość cyklu pozycjonowania (s) ε a - przyspieszenie kątowe (rad/s 2 ) Δγ - wymagane przemieszczenie kątowe (rad) ω m - maksymalna prędkość wirnika (rad/s) Czas t - i a

46 Wyznaczenie momentu napędowego (Portescap 2003) M a a J r J m J m - masowy moment bezwładności wirnika (kgm 2 ) J r - zredukowany masowy moment bezwładności obciążenia (kgm 2 ) M a - potrzebny moment silnika (Nm) Korzystne założenie Jr J m

47 Zredukowane obciążenie inercyjne (Oleksiuk 1989) J r J i 2 p l J l - masowy moment bezwładności napędzanych elementów (kgm 2 ) J r - zredukowany masowy moment bezwładności obciążenia (kgm 2 ) i p - przełożenie przekładni (1) W ćwiczeniu i p 2, 3, 4

48 Dobór silnika (Portescap 2005)

49 Wyznaczenie prądu silnika (Portescap 2003) i a M K a T K T - stała momentu silnika (Nm/A) M a - wymagany moment silnika (Nm) i a - prąd silnika (A)

50 Wyznaczenie maksymalnej prędkości silnika (Portescap 2003) 1 T m 2 p a T p - długość cyklu pozycjonowania (s) ε a - przyspieszenie kątowe wirnika (rad/s 2 ) ω m - maksymalna prędkość kątowa wirnika (rad/s)

51 Obliczenie ustalonego przyrostu temperatury (API Portescap 2000) α Cu - temperaturowy wsp. rezytywności miedzi I - prąd pobierany przez silnik [A] P w - moc cieplna wydzielająca się w wirniku [W] R t - chwilowa rezystancja obwodu twornika [Ω] R 0 - rezystancja obwodu twornika w temp. T 0 [Ω] R ws - opór cieplny między wirnikiem i stojanem [K/W] R so - opór cieplny między stojanem i otoczeniem [K/W] T 0 - temperatura odniesienia [K] T w - temperatura wirnika [K] T s - temperatura stojana [K] T ot - temperatura otoczenia [K] Przyrost temperatury wirnika ΔT P w wot T R t i w 2 a T ot P w R wo Moc wydzielająca się w wirniku Rezystancja uzwojenia R t R R wot 0 1 R ws Cu R ( T T0) so w Całkowity opór cieplny

52 Ustalony przyrost temperatury wirnika (API Portescap 2000) Temperatura wirnika 2 R0ia Rwot 1T0 Tw 2 1CuR0ia Cu R wot T ot Rezystancja uzwojenia R t R 0 1 T w T 0

53 Wyznaczenie napięcia sterującego (Portescap 2003) U min R i t a K E m K E i a - stała napięcia silnika (V/rad/s) - prąd silnika (A) R t - całkowita rezystancja obwodu twornika (Ω) U min - minimalne napięcie sterujące (V) ω m - maksymalna prędkość wirnika (rad/s)

54 Profil prędkości przy pozycjonowaniu na długiej drodze (Wierciak 2000) Prędkość ω Praca z ustaloną prędkością Przyspieszanie Hamowanie Czas t

55 Pozycjonowanie z użyciem trapezowego profilu prędkości (Wierciak 2000) Prędkość ω i a i u T p - maksymalny prąd silnika (A) - statyczny prąd obciążonego silnika (A) - długość cyklu pozycjonowania (s) ε a - przyspieszenie kątowe wirnika (rad/s 2 ) ω m - maksymalna prędkość wirnika (rad/s) ω m ε p -ε p T p Czas t Prąd i i a i u Czas t - i a

56 Napęd pozycjonujący z mikrosilnikiem (Wierciak 2000) Sygnał zadanego położenia Układ odejmujący Sygnał różnicowy Wzmacniacz mocy Napięcie sterujące Silnik Mechanizm Sygnał położenia Przetwornik położenia

57 Napęd pozycjonujący z kompensacją prędkościową (Wierciak 2000) Sygnał predkości Przetwornik prędkości Sygnał zadanego położenia Układ odejmujący Sygnał różnicowy Układ kompensujący Wzmacniacz mocy Napięcie sterujące Silnik Mechanizm Sygnał położenia Przetwornik położenia

58 Serwonapędy (Lenze 2008) Serwosilniki Serwonapęd

59 Handlowe serwonapędy - przykłady (Metronix, Maxon 2008)

60 Serwonapęd położeniowy z potencjometrem (Mclennan Servo Supplies Ltd. 2008)

61 Serwonapęd położeniowy z potencjometrem (Mclennan Servo Supplies Ltd. 2008)

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego

Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie. Ćwiczenie 3 Dobór mikrosilnika prądu stałego do układu pozycjonującego Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego do układu pozycjonującego Precyzyjne pozycjonowanie robot chirurgiczny (2009) 39 silników prądu stałego

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 1 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy mechanizm zamiany

Bardziej szczegółowo

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych

Ćwiczenie 2 Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń precyzyjnych - projektowanie Dobór mikrosilnika prądu stałego z przekładnią do pracy w warunkach ustalonych Miniaturowy siłownik liniowy (Oleksiuk, Nitu 1999) Śrubowy

Bardziej szczegółowo

Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego

Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Jakub Wierciak Matematyczne modele mikrosilników elektrycznych - silniki prądu stałego Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych Przykłady napędów bezpośrednich - twardy

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 2

Mikrosilniki prądu stałego cz. 2 Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 2

Mikrosilniki prądu stałego cz. 2 Jakub Wierciak Mikrosilniki cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Mikrosilnik z komutacją bezzestykową 1 - wałek,

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 1

Mikrosilniki prądu stałego cz. 1 Jakub Wierciak Mikrosilniki cz. 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Struktura elektrycznego układu napędowego (Wierciak

Bardziej szczegółowo

Mikrosilniki prądu stałego cz. 1

Mikrosilniki prądu stałego cz. 1 Jakub Wierciak Mikrosilniki cz. 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zasady działania siłowników elektrycznych (Heimann,

Bardziej szczegółowo

Ćwiczenie 1. Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych

Ćwiczenie 1. Dobór mikrosilnika prądu stałego do napędu bezpośredniego przy pracy w warunkach ustalonych - projektowanie Ćwiczenie 1 Dobór mikrosilnika prądu stałego do napędu bezpośredniego Instrukcja Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Identyfikacja cieplnych modeli elektrycznych układów napędowych

Identyfikacja cieplnych modeli elektrycznych układów napędowych Jakub Wierciak Identyfikacja cieplnych modeli elektrycznych układów napędowych Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 3 Dobór silnika skokowego do pracy w obszarze rozruchowym Napędy urządzeń mechatronicznych - projektowanie Dobór silnika skokowego do pracy w obszarze rozruchowym Precyzyjne pozycjonowanie (Velmix 2007) Temat ćwiczenia - stolik urządzenia technologicznego (Szykiedans,

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Silniki skokowe - cz. 1: budowa i zasada działania

Silniki skokowe - cz. 1: budowa i zasada działania Jakub Wierciak Silniki skokowe - cz. 1: budowa i zasada działania Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zasady działania

Bardziej szczegółowo

Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie

Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie - projektowanie Ćwiczenie 2 Instrukcja Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 2012 2 Ćwiczenie 2 2. Dobór mikrosilnika

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Dobór silnika serwonapędu. (silnik krokowy)

Dobór silnika serwonapędu. (silnik krokowy) Dobór silnika serwonapędu (silnik krokowy) Dane wejściowe napędu: Masa całkowita stolika i przedmiotu obrabianego: m = 40 kg Współczynnik tarcia prowadnic = 0.05 Współczynnik sprawności przekładni śrubowo

Bardziej szczegółowo

Elektromagnesy prądu stałego cz. 2

Elektromagnesy prądu stałego cz. 2 Jakub Wierciak Elektromagnesy cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Siła przyciągania elektromagnesu - uproszczenie

Bardziej szczegółowo

Elektromagnesy prądu stałego cz. 2

Elektromagnesy prądu stałego cz. 2 Jakub Wierciak Elektromagnesy cz. 2 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Siła przyciągania elektromagnesu - uproszczenie

Bardziej szczegółowo

Wykład 2 Silniki indukcyjne asynchroniczne

Wykład 2 Silniki indukcyjne asynchroniczne Wykład 2 Silniki indukcyjne asynchroniczne Katedra Sterowania i InŜynierii Systemów 1 Budowa silnika inukcyjnego Katedra Sterowania i InŜynierii Systemów 2 Budowa silnika inukcyjnego Tabliczka znamionowa

Bardziej szczegółowo

Modelowanie układu napędu taśmy przenośnego magnetofonu kasetowego w środowisku MATLAB/SIMULINK

Modelowanie układu napędu taśmy przenośnego magnetofonu kasetowego w środowisku MATLAB/SIMULINK Ćwiczenie 2 Modelowanie układu napędu taśmy przenośnego magnetofonu kasetowego w środowisku MATLAB/SIMULINK Instrukcja laboratoryjna Warszawa 2013 Modelowanie układu napędu taśmy przenośnego magnetofonu

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Wprowadzenie do mechatroniki

Wprowadzenie do mechatroniki Człony wykonawcze Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Urządzenia nastawcze aktuatory elektro-mechaniczne Urządzenia nastawcze - wykorzystywane do wykonywania ruchów lub

Bardziej szczegółowo

Ćwiczenie 3. Modelowanie układu wykonawczego w środowisku MATLAB / SIMULINK

Ćwiczenie 3. Modelowanie układu wykonawczego w środowisku MATLAB / SIMULINK - laboratorium Ćwiczenie 3 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 013 Ćwiczenie 3 3.

Bardziej szczegółowo

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE

PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ĆWICZENIE 5) BADANIE REGULATORA PI W UKŁADZIE STEROWANIA PRĘDKOŚCIĄ OBROTOWĄ SILNIKA PRĄDU STAŁEGO PRZED PRZYSTĄPIENIEM DO ZAJĘĆ PROSZĘ O BARDZO DOKŁADNE ZAPOZNANIE SIĘ Z TREŚCIĄ INSTRUKCJI CEL ĆWICZENIA:

Bardziej szczegółowo

bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe, trzymadła szczotkowe.

bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe, trzymadła szczotkowe. Silnik prądu stałego - budowa Stojan - najczęściej jest magneśnicą wytwarza pole magnetyczne jarzmo (2), bieguny główne z uzwojeniem wzbudzającym (3), bieguny pomocnicze (komutacyjne) (5), tarcze łożyskowe,

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Ćwiczenie 3 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika bocznikowego prądu stałego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Urządzenia

Bardziej szczegółowo

Elektromagnesy prądu stałego cz. 1

Elektromagnesy prądu stałego cz. 1 Jakub Wierciak Elektromagnesy cz. 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Struktura elektrycznego układu napędowego (Wierciak

Bardziej szczegółowo

Wykład 1. Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi.

Wykład 1. Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi. Serwonapędy w automatyce i robotyce Wykład 1 iotr Sauer Katedra Sterowania i Inżynierii Systemów Wprowadzenie Serwonapęd - układ, którego zadaniem jest pozycjonowanie osi. roces pozycjonowania osi - sposób

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. akub ożaryn Wykład. Instytut Automatyki i obotyki Wydział echatroniki Politechnika Warszawska, 014 Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną

Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zmiana punktu pracy wentylatorów dużej mocy z regulowaną prędkością obrotową w obiektach wytwarzających energię cieplną lub elektryczną Zbigniew Szulc 1. Wstęp Wentylatory dużej mocy (powyżej 500 kw stosowane

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Sterowanie napędów maszyn i robotów dr inż. Jakub Możaryn Wykład 1 Instytut Automatyki i Robotyki Wydział Mechatroniki Politechnika Warszawska, 2014 Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

Modelowanie silników skokowych

Modelowanie silników skokowych Modelowanie silników skokowych Silnik skokowy literatura nt. opisu formalnego Pochanke A.: Modele obwodowo-polowe pośrednio sprzężone silników bezzestykowych z uwarunkowaniami zasilania. OWPW, Warszawa,

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi Wydział: EAIiE kierunek: AiR, rok II Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Laboratorium z Elektrotechniki z Napędami Elektrycznymi Grupa laboratoryjna: A Czwartek 13:15 Paweł Górka

Bardziej szczegółowo

Opracował: mgr inż. Marcin Wieczorek

Opracował: mgr inż. Marcin Wieczorek Opracował: mgr inż. Marcin Wieczorek Jeżeli moment napędowy M (elektromagnetyczny) silnika będzie większy od momentu obciążenia M obc o moment strat jałowych M 0 czyli: wirnik będzie wirował z prędkością

Bardziej szczegółowo

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji

Obliczenia polowe silnika przełączalnego reluktancyjnego (SRM) w celu jego optymalizacji Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Studenckie Koło Naukowe Maszyn Elektrycznych Magnesik Obliczenia polowe silnika

Bardziej szczegółowo

Napędy urządzeń mechatronicznych

Napędy urządzeń mechatronicznych 1. Na rysunku przedstawiono schemat blokowy układu wykonawczego z napędem elektrycznym. W poszczególne bloki schematu wpisać nazwy jego elementów oraz wskazanych sygnałów. Napędy urządzeń mechatronicznych

Bardziej szczegółowo

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny.

Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. Temat: Silniki komutatorowe jednofazowe: silnik szeregowy, bocznikowy, repulsyjny. 1. Silnik komutatorowy jednofazowy szeregowy (silniki uniwersalne). silniki komutatorowe jednofazowe szeregowe maja budowę

Bardziej szczegółowo

Napędy urządzeń mechatronicznych

Napędy urządzeń mechatronicznych Jakub Wierciak Napędy urządzeń Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ewolucja systemów technicznych (Gawrysiak 1997)

Bardziej szczegółowo

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan

Dynamika układów mechanicznych. dr hab. inż. Krzysztof Patan Dynamika układów mechanicznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele układów mechanicznych opisują ruch ciał sztywnych obserwowany względem przyjętego układu odniesienia Ruch ciała w przestrzeni

Bardziej szczegółowo

Silniki skokowe - cz. 2: rodzaje pracy i charakterystyki

Silniki skokowe - cz. 2: rodzaje pracy i charakterystyki Jakub Wierciak Silniki skokowe - cz. 2: rodzaje pracy i charakterystyki Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rodzaje

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) suma momentów działających na bryłę - prędkość kątowa J moment bezwładności d dt ( J ) d dt J d dt dj dt J d dt dj d Równanie ruchu obrotowego

Bardziej szczegółowo

Napęd pojęcia podstawowe

Napęd pojęcia podstawowe Napęd pojęcia podstawowe Równanie ruchu obrotowego (bryły sztywnej) moment - prędkość kątowa Energia kinetyczna Praca E W k Fl Fr d de k dw d ( ) Równanie ruchu obrotowego (bryły sztywnej) d ( ) d d d

Bardziej szczegółowo

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 4 Dobór elektromagnesu do układu wykonawczego

Napędy urządzeń mechatronicznych - projektowanie. Ćwiczenie 4 Dobór elektromagnesu do układu wykonawczego Napędy urządzeń mechatronicznych - projektowanie Dobór elektromagnesu do układu wykonawczego Rozdzielacz detali napędzany elektromagnesami (Wierciak 2009) Klasyfikacja elektromagnesów ze względu na realizowaną

Bardziej szczegółowo

MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2

MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium. Ćwiczenie 2 MATERIAŁY I KONSTRUKCJE INTELIGENTNE Laboratorium Ćwiczenie Hamulec magnetoreologiczny Katedra Automatyzacji Procesów Wydział Inżynierii Mechanicznej i Robotyki Akademia Górniczo-Hutnicza Ćwiczenie Cele:

Bardziej szczegółowo

Maszyny Elektryczne i Transformatory sem. III zimowy 2012/2013

Maszyny Elektryczne i Transformatory sem. III zimowy 2012/2013 Kolokwium główne Wariant A Maszyny Elektryczne i Transformatory sem. III zimowy 2012/2013 Maszyny Prądu Stałego Prądnica bocznikowa prądu stałego ma następujące dane znamionowe: P 7,5 kw U 230 V n 23,7

Bardziej szczegółowo

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0).

Maszyna indukcyjna jest prądnicą, jeżeli prędkość wirnika jest większa od prędkości synchronicznej, czyli n > n 1 (s < 0). Temat: Wielkości charakteryzujące pracę silnika indukcyjnego. 1. Praca silnikowa. Maszyna indukcyjna jest silnikiem przy prędkościach 0 < n < n 1, co odpowiada zakresowi poślizgów 1 > s > 0. Moc pobierana

Bardziej szczegółowo

Inteligentnych Systemów Sterowania

Inteligentnych Systemów Sterowania Laboratorium Inteligentnych Systemów Sterowania Mariusz Nowak Instytut Informatyki Politechnika Poznańska ver. 200.04-0 Poznań, 2009-200 Spis treści. Układ regulacji automatycznej z regulatorami klasycznymi

Bardziej szczegółowo

Silnik indukcyjny - historia

Silnik indukcyjny - historia Silnik indukcyjny - historia Galileo Ferraris (1847-1897) - w roku 1885 przedstawił konstrukcję silnika indukcyjnego. Nicola Tesla (1856-1943) - podobną konstrukcję silnika przedstawił w roku 1886. Oba

Bardziej szczegółowo

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH

LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH -CEL- LABORATORIUM PRZETWORNIKÓW ELEKTROMECHANICZNYCH PODSTAWOWE CHARAKTERYSTYKI I PARAMETRY SILNIKA RELUKTANCYJNEGO Z KLATKĄ ROZRUCHOWĄ (REL) Zapoznanie się z konstrukcją silników reluktancyjnych. Wyznaczenie

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

LABORATORIUM PODSTAWY ELEKTROTECHNIKI

LABORATORIUM PODSTAWY ELEKTROTECHNIKI LABORATORIUM PODSTAWY ELEKTROTECHNIKI CHARAKTERYSTYKI TRANSFORMATORA JEDNOFAZOWEGO Badanie właściwości transformatora jednofazowego. Celem ćwiczenia jest poznanie budowy oraz wyznaczenie charakterystyk

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 5. Analiza pracy oraz zasada działania silników asynchronicznych

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 5. Analiza pracy oraz zasada działania silników asynchronicznych ĆWCZENE 5 Analiza pracy oraz zasada działania silników asynchronicznych 1. CEL ĆWCZENA Celem ćwiczenia jest zapoznanie się z podstawowymi układami elektrycznego sterowania silnikiem trójfazowym asynchronicznym

Bardziej szczegółowo

Ćwiczenie 1. Modelowanie mikrosilnika prądu stałego w środowisku AMIL

Ćwiczenie 1. Modelowanie mikrosilnika prądu stałego w środowisku AMIL - laboratorium Ćwiczenie 1 Modelowanie mikrosilnika prądu stałego w środowisku Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2015 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Nr katalogowy Moc Znamionowy moment siły Prędkość znamionowa

Nr katalogowy Moc Znamionowy moment siły Prędkość znamionowa ASTOR GE INTELLIGENT PLATFORMS - SERWONAPĘDY VERSAMOTION 6.3 SILNIKI Silniki są wykonywane na moce od 100 W do 3 kw i moment siły od 0,32 Nm do 14,32 Nm dla pracy ciągłej i od 0,96 Nm do 42,96 Nm dla pracy

Bardziej szczegółowo

NAPĘDY MASZYN TECHNOLOGICZNYCH

NAPĘDY MASZYN TECHNOLOGICZNYCH WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA Instytut Technologii Mechanicznej ul. Piotrowo 3, 60-965 Poznań, tel. +48 61 665 2203, fax +48 61 665 2200 e-mail: office_mt@put.poznan.pl, www.put.poznan.pl MATERIAŁY

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Silniki serwo EMMS-AS

Silniki serwo EMMS-AS Główne cechy Wszystko z jednego źródła Silniki EMMS-AS 4 Silnik serwo trwale wzbudzony, elektrodynamiczny, bezszczotkowy Wybór dwóch typów enkodera: Cyfrowy bezwzględny enkoder jednoobrotowy (standard)

Bardziej szczegółowo

Ćwiczenie EA1 Silniki wykonawcze prądu stałego

Ćwiczenie EA1 Silniki wykonawcze prądu stałego Akademia Górniczo-Hutnicza im.s.staszica w Krakowie KATEDRA MASZYN ELEKTRYCZNYCH Ćwiczenie EA1 Silniki wykonawcze prądu stałego Program ćwiczenia: A Silnik wykonawczy elektromagnetyczny 1. Zapoznanie się

Bardziej szczegółowo

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE

UKŁAD AUTOMATYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU STAŁEGO KONFIGUROWANY GRAFICZNIE UKŁAD AUOMAYCZNEJ REGULACJI SILNIKA SZEREGOWEGO PRĄDU SAŁEGO KONFIGUROWANY GRAFICZNIE Konrad Jopek (IV rok) Opiekun naukowy referatu: dr inż. omasz Drabek Streszczenie: W pracy przedstawiono układ regulacji

Bardziej szczegółowo

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe.

Silniki indukcyjne. Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki indukcyjne Ze względu na budowę wirnika maszyny indukcyjne dzieli się na: -Maszyny indukcyjne pierścieniowe. -Maszyny indukcyjne klatkowe. Silniki pierścieniowe to takie silniki indukcyjne, w których

Bardziej szczegółowo

Wykład 5. Piotr Sauer Katedra Sterowania i Inżynierii Systemów

Wykład 5. Piotr Sauer Katedra Sterowania i Inżynierii Systemów Serwonapędy w automatyce i robotyce Wykład 5 Piotr Sauer Katedra Sterowania i Inżynierii Systemów Prądnica prądu stałego zasada działania e Blv sinαα Prądnica prądu stałego zasada działania Prądnica prądu

Bardziej szczegółowo

Konstrukcje Maszyn Elektrycznych

Konstrukcje Maszyn Elektrycznych Konstrukcje Maszyn Elektrycznych Konspekt wykładu: dr inż. Krzysztof Bieńkowski GpK p.16 tel. 761 K.Bienkowski@ime.pw.edu.pl www.ime.pw.edu.pl/zme/ 1. Zakres wykładu, literatura. 2. Parametry konstrukcyjne

Bardziej szczegółowo

Sterowanie mechanizmów wieloczłonowych

Sterowanie mechanizmów wieloczłonowych Wykład 6 - Modelowanie napędów złączy Instytut Automatyki i Robotyki Warszawa, 2019 Modelowanie napędu złączy - silniki DC Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Silniki skokowe EMMS-ST

Silniki skokowe EMMS-ST q/w Podstawowy program produkcyjny Festo Obejmuje 80% Twoich zadań automatyzacji Na całym świecie: Zawsze na stanie Znakomity: Jakość Festo w atrakcyjnej cenie Prostota: Zredukowana złożoność zamawiania

Bardziej szczegółowo

Silniki prądu stałego

Silniki prądu stałego Silniki prądu stałego Maszyny prądu stałego Silniki zamiana energii elektrycznej na mechaniczną Prądnice zamiana energii mechanicznej na elektryczną Często dane urządzenie może pracować zamiennie. Zenobie

Bardziej szczegółowo

Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy

Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie M2 protokół Badanie trójfazowych maszyn indukcyjnych: silnik klatkowy, silnik pierścieniowy

Bardziej szczegółowo

Napędy urządzeń mechatronicznych

Napędy urządzeń mechatronicznych Jakub Wierciak Napędy urządzeń Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Ewolucja systemów technicznych (Gawrysiak 1997)

Bardziej szczegółowo

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD)

Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badanie silnika bezszczotkowego z magnesami trwałymi (BLCD) Badane silniki BLCD są silnikami bezszczotkowymi prądu stałego (odpowiednikami odwróconego konwencjonalnego silnika prądu stałego z magnesami

Bardziej szczegółowo

Rozrusznik. Elektrotechnika w środkach transportu 85

Rozrusznik. Elektrotechnika w środkach transportu 85 i Elektrotechnika w środkach transportu 85 Elektrotechnika w środkach transportu 86 Silnik spalinowy Elektrotechnika w środkach transportu 87 Silnik spalinowy Elektrotechnika w środkach transportu 88 Proces

Bardziej szczegółowo

2.2. Metoda przez zmianę strumienia magnetycznego Φ Metoda przez zmianę napięcia twornika Układ Ward-Leonarda

2.2. Metoda przez zmianę strumienia magnetycznego Φ Metoda przez zmianę napięcia twornika Układ Ward-Leonarda 5 Spis treści Przedmowa... 11 Wykaz ważniejszych oznaczeń... 13 1. Badanie silnika prądu stałego... 15 1.1. Elementy maszyn prądu stałego... 15 1.2. Zasada działania i budowa maszyny prądu stałego... 17

Bardziej szczegółowo

Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan

Dynamika układów elektrycznych. dr hab. inż. Krzysztof Patan Dynamika układów elektrycznych dr hab. inż. Krzysztof Patan Wprowadzenie Modele elektryczne opisują zjawiska zachodzące podczas przemieszczania się ładunków elektrycznych pomiędzy punktami obwodu o różnych

Bardziej szczegółowo

Prądy wirowe (ang. eddy currents)

Prądy wirowe (ang. eddy currents) Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko

Bardziej szczegółowo

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13

Wykaz ważniejszych oznaczeń Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 Spis treści 3 Wykaz ważniejszych oznaczeń...9 Przedmowa... 12 1. Podstawowe informacje o napędzie z silnikami bezszczotkowymi... 13 1.1.. Zasada działania i klasyfikacja silników bezszczotkowych...14 1.2..

Bardziej szczegółowo

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i

SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i SPIS TREŚCI PRZEDMOWA WYKAZ WAŻNIEJSZYCH OZNACZEŃ 1. PODSTAWOWE INFORMACJE O NAPĘDZIE Z SILNIKAMI BEZSZCZOTKOWYMI 1.1. Zasada działania i klasyfikacja silników bezszczotkowych 1.2. Moment elektromagnetyczny

Bardziej szczegółowo

Badanie napędu z silnikiem bezszczotkowym prądu stałego

Badanie napędu z silnikiem bezszczotkowym prądu stałego Badanie napędu z silnikiem bezszczotkowym prądu stałego Instrukcja do ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, zasadą działania oraz sposobem sterowania 3- pasmowego silnika bezszczotkowego

Bardziej szczegółowo

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Temat: ŹRÓDŁA ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1 Źródła energii elektrycznej prądu przemiennego: 1. prądnice synchroniczne 2. prądnice asynchroniczne Surowce energetyczne: węgiel kamienny i brunatny

Bardziej szczegółowo

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRĄDNICE I SILNIKI. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRĄDNICE I SILNIKI Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Prądnice i silniki (tzw. maszyny wirujące) W każdej maszynie można wyróżnić: - magneśnicę

Bardziej szczegółowo

Temat: SILNIKI SYNCHRONICZNE W UKŁADACH AUTOMATYKI

Temat: SILNIKI SYNCHRONICZNE W UKŁADACH AUTOMATYKI Temat: ILIKI YCHROICZE W UKŁADACH AUTOMATYKI Zagadnienia: praca silnikowa prądnicy synchronicznej silnik o magnesach trwałych (permasyn) silnik reluktancyjny silnik histerezowy 1 Co to jest silnik synchroniczny?

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Wiadomości do tej pory Podstawowe pojęcia Elementy bierne Podstawowe prawa obwodów elektrycznych Moc w układach 1-fazowych Pomiary

Bardziej szczegółowo

SILNIK KROKOWY. w ploterach i małych obrabiarkach CNC.

SILNIK KROKOWY. w ploterach i małych obrabiarkach CNC. SILNIK KROKOWY Silniki krokowe umożliwiają łatwe sterowanie drogi i prędkości obrotowej w zakresie do kilkuset obrotów na minutę, zależnie od parametrów silnika i sterownika. Charakterystyczną cechą silnika

Bardziej szczegółowo

Projekt silnika bezszczotkowego z magnesami trwałymi

Projekt silnika bezszczotkowego z magnesami trwałymi Projekt silnika bezszczotkowego z magnesami trwałymi dr inż. Michał Michna michna@pg.gda.pl 01-10-16 1. Dane znamionowe moc znamionowa P n : 10kW napięcie znamionowe U n : 400V prędkość znamionowa n n

Bardziej szczegółowo

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu:

Trójfazowe silniki indukcyjne. 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: A3 Trójfazowe silniki indukcyjne Program ćwiczenia. I. Silnik pierścieniowy 1. Wyznaczenie charakterystyk rozruchowych prądu stojana i momentu: a - bez oporów dodatkowych w obwodzie wirnika, b - z oporami

Bardziej szczegółowo

Symulacja pracy silnika prądu stałego

Symulacja pracy silnika prądu stałego KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Symulacja pracy silnika prądu stałego Opracował: Dr inż. Roland Pawliczek Opole 016

Bardziej szczegółowo

OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI

OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI Michał Majchrowicz *, Wiesław Jażdżyński ** OBLICZENIA POLOWE SILNIKA PRZEŁĄCZALNEGO RELUKTANCYJNEGO (SRM) W CELU JEGO OPTYMALIZACJI 1. WSTĘP Silniki reluktancyjne przełączalne ze względu na swoje liczne

Bardziej szczegółowo

Cel ćwiczenia. Przetwornik elektromagnetyczny. Silniki krokowe. Układ sterowania napędu mechatronicznego z silnikiem krokowym.

Cel ćwiczenia. Przetwornik elektromagnetyczny. Silniki krokowe. Układ sterowania napędu mechatronicznego z silnikiem krokowym. KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA OPOLSKA Cel ćwiczenia Zapoznanie się z budową i zasadą działania silnika krokowego. MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Układ

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Ćwiczenie 4. Dobór elektromagnesu do układu wykonawczego

Ćwiczenie 4. Dobór elektromagnesu do układu wykonawczego Napędy elektromechaniczne urządzeń mechatronicznych - projektowanie Ćwiczenie 4 Instrukcja Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze

Projekt silnika bezszczotkowego prądu przemiennego. 1. Wstęp. 1.1 Dane wejściowe. 1.2 Obliczenia pomocnicze projekt_pmsm_v.xmcd 01-04-1 Projekt silnika bezszczotkowego prądu przemiennego 1. Wstęp Projekt silnika bezszczotkowego prądu przemiennego - z sinusoidalnym rozkładem indukcji w szczelinie powietrznej.

Bardziej szczegółowo

Obiekt 3 Amortyzator samochodowy bez ogumienia ZałoŜenia : układ liniowy, czasowo-inwariantny.

Obiekt 3 Amortyzator samochodowy bez ogumienia ZałoŜenia : układ liniowy, czasowo-inwariantny. Obiekt 3 Amortyzator samochodowy bez ogumienia ZałoŜenia : układ liniowy, czasowo-inwariantny. k m b x 1 (t) m masa nadwozia [kg] k sztywność [N/m] lub [Ns] b tłumienie [kg/s] x (t) zmiana odległości wynikająca

Bardziej szczegółowo

Elektromagnesy prądu stałego cz. 1

Elektromagnesy prądu stałego cz. 1 Jakub Wierciak Elektromagnesy cz. 1 Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zasady działania siłowników elektrycznych (Heimann,

Bardziej szczegółowo

9. Napęd elektryczny test

9. Napęd elektryczny test 9. Napęd elektryczny test 9.1 oment silnika prądu stałego opisany jest związkiem: a. = ωψ b. = IΨ c. = ωi d. = ω IΨ 9.2. oment obciążenia mechanicznego silnika o charakterze czynnym: a. działa zawsze przeciwnie

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

SILNIK INDUKCYJNY KLATKOWY

SILNIK INDUKCYJNY KLATKOWY SILNIK INDUKCYJNY KLATKOWY. Budowa i zasada działania silników indukcyjnych Zasadniczymi częściami składowymi silnika indukcyjnego są nieruchomy stojan i obracający się wirnik. Wewnętrzną stronę stojana

Bardziej szczegółowo

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna)

Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej niż jedna) EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 0/0 Zadania dla grupy elektrycznej na zawody I stopnia Zaznacz właściwą odpowiedź (właściwych odpowiedzi może być więcej

Bardziej szczegółowo