Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).
|
|
- Mikołaj Leszczyński
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany i uŝyty do sterowania. Aby informacja mogła być przesłana, przechowana lub przetworzona naleŝy ją zakodować, tworząc w ten sposób dane, będące materialnym odwzorowaniem informacji. Informacja przetwarzana przez komputer przedstawiana jest w postaci binarnej, czyli w postaci ciągu zerojedynkowego. Jednostki informacji Najmniejszą jednostką informacji jest bit. Bit przyjmuje wartość 0 lub 1. Jest utoŝsamiany z cyfrą binarną w systemie dwójkowym (0 lub 1). Oznaczany jest małą literą b 1b. Najmniejszą adresowalną jednostką informacji pamięci komputerowej jest bajt. Bajt składa się z ośmiu bitów. Oznaczany jest duŝą literą B (1B). 1 B = 8 b Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles). Nazwa Liczba bajtów Kilobajt KB 2 10 = B Megabajt MB 2 20 = KB Gigabajt GB 2 30 = MB Terabajt TB 2 40 = GB
2 Wykład Stosowanie przedrostków kilo, mega, giga jest niezgodne z systemem SI. Nazwa System SI System binarny RóŜnica Kilo 10 3 = = ,40% Mega 10 6 = = ,86% Giga 10 9 = = ,37% tera = = ,95% Systemy liczbowe System liczbowy zbiór zasad umoŝliwiających przedstawienie liczb za pomocą umownych znaków (cyfr) oraz wykonywanie działań na tych liczbach. W systemach komputerowych najbardziej powszechne uznanie znalazły następujące pozycyjne systemy liczbowe: dziesiętny, dwójkowy, szesnastkowy i ósemkowy. Są to systemy pozycyjne wagowe tzn. znaczenie cyfry zaleŝy od jej połoŝenia (pozycji), które zajmuje ona w liczbie, oraz kaŝdej cyfrze jest przypisana inna waga, np. system dziesiętny - liczba 444 (kaŝda cyfra ma inne znaczenie) W pozycyjnym systemie liczbowym liczby zapisuje się jako ciągi znaków, z których kaŝdy jest mnoŝnikiem kolejnej potęgi liczby stanowiącej podstawę systemu. Ilość róŝnych cyfr systemu nazywa się jego podstawą. Wartość liczbowa cyfry w systemie pozycyjnym określona jest przez wagę pozycji zaleŝną od numeru pozycji. Wagi cyfr wzrastają od prawej do lewej strony zbioru cyfr stanowiącego liczbę. Waga kaŝdej kolejnej pozycji jest P-krotnie większa od wagi pozycji poprzedniej (P- podstawa systemu). RozwaŜmy system pozycyjny o podstawie P zawierający n cyfr:
3 Wykład liczba róŝnych cyfr do zapisu liczby jest równa wartości podstawy P - stosuje się cyfry od 0 do P-1 - kaŝda pozycja posiada swoją wagę - waga jest równa podstawie systemu podniesionej do potęgi o wartości pozycji KaŜdą liczbę moŝemy zapisać według wzoru: n = 1 i L c i P = i= 0 = c 0 P 0 + c 1 P 1 + c 2 P c n-2 P n-2 + c n-1 P n-1 gdzie L to liczba, P podstawa systemu liczbowego, zbiór cyfr dostępnych w systemie C={0,..., P-1}, n ilość cyfr w przedstawieniu liczby, c i cyfra i-tej pozycji liczby. RozwaŜmy system pozycyjny o podstawie P zawierający n cyfr części całkowitej i m cyfr części ułamkowej: Wartość liczby obliczamy w następujący sposób: n 1 i= m i L = c i P = = c -m P -m + + c -2 P -2 + c -1 P -1 + c 0 P 0 + c 1 P 1 + c 2 P c n-2 P n-2 + c n-1 P n-1 Dziesiętny system liczbowy W systemie dziesiętnym - podstawa P=10 - zbiór dozwolonych cyfr C={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} - wagi pozycji są kolejnymi potęgami liczby 10.
4 Wykład L = c c c c n-2 10 n-2 + c n-1 10 n-1 y 1537 (10) = ,25 (10) = , ,01 Dwójkowy system liczbowy System liczbowy uŝywany w komputerach do przechowywania danych i programów. Pamięci komputerowe zbudowane są z dwustanowych elementów pamiętających, które mogą znajdować się w jednym z dwóch stanów. Przypisane im są wartości 0 i 1. Zalety występowania tylko dwóch stanów logicznych: - Prosta realizacja układów elektronicznych wykonujących przetwarzanie i przesyłanie informacji. - Łatwość konstruowania układów pamięci. - MoŜliwość interpretacji jednej cyfry binarnej jako wartości logicznej (Boole a). Wada: długość zapisu.
5 Wykład W systemie dwójkowym - podstawa P=2 - zbiór dozwolonych cyfr C={0, 1} - wagi pozycji są kolejnymi potęgami liczby 2. L = c c c c n-2 2 n-2 + c n-1 2 n-1 Zapis binarny pozwala za pomocą n cyfr zapisywać liczby z zakresu: 0 L 2 n -1 Np. dla n=8 ten zakres wynosi 0 L = = 255. y (2) = = 211 (10) 1011,011 (2) = , , ,125 = 11,375 (10) Szesnastkowy system liczbowy Wykorzystywany do przedstawiania w zwartej formie długich liczb dwójkowych.
6 Wykład W systemie szesnastkowym - podstawa P=16 - zbiór dozwolonych cyfr C={0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F} - wagi pozycji są kolejnymi potęgami liczby 16. L = c c c c n-2 16 n-2 + c n-1 16 n-1 13A (16) = A 1 = 314 (10) Ósemkowy system liczbowy P = 8 C = {0, 1, 2, 3, 4, 5, 6, 7} 1537 (8) = = 863 (10) P=10 P=2 P=16 P= A B C D E F 17
7 Wykład Konwersja pomiędzy systemami liczbowymi Zamiana liczby z dowolnego systemu na system dziesiętny Zamianę liczby całkowitej zawierającej n cyfr z systemu o podstawie P na system dziesiętny opisuje wzór: c n-1 c n-2... c 2 c 1 c 0 = c 0 P 0 + c 1 P 1 + c 2 P c n-2 P n-2 + c n-1 P n-1 y (2) (?) (10) = 205 (10) 14F (16) (?) (10) = 335 (10) 156 (8) (?) (10) = 110 (10) W przedstawionym algorytmie zamiany występuje potęgowanie, które jest operacją czasochłonną przy programowej realizacji algorytmu. Więc powyŝszy wzór moŝna przedstawić zgodnie z algorytmem Hornera w postaci: c n-1 c n-2... c 2 c 1 c 0 = c 0 P 0 + c 1 P 1 + c 2 P c n-2 P n-2 + c n-1 P n-1 = = c 0 + P(c 1 +P( c P(c n-3 + P(c n-2 + Pc n-1 ))...)) Algorytm zamiany liczby (np. 4-cyfrowej c 3 c 2 c 1 c 0 (P) L (10) ) moŝna przedstawić następująco: L (10) = c 3 L (10) = c 2 + L (10) P L (10) = c 2 + c 3 P L (10) = c 1 + L (10) P L (10) = c 1 + c 2 P + c 3 P 2 L (10) = c 0 + L (10) P L (10) = c 0 + c 1 P + c 2 P 2 + c 3 P (8) (?) (10) L (10) = c 2 = 1 L (10) = c 1 + L (10) P = = 13 L (10) = c 0 + L (10) P = = 110
8 Wykład Zamiana liczb stałoprzecinkowych zawierających część ułamkową wykonuje się podobnie jak dla liczby całkowitej ,101 (2) (?) (10) , , ,125=51,625 Zgodnie z algorytmem Hornera zamiana wykonuje się tak samo, jak dla liczb całkowitych uwzględniając część całkowitą i ułamkową, po czym wynik końcowy mnoŝy się przez wagę najmłodszej cyfry: ,101 (2) (?) (10) L (10) = c 5 = 1 L (10) = c 4 + L (10) P = = 3 L (10) = c 3 + L (10) P = = 6 L (10) = c 2 + L (10) P = = 12 L (10) = c 1 + L (10) P = = 25 L (10) = c 0 + L (10) P = = 51 L (10) = c -1 + L (10) P = = 103 L (10) = c -2 + L (10) P = = 206 L (10) = c- 3 + L (10) P = = 413 L (10) = 413 0,125 = 51,625 Zamiana liczby z systemu dziesiętnego na dowolny inny Algorytm zamiany liczby całkowitej: - Wykonujemy dzielenie całkowite liczby L (10) przez podstawę P nowego systemu, w wyniku otrzymujemy nową liczbę dziesiętną oraz resztę z dzielenia - Otrzymana reszta jest wartością ostatniej cyfry liczby w nowym systemie liczbowym - Nową liczbę dziesiętną ponownie dzielimy przez P, otrzymując kolejną cyfrę - Dzielenie powtarzamy do momentu, aŝ po wykonaniu operacji, kolejna liczba dziesiętna będzie miała wartość 0. y 147 (10) (?) (2) 147:2=73 c 0 = 1 73:2=36 c 1 = 1
9 Wykład :2=18 c 2 = 0 18:2=9 c 3 = 0 9:2=4 c 4 = 1 4:2=2 c 5 = 0 2:2=1 c 6 = 0 1:2=0 c 7 = (10) = (2) 349 (10) (?) (16) 349:16=21 c 0 = 13 (10) = D (16) 21:16=1 c 1 = 5 1:16=0 c 2 = (10) 15D (16) 542 (10) (?) (8) 542:8=67 c 0 = 6 67:8=8 c 1 = 3 8:8=1 c 2 = 0 1:8=0 c 3 = (10) 1036 (8) Algorytm zamiany części ułamkowej liczby: - MnoŜymy część ułamkową przez podstawę nowego systemu P - Część całkowita otrzymanej liczby stanowi pierwszą cyfrę części ułamkowej liczby w nowym systemie - Część ułamkową ponownie mnoŝymy przez podstawę P, itd. - Obliczenia kończymy, gdy po kolejnym mnoŝeniu otrzymamy zerową część ułamkową lub załoŝoną wcześniej ilość cyfr części ułamkowej y 0,41 (10) (?) (2) 0,48 2 = 0,82 c -1 = 0 0,82 2 = 1,64 c -2 = 1 0,64 2 = 1,28 c -3 = 1 0,28 2 = 0,56 c -4 = 0 0,56 2 = 1,12 c -5 = 1 0,12 2 = 0,24 c -6 = 0 0,41 (10) 0, (2)
10 Wykład ,63 (10) (?) (16) 0,63 16 = 10,08 c -1 = 10 (10) = A (16) 0,08 16 = 1,28 c -2 = 1 0,28 16 = 4,48 c -3 = 4 0,48 16 = 7,68 c -4 = 7 0,68 16 = 10,88 c -5 = 10 (10) = A (16) 0,88 16 = 14,08 c -6 = 14 (10) = E (16) 0,63 (10) 0,A147AE (16) 0,71 (10) (?) (8) 0,71 8 = 5,68 c -1 = 5 0,68 8 = 5,44 c -2 = 5 0,44 8 = 3,52 c -3 = 3 0,52 8 = 4,16 c -4 = 4 0,16 8 = 1,28 c -5 = 1 0,28 8 = 2,24 c -6 = 2 0,63 (10) 0, (8) Inny praktyczny sposób zamiany liczby dziesiętnej na postać dwójkową. Polega na przedstawieniu liczby w postaci sumy potęg dwójki. Wyszukujemy najpierw największą potęgę liczby 2, która jest mniejsza od naszej liczby, odejmujemy tę potęgę od liczby i z róŝnicą postępujemy tak samo. 178 (10) = = = Teraz juŝ łatwo zapisać liczbę w postaci dwójkowej: Zamiana systemów liczbowych o podstawach 2 n Zaczynając od prawej strony dzielimy liczbę dwójkową na czterocyfrowe grupy (2 4 = 16)
11 Wykład Zamieniamy kaŝdą czterocyfrową grupę na cyfrę szesnastkową (0...F) B kolejne cyfry w systemie szesnastkowym zapisujemy jako cztery cyfry w systemie dwójkowym - otrzymane czterocyfrowe grupy łączymy w jedną liczbę binarną 3A7D1E 3 A 7 D 1 E Przy zamianie liczby z systemu dwójkowego na ósemkowy dzielimy liczbę dwójkową na trzycyfrowe grupy Przy zamianie liczby z systemu ósemkowego na dwójkowy kolejne cyfry liczby w systemie ósemkowym zapisujemy jako trzy cyfry w systemie dwójkowym
Systemy liczenia. 333= 3*100+3*10+3*1
Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=
Bardziej szczegółowoPodstawy Informatyki dla Nauczyciela
Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja
Bardziej szczegółowoArytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI
Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System
Bardziej szczegółowoSYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M
SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...
Bardziej szczegółowoTechniki multimedialne
Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo
Bardziej szczegółowoĆwiczenie nr 1: Systemy liczbowe
Ćwiczenie nr 1: Systemy liczbowe Barbara Łukawska, Adam Krechowicz, Tomasz Michno Podstawowym systemem liczbowym uŝywanym na co dzień jest system dziesiętny. Podstawą tego systemu jest 10 cyfr 0, 1, 2,
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoWstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek
Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania
Bardziej szczegółowoWstęp do informatyki- wykład 1
MATEMATYKA 1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoWykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki
Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji
Bardziej szczegółowoJednostki miar stosowane w sieciach komputerowych. mgr inż. Krzysztof Szałajko
Jednostki miar stosowane w sieciach komputerowych mgr inż. Krzysztof Szałajko Jednostki wielkości pamięci Jednostka Definicja Przykład Bit (b) 0 lub 1 Włączony / wyłączony Bajt (B) = 8 b Litera w kodzie
Bardziej szczegółowoSystemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).
Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych
Bardziej szczegółowo1.1. Pozycyjne systemy liczbowe
1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego
Bardziej szczegółowoCyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2
Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym
Bardziej szczegółowoL6.1 Systemy liczenia stosowane w informatyce
L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał
Bardziej szczegółowoTeoretyczne Podstawy Informatyki
Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji
Bardziej szczegółowoARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH
ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok
Bardziej szczegółowoSamodzielnie wykonaj następujące operacje: 13 / 2 = 30 / 5 = 73 / 15 = 15 / 23 = 13 % 2 = 30 % 5 = 73 % 15 = 15 % 23 =
Systemy liczbowe Dla każdej liczby naturalnej x Î N oraz liczby naturalnej p >= 2 istnieją jednoznacznie wyznaczone: liczba n Î N oraz ciąg cyfr c 0, c 1,..., c n-1 (gdzie ck Î {0, 1,..., p - 1}) taki,
Bardziej szczegółowoSystemy zapisu liczb.
Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:
Bardziej szczegółowoKodowanie informacji. Kody liczbowe
Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,
Bardziej szczegółowoDla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
Bardziej szczegółowoSYSTEMY LICZBOWE. Zapis w systemie dziesiętnym
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoArytmetyka. Arytmetyka. Magdalena Lemańska. Magdalena Lemańska,
Arytmetyka Magdalena Lemańska System dziesiętny System dziesiętny Weźmy liczbę 178. Składa się ona z jednej setki, siedmiu dziesiątek i ośmiu jedności. System dziesiętny System dziesiętny Weźmy liczbę
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 9 października Informatyka Stosowana Wykład 2 9 października / 42
Wykład 2 Informatyka Stosowana 9 października 2017 Informatyka Stosowana Wykład 2 9 października 2017 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 9 października 2017 2 / 42 Definicja : system
Bardziej szczegółowoUrządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):
1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu
Bardziej szczegółowoSystemy liczbowe. Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz
PODSTAWY TEORII UKŁADÓW CYFROWYCH Systemy liczbowe Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System liczbowy zbiór reguł jednolitego
Bardziej szczegółowoSYSTEMY LICZBOWE 275,538 =
SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 10 października Informatyka Stosowana Wykład 2 10 października / 42
Wykład 2 Informatyka Stosowana 10 października 2016 Informatyka Stosowana Wykład 2 10 października 2016 1 / 42 Systemy pozycyjne Informatyka Stosowana Wykład 2 10 października 2016 2 / 42 Definicja : system
Bardziej szczegółowoSystemy liczbowe. 1. System liczbowy dziesiętny
Systemy liczbowe 1. System liczbowy dziesiętny System pozycyjny dziesiętny to system, który używa dziesięciu cyfr, a jego podstawą jest liczba 10, nazywany jest pozycyjnym, bo pozycja cyfry w liczbie rozstrzyga
Bardziej szczegółowoWstęp do informatyki- wykład 1 Systemy liczbowe
1 Wstęp do informatyki- wykład 1 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy Grębosz,
Bardziej szczegółowoInformatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy
Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka
Bardziej szczegółowoWprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Bardziej szczegółowoARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
Bardziej szczegółowoArytmetyka liczb binarnych
Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1
Bardziej szczegółowoDYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE
ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5
Bardziej szczegółowo1259 (10) = 1 * * * * 100 = 1 * * * *1
Zamiana liczba zapisanych w dowolnym systemie na system dziesiętny: W systemie pozycyjnym o podstawie 10 wartości kolejnych cyfr odpowiadają kolejnym potęgom liczby 10 licząc od strony prawej i numerując
Bardziej szczegółowoPodstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze
Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie
Bardziej szczegółowoARYTMETYKA KOMPUTERA
006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4
Bardziej szczegółowoArytmetyka komputera
Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka
Bardziej szczegółowoSystem Liczbowe. Szesnastkowy ( heksadecymalny)
SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65
Bardziej szczegółowoRODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.
RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA
Bardziej szczegółowoKod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:
Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)
Bardziej szczegółowoO sygnałach cyfrowych
O sygnałach cyfrowych Informacja Informacja - wielkość abstrakcyjna, która moŝe być: przechowywana w pewnych obiektach przesyłana pomiędzy pewnymi obiektami przetwarzana w pewnych obiektach stosowana do
Bardziej szczegółowoZnaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000
SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości
Bardziej szczegółowoDr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI
Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl http://orion.fis.agh.edu.pl/~grazyna/ D-10 pokój 227 WYKŁAD 1 WSTĘP DO INFORMATYKI Plan wykładu 2 Wprowadzenie, trochę historii, systemy liczbowe
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowo3.3.1. Metoda znak-moduł (ZM)
3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym
Bardziej szczegółowoModuł 2 Zastosowanie systemów liczbowych w informacji cyfrowej
Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby
Bardziej szczegółowo12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:
PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej
Bardziej szczegółowoPlan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.
Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby
Bardziej szczegółowoPracownia Komputerowa wykład IV
Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny
Bardziej szczegółowoSystemy liczbowe używane w technice komputerowej
Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.
Bardziej szczegółowoTechnika Cyfrowa i Mikroprocesorowa
Technika Cyfrowa i Mikroprocesorowa Prowadzący przedmiot: Ćwiczenia laboratoryjne: dr inż. Andrzej Ożadowicz dr inż. Andrzej Ożadowicz dr inż. Jakub Grela Wydział Elektrotechniki, Automatyki, Informatyki
Bardziej szczegółowoSystemy liczbowe Plan zaję ć
Systemy liczbowe Systemy liczbowe addytywne (niepozycyjne) pozycyjne Konwersja konwersja na system dziesię tny (algorytm Hornera) konwersja z systemu dziesię tnego konwersje: dwójkowo-ósemkowa, ósemkowa,
Bardziej szczegółowoINFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.
INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl
Bardziej szczegółowoPrzedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński
Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.
Bardziej szczegółowoPodstawy Informatyki
Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera
Bardziej szczegółowoKod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Bardziej szczegółowoPODSTAWY INFORMATYKI. Informatyka? - definicja
PODSTAWY INFORMATYKI Informatyka? - definicja Definicja opracowana przez ACM (Association for Computing Machinery) w 1989 roku: Informatyka to systematyczne badanie procesów algorytmicznych, które charakteryzują
Bardziej szczegółowoWykład 2. Informatyka Stosowana. 8 października 2018, M. A-B. Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41
Wykład 2 Informatyka Stosowana 8 października 2018, M. A-B Informatyka Stosowana Wykład 2 8 października 2018, M. A-B 1 / 41 Elementy logiki matematycznej Informatyka Stosowana Wykład 2 8 października
Bardziej szczegółowoSystem liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.
2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja
Bardziej szczegółowoDane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna
Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,
Bardziej szczegółowoWstęp do informatyki- wykład 2
MATEMATYKA 1 Wstęp do informatyki- wykład 2 Systemy liczbowe Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com Jerzy
Bardziej szczegółowoZestaw 3. - Zapis liczb binarnych ze znakiem 1
Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b
Bardziej szczegółowoPodstawowe operacje arytmetyczne i logiczne dla liczb binarnych
1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie
Bardziej szczegółowoKod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych.
Kod uzupełnień do dwóch jest najczęściej stosowanym systemem zapisu liczb ujemnych wśród systemów binarnych. Jeśli bit znaku przyjmie wartość 0 to liczba jest dodatnia lub posiada wartość 0. Jeśli bit
Bardziej szczegółowoProjekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoLuty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
Bardziej szczegółowoPracownia Komputerowa wykład V
Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system
Bardziej szczegółowoSCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Bardziej szczegółowoWstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl
Wstęp do Informatyki dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura 1. Brookshear, J. G. (2003). Informatyka w ogólnym zarysie. WNT, Warszawa. 3. Małecki, R. Arendt D. Bryszewski A. Krasiukianis
Bardziej szczegółowoPodstawy informatyki (2)
Podstawy informatyki (2) dr inż. Sebastian Pluta pluta@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Informacje informatyka to nauka o przetwarzaniu i przechowywaniu informacji informacja
Bardziej szczegółowoAlgorytmy i struktury danych. Wykład 4
Wykład 4 Różne algorytmy - obliczenia 1. Obliczanie wartości wielomianu 2. Szybkie potęgowanie 3. Algorytm Euklidesa, liczby pierwsze, faktoryzacja liczby naturalnej 2017-11-24 Algorytmy i struktury danych
Bardziej szczegółowodr inż. Jarosław Forenc
Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 8/9 Wykład nr 4 (.3.9) Rok akademicki 8/9, Wykład nr 4 /33 Plan wykładu
Bardziej szczegółowokodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer
kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer Liczba całkowita to ciąg cyfr d n d n-1... d 2 d 1 d 0 system dziesiętny podstawa = 10 d i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 liczba (10)
Bardziej szczegółowoPracownia Komputerowa wykład VI
Pracownia Komputerowa wykład VI dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada 1 Przypomnienie 125 (10) =? (2) Liczby całkowite : Operacja modulo % reszta z dzielenia: 125%2=62 reszta 1
Bardziej szczegółowoStan wysoki (H) i stan niski (L)
PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo
Bardziej szczegółowoPracownia Komputerowa wyk ad IV
Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja
Bardziej szczegółowoARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.
ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb
Bardziej szczegółowo2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,
2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d
Bardziej szczegółowoWprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy
1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć
Bardziej szczegółowoMikrokontrolery w mechatronice. Wstępne uwagi
Mikrokontrolery w mechatronice Wstępne uwagi Wstępny program wykładu: Układy sterowania;układy programowalne. System binarny i heksadecymalny. Mikroprocesor i mikrokontroler - podobieństwa i różnice. Charakterystyka
Bardziej szczegółowoJęzyki i metodyka programowania. Reprezentacja danych w systemach komputerowych
Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania
Bardziej szczegółowoInformacja. Informacja. Informacja. Informacja/wiadomość. Zbiór danych zebranych w celu ich przetworzenia i otrzymania wyników (nowych informacji).
Informacja Informacja Czynnik, któremu człowiek może przypisać określony sens (znaczenie) w celu wykorzystania do różnych celów. Wszystko to, co może być zużytkowane do bardziej sprawnego wyboru działań
Bardziej szczegółowoArchitektura komputerów
Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię
Bardziej szczegółowoZapis liczb binarnych ze znakiem
Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.
Bardziej szczegółowoAlgorytmy i struktury danych
Algorytmy i struktury danych 5. Pamięć komputera Łódź 2013 Bity i bajty Pamięć komputera jest kategoryzowana wg dostępu, szybkości i pojemności. Typ Szybkość dostępu Odległość do CPU Pojemność Ulotna?
Bardziej szczegółowoArytmetyka komputerów
Arytmetyka komputerów wer. 4 z drobnymi modyfikacjami! Wojciech Myszka 2017-10-26 20:59:28 +0200 Liczby binarne Liczby dwójkowe nie są wcale nowym wynalazkiem: Pierwsze wzmianki pochodzą z Indii, z 5 2
Bardziej szczegółowoOperacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
Bardziej szczegółowoInformacja Informacja
Informacja Informacja Czynnik, któremu człowiek może przypisać określony sens (znaczenie) w celu wykorzystania do różnych celów. Wszystko to, co może być zużytkowane do bardziej sprawnego wyboru działań
Bardziej szczegółowoPodstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje 0 oraz liczby naturalne
Bardziej szczegółowoPodstawy informatyki. Reprezentacja danych w systemach cyfrowych
Podstawy informatyki Reprezentacja danych w systemach cyfrowych Systemy liczbowe Najpopularniejsze systemy liczbowe: system decymalny (dziesiętny) system binarny (dwójkowy) system heksadecymalny (szesnastkowy)
Bardziej szczegółowoCel wykładu. Cel wykładu. Cel wykładu, cd. Cel wykładu, cd. Cel wykładu, cd. Z. Postawa, "Podstawy Informatyki II" Strona: 1 z 6
Prof. dr hab. Zbigniew Postawa Zakład Fizyki Nanostruktur i Nanotechnologii pok. 16 (nie 016!) Tel. 5626 e-mail: zbigniew.postawa@uj.edu.pl Sala 057, poniedziałek 16 05 Bez egzaminu C C Cel wykładu Podstawowe
Bardziej szczegółowowagi cyfry 7 5 8 2 pozycje 3 2 1 0
Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień
Bardziej szczegółowoWielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika
Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255
Bardziej szczegółowoPodstawy Systemów Liczbowych
HTTP://WWW.HAKERZY.NET 001 Krzysztof Kryczka Podstawy Systemów Liczbowych Wersja: 1.0 Będzin, dn. 03-11-2010 r. Copyright by Krzysztof Kryczka (gsystem) Data: 03.11.2010 Wydanie I Darmowy poradnik, dostarczony
Bardziej szczegółowoTechnologie Informacyjne
System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne
Bardziej szczegółowoLABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Bardziej szczegółowo