Integralność konstrukcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Integralność konstrukcji"

Transkrypt

1 1 Integrlność konstrukcji Wykłd Nr 5 PROJEKTOWANIE W CELU UNIKNIĘCIA ZMĘCZENIOWEGO Wydził Inżynierii Mechnicznej i Robotyki Ktedr Wytrzymłości, Zmęczeni Mteriłów i Konstrukcji

2 2 ) Zmniejszenie wrżliwości n krb q (ptrz równnie 4.19) przez odpowiedni dobór prmetrów geometrycznych w celu minimlizcji współczynnik ksztłtu (koncentrcji nprężeń) k t, por. rys. 4.15, 4.22, 4.23 i przykłdy n rys Rys. 5.1 Typowe miejsce pękni zmęczeniowego w wle stopniownym () i przykłdy redukcji spiętrzeni nprężeń (b), (c)

3 3 ) Zmniejszenie wrżliwości n krb q (ptrz równnie 4.19) przez odpowiedni dobór prmetrów geometrycznych w celu minimlizcji współczynnik ksztłtu (koncentrcji nprężeń) k t, por. rys. 4.15, 4.22, 4.23 i przykłdy n rys Rys. 5.2 Typowe pęknięci zmęczeniowe w otworze wpustowym () i przykłd redukcji spiętrzeni nprężeń (b)

4 4 b) uniknięcie frettingu (gdy możliwe są młe przemieszczeni między cisno przylegjącymi powierzchnimi, tlenki metli obecne tm zwykle w formie proszku powodują uszkodzenie powierzchni. Konsekwencj - inicjcj i rozwój pęknięć zmęczeniowych). Przykłdy: rys. 5.3 i 5.4. Rys. 5.3 Typowe miejsc pęknięć zmęczeniowych () i niektóre sposoby ich uniknięci (b).

5 5 N f () = cykli k t () = 13 k t (c) = 4. 1 N f (b) = cykli (= 5Nf () ) k t (b) = 8. 1 N f (d) > cykli (> 620Nf () ) k t (c) = 3. 2 Rys. 5.4 Przykłdy rozwiązń konstrukcyjnych połączeń śrubowych: ) połączenie zkłdkowe (jednocięte) stopniowne, b) połączenie dwucięte, c) połączenie zkłdkowe ukosowne, d) połączeni dwucięte podwójnie ukosowne. Celowość stosowni przedstwionych wyżej geometrii: ) i c) - minimlizcj nprężeń zginjących; b) i d) - brdziej równomierne przenoszenie obciążeń przez śruby kutek: n rys. 5.4 podno szcunkowe wrtości współczynnik k t orz trwłości N f obserwowne w bdnich próbek o dnej geometrii ze stopu 7075-T6 przy R=0.5 [1]. [1] ines G. Wismn J.K (red) Zmęczenie Metli. WNT W-w, (tytuł org. Metl Ftigue, tłum. A. Turno)

6 6 c) tosownie zbiegów wprowdzjących n powierzchni ujemne nprężeni wstępne w miejscu krbu, które nkłdją się n obciążeni użytkowe, powodując obniżenie nprężeń średnich (młotkownie, śrutownie, wstępne przeciążenie dodne do loklnych nprężeń powyżej Re ) Rys. 5.5 Odciążenie elementu z krbem po uprzednim loklnym płynięciu. Wykres - w krbie i rozkłd nprężeń resztkowych w przekroju krbu: ) bez loklnego uplstycznieni przy odciążeniu (k t 2R e ); b)loklne uplstycznienie przy odciążeniu (k t 2R e ); r - nprężeni wstępne w krbie

7 7 c) tosownie zbiegów wprowdzjących n powierzchni ujemne nprężeni wstępne w miejscu krbu, które nkłdją się n obciążeni użytkowe, powodując obniżenie nprężeń średnich (młotkownie, śrutownie, wstępne przeciążenie dodne do loklnych nprężeń powyżej Re ) Uwg: ujemne przeciążenie wstępne o tej smej wrtości spowodowłoby strefę plstyczną z rozciągjącymi nprężenimi resztkowymi.

8 8 d) tosownie zbiegów wprowdzjących n powierzchni ujemne nprężeni wstępne w miejscu krbu, które nkłdją się n obciążeni użytkowe, powodując obniżenie nprężeń średnich (młotkownie, śrutownie, wstępne przeciążenie dodne do loklnych nprężeń powyżej Re ) cykl eksplotcyjny R e cykl rzeczyw isty - R e m, e m m, e - R e Rys. 5.6 Obniżenie nprężeń średnich w krbie dzięki ujemnym nprężeniom wstępnym ( r = R e ).

9 WPÓŁCZYNNIKI BEZPIECZEŃTWA Wprowdz się je w celu zrekompensowni niedokłdnych złożeń w obliczenich (np.: niepewność co do obciążeń, sttystycznej zmienności wytrzymłości zmęczeniowej mteriłu, wpływu procesu technologicznego, środowisk i in.). Wyodrębnić możn 3 podejści związne z doborem współczynników bezpieczeństw:

10 WPÓŁCZYNNIKI BEZPIECZEŃTWA Ŝ, Nˆ - mplitud nprężeni i trwłość oczekiwn w eksplotcji; = f(n f ) krzyw N odnosząc się do zniszczeni Podejście 1: Redukcj nprężeń w krzywej N przez współczynnik bezpieczeństw w nprężenich ( s = 1.52 lub więcej) (5.1) ˆ gdzie: f N Nˆ, p. A rys. 5.7 f tąd krzyw projektow m równnie: f Nˆ ˆ (5.2)

11 WPÓŁCZYNNIKI BEZPIECZEŃTWA Ŝ, Nˆ - mplitud nprężeni i trwłość oczekiwn w eksplotcji; = f(n f ) krzyw N odnosząc się do zniszczeni Podejście 2: Redukcj trwłości w krzywej N przez współczynnik bezpieczeństw w trwłościch ( N = lub więcej) N N f (5.3) Nˆ przy czym: ˆ f, punkt B rys. 5.7 N f tąd krzyw projektow m równnie: ˆ f N Nˆ (5.4)

12 5.2. WPÓŁCZYNNIKI BEZPIECZEŃTWA Podejście 1: Podejście 2: ˆ N N f Nˆ ˆ f Nˆ ˆ f N Nˆ Rys. 5.7 Współczynniki bezpieczeństw w nprężenich s i w trwłościch N, w celu otrzymni projektowych krzywych N. Oznczeni:, Nˆ - mplitud nprężeni i trwłość oczekiwn w eksplotcji; Ŝ = f(n f ) krzyw N odnosząc się do zniszczeni 12

13 5.2. WPÓŁCZYNNIKI BEZPIECZEŃTWA Podejście 3: Użycie jko krzywej projektowej krzywej N, któr odnosi się do odpowiednio młego prwdopodobieństw zniszczeni. Rys 5.8 Krzywe o różnym prwdopodobieństwie zniszczeni n podstwie sttystycznej nlizy wyników bdń zmęczeniowych. 13

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH

NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH Szykoieżne Pojzdy Gąsienicowe (19) nr 1, 2004 Sylwester MARKUSIK Tomsz ŁUKASIK NAPRĘŻENIA HOT SPOT STRESS W POŁĄCZENIACH SPAWANYCH KONSTRUKCJI STALOWYCH Streszczenie: Połączeni spwne w konstrukcjch stlowych

Bardziej szczegółowo

2. Tensometria mechaniczna

2. Tensometria mechaniczna . Tensometri mechniczn Wstęp Tensometr jk wskzywłby jego nzw to urządzenie służące do pomiru nprężeń. Jk jednk widomo, nprężeni nie są wielkościmi mierzlnymi i stnowią jedynie brdzo wygodne pojęcie mechniki

Bardziej szczegółowo

Projektowanie żelbetowych kominów przemysłowych wieloprzewodowych

Projektowanie żelbetowych kominów przemysłowych wieloprzewodowych Budownitwo i Arhitektur 3 (2008) 71-80 Projektownie żelbetowyh kominów przemysłowyh wieloprzewodowyh Mrt Słowik 1, Młgorzt Dobrowolsk 2, Krzysztof Borzęki 2 1 Ktedr Konstrukji Budowlnyh, Wydził Inżynierii

Bardziej szczegółowo

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Propozycj przedmiotowego systemu ocenini wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Proponujemy, by omwijąc dne zgdnienie progrmowe lub rozwiązując zdnie, nuczyciel określł do jkiego zkresu

Bardziej szczegółowo

usuwa niewymierność z mianownika wyrażenia typu

usuwa niewymierność z mianownika wyrażenia typu Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyk Kurs przygotowwczy n studi inżynierskie mgr Kmil Hule Dzień 3 Lbortorium Pomir dlczego mierzymy? Pomir jest nieodłączną częścią nuki. Stopień znjomości rzeczy często wiąże się ze sposobem ich pomiru.

Bardziej szczegółowo

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

2. FUNKCJE WYMIERNE Poziom (K) lub (P) Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy

Bardziej szczegółowo

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne

Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych

Bardziej szczegółowo

Temat lekcji Zakres treści Osiągnięcia ucznia

Temat lekcji Zakres treści Osiągnięcia ucznia ln wynikowy kls 2c i 2e - Jolnt jąk Mtemtyk 2. dl liceum ogólnoksztłcącego, liceum profilownego i technikum. sztłcenie ogólne w zkresie podstwowym rok szkolny 2015/2016 Wymgni edukcyjne określjące oceny:

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 2015/2016 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VIII w roku szkolnym 015/016 oprcowł: Dnut Wojcieszek n ocenę dopuszczjącą rysuje wykres funkcji f ( ) i podje jej włsności sprwdz lgebricznie, czy dny punkt

Bardziej szczegółowo

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY

ROLE OF CUSTOMER IN BALANCED DEVELOPMENT OF COMPANY FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Foli Univ. Agric. Stetin. 2007, Oeconomic 254 (47), 117 122 Jolnt KONDRATOWICZ-POZORSKA ROLA KLIENTA W ZRÓWNOWAŻONYM ROZWOJU FIRMY ROLE OF CUSTOMER IN BALANCED

Bardziej szczegółowo

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2

Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Projektowanie i obliczanie połączeń i węzłów konstrukcji stalowych. Tom 2 Jan Bródka, Aleksander Kozłowski (red.) SPIS TREŚCI: 7. Węzły kratownic (Jan Bródka) 11 7.1. Wprowadzenie 11 7.2. Węzły płaskich

Bardziej szczegółowo

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW. 1 Wiadomości wstępne 1.1 Zakres zastosowania stali do konstrukcji 1.2 Korzyści z zastosowania stali do konstrukcji 1.3 Podstawowe części i elementy

Bardziej szczegółowo

z dnia 20 czerwca 2005 r. zmieniające rozporządzenie w sprawie kryteriów bilansowości złóż kopalin Dz. U. Nr 116, poz. 978 z dnia 29 czerwca 2005 r.

z dnia 20 czerwca 2005 r. zmieniające rozporządzenie w sprawie kryteriów bilansowości złóż kopalin Dz. U. Nr 116, poz. 978 z dnia 29 czerwca 2005 r. Rozporządzenie Ministr Środowisk 1) z dni 20 czerwc 2005 r. zmienijące rozporządzenie w sprwie kryteriów bilnsowości złóż koplin Dz. U. Nr 116, poz. 978 z dni 29 czerwc 2005 r.) N podstwie rt. 50 ust.

Bardziej szczegółowo

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych, Klsyczn Metod Njmniejszych Kwdrtów (KMNK) Postć ć modelu jest liniow względem prmetrów (lbo nleży dokonć doprowdzeni postci modelu do liniowości względem prmetrów), Zmienne objśnijące są wielkościmi nielosowymi,

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony

Wymagania edukacyjne na poszczególne oceny z matematyki w klasie II poziom rozszerzony Wymgni edukcyjne n poszczególne oceny z mtemtyki w klsie II poziom rozszerzony N ocenę dopuszczjącą, uczeń: rysuje wykres funkcji f ( x) x i podje jej włsności; sprwdz lgebricznie, czy dny punkt nleży

Bardziej szczegółowo

Modelowanie 3 D na podstawie fotografii amatorskich

Modelowanie 3 D na podstawie fotografii amatorskich Edwrd Nowk 1, Jonn Nowk Modelownie D n podstwie fotogrfii mtorskich 1. pecyfik fotogrmetrycznego oprcowni zdjęć mtorskich wynik z fktu, że n ogół dysponujemy smymi zdjęcimi - nierzdko są to zdjęci wykonne

Bardziej szczegółowo

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci

Bardziej szczegółowo

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp

POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ LASEROWĄ. 88 Powłoki elektroiskrowe WC-Co modyfikowane wiązką laserową. Wstęp Rdek N.,* Szlpko J.** *Ktedr Inżynierii Eksplotcji Politechnik Świętokrzysk, Kielce, Polsk **Khmelnitckij Uniwersytet Nrodowy, Khmelnitckij, Ukrin Wstęp 88 POWŁOKI ELEKTROISKROWE WC-CO MODYFIKOWANE WIĄZKĄ

Bardziej szczegółowo

Załącznik nr 3 do PSO z matematyki

Załącznik nr 3 do PSO z matematyki Złącznik nr 3 do PSO z mtemtyki Wymgni n poszczególne oceny szkolne z mtemtyki n poziomie podstwowym Chrkterystyk wymgń n poszczególne oceny: Wymgni n ocenę dopuszczjącą dotyczą zgdnień elementrnych, stnowiących

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE IIc ZAKRES PODSTAWOWY I ROZSZERZONY. JĘZYK MATEMATYKI oblicz wrtość bezwzględną liczby rzeczywistej stosuje interpretcję geometryczną wrtości bezwzględnej liczby

Bardziej szczegółowo

Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-EN-1995

Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Wstęp Złącza jednocięte

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC

KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 8 nr Archiwum Technologii Mszyn i Automtyzcji 008 PIOTR FRĄCKOWIAK KSZTAŁTOWANIE ŁUKOWO-KOŁOWEJ LINII ZĘBÓW W UZĘBIENIU CZOŁOWYM NA FREZARCE CNC W rtykule

Bardziej szczegółowo

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW

ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GRANULOMETRYCZNEJ SUROWCÓW I PRODUKTÓW 1 ĆWICZENIE ANALIZA SITOWA I PODSTAWY OCENY GANULOMETYCZNEJ SUOWCÓW I PODUKTÓW 1. Cel zkres ćwczen Celem ćwczen jest opnowne przez studentów metody oceny mterłu sypkego pod względem loścowej zwrtośc frkcj

Bardziej szczegółowo

Wyrównanie sieci niwelacyjnej

Wyrównanie sieci niwelacyjnej 1. Wstęp Co to jest sieć niwelcyjn Po co ją się wyrównje Co chcemy osiągnąć 2. Metod pośrednicząc Wyrównnie sieci niwelcyjnej Metod pośrednicząc i metod grpow Mmy sieć skłdjącą się z szereg pnktów. Niektóre

Bardziej szczegółowo

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ Ćwiczenie 9 WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ 9.. Opis teoretyczny Soczewką seryczną nzywmy przezroczystą bryłę ogrniczoną dwom powierzchnimi serycznymi o promienich R i

Bardziej szczegółowo

Wymagania kl. 2. Uczeń:

Wymagania kl. 2. Uczeń: Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej

Bardziej szczegółowo

Zmęczenie Materiałów pod Kontrolą

Zmęczenie Materiałów pod Kontrolą 1 Zmęczenie Materiałów pod Kontrolą Wykład Nr 8 PODTAWY MECHANIKI PĘKANIA Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji http://zwmik.imir.agh.edu.pl

Bardziej szczegółowo

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 2 Przykład obliczenia Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 2 Przykład obliczenia Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji

Bardziej szczegółowo

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki

system identyfikacji wizualnej forma podstawowa karta A03 część A znak marki krt A03 część A znk mrki form podstwow Znk mrki Portu Lotniczego Olsztyn-Mzury stnowi połączenie znku grficznego (tzw. logo) z zpisem grficznym (tzw. logotypem). Służy do projektowni elementów symboliki

Bardziej szczegółowo

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy

Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH

ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Szybkobieżne Pojzdy Gąsienicowe (14) nr 1, 2001 Andrzej WILK Henryk MADEJ Bogusłw ŁAZARZ ZASTOSOWANIE ANALIZY CZASOWO-CZĘSTOTLIWOŚCIOWEJ W DIAGNOZOWANIU LOKALNYCH USZKODZEŃ PRZEKŁADNI ZĘBATYCH Streszczenie:

Bardziej szczegółowo

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie

Temat I. Warunku współpracy betonu i zbrojenia w konstrukcjach żelbetowych. Wymagania. Beton. Zbrojenie Dr inż. Zigniew PLEWAKO Ćwiczeni z konstrukcji żeletowych. Temt I Temt I. Wrunku współprcy etonu i zrojeni w konstrukcjch żeletowych. Wymgni. Beton Zdnie: Przeniesienie sił ściskjących, sclenie i zpewnienie

Bardziej szczegółowo

Materiały diagnostyczne z matematyki poziom podstawowy

Materiały diagnostyczne z matematyki poziom podstawowy Mteriły dignostyczne z mtemtyki poziom podstwowy czerwiec 0 Klucz odpowiedzi do zdń zmkniętych orz schemt ocenini Mteriły dignostyczne przygotowł Agt Siwik we współprcy z nuczycielmi mtemtyki szkół pondgimnzjlnych:

Bardziej szczegółowo

Numer yczne wyznaczanie wytr zymałości opakowań z tektury falistej

Numer yczne wyznaczanie wytr zymałości opakowań z tektury falistej Numer yczne wyzncznie wytr zymłości opkowń z tektury flistej Cz. 2. Bdni eksper ymentlne i nlizy numer yczne opkowń ppierowych Numericl Strength Estimte of Corrugted Bord Pckges Prt 2. Experimentl Tests

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, projekt Podstawy konstrukcji maszyn Fundamentals of machine design Forma studiów: stacjonarne Poziom kwalifikacji:

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy

Wymagania edukacyjne z matematyki Klasa IIB. Rok szkolny 2013/2014 Poziom podstawowy Wymgni edukcyjne z mtemtyki Kls IIB. Rok szkolny 2013/2014 Poziom podstwowy FUNKCJA KWADRATOWA Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: 2 rysuje wykres funkcji f ( ) i podje jej włsności

Bardziej szczegółowo

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

Wykład 6 Dyfrakcja Fresnela i Fraunhofera Wykłd 6 Dyfrkcj Fresnel i Frunhofer Zjwisko dyfrkcji (ugięci) świtł odkrył Grimldi (XVII w). Poleg ono n uginniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny). Wyjśnienie

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy konstrukcji maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Podstawy konstrukcji maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia Przedmiot: Podstawy konstrukcji maszyn Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MT N 0 4 6-0_ Rok: II Semestr: 4 Forma studiów:

Bardziej szczegółowo

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI

BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI BADANIA URZĄDZEŃ TECHNICZNYCH ELEMENTEM SYSTEMU BIEŻĄCEJ OCENY ICH STANU TECHNICZNEGO I PROGNOZOWANIA TRWAŁOŚCI Opracował: Paweł Urbańczyk Zawiercie, marzec 2012 1 Charakterystyka stali stosowanych w energetyce

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II LO I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II LO 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową

T-08 Sprawozdanie o przewozach morską i przybrzeżną flotą transportową GŁÓWNY URZĄD STATYSTYCZNY, l. Niepodległości 208, 00-925 Wrszw www.stt.gov.pl Nzw i dres jednostki sprwozdwczej T-08 Sprwozdnie o przewozch morską i przyrzeżną flotą trnsportową Portl sprwozdwczy GUS www.stt.gov.pl

Bardziej szczegółowo

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać: WEKTORY Wśród wielkości fizycznych występujących w fizyce możn wyróżnić sklry i wektory. Aby określić wielkość sklrną, wystrczy podć tylko jedną liczbę. Wielkościmi tkimi są ms, czs, tempertur, objętość

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, projekt I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, ćwiczenia Podstawy konstrukcji maszyn Fundamentals of machine design Forma studiów: stacjonarne Poziom

Bardziej szczegółowo

ZŁĄCZE zespolenie elementów za pomocą łączników zapewniających wzajemną współpracę łączonych elementów

ZŁĄCZE zespolenie elementów za pomocą łączników zapewniających wzajemną współpracę łączonych elementów WĘZŁY KRATOWNIC POŁĄCZENIA MIMOŚRODOWE INFORMACJE WSTĘPNE ŁĄCZNIKI elementy służące do przenoszenia sił z jednych elementów na drugie. Zadaniem łączników jest połączenie dwu lub więcej elementów drewnianych

Bardziej szczegółowo

PL-0710-139/1 1/1017 Pan Janusz Witkowski Prezes Głównego Urzędu Statystycznego

PL-0710-139/1 1/1017 Pan Janusz Witkowski Prezes Głównego Urzędu Statystycznego Wrszw,^/ czerwc 211 r. RZECZPOSPOLITA POLSKA GŁÓWNY GEOETA KRAJU Jolnt Orlińsk PL-71-139/1 1/117 Pn Jnusz Witkowski Prezes Głównego Urzędu Sttystycznego W odpowiedzi n pism z dni 1 czerwc 211 r. znle:

Bardziej szczegółowo

2. Funktory TTL cz.2

2. Funktory TTL cz.2 2. Funktory TTL z.2 1.2 Funktory z otwrtym kolektorem (O.. open olletor) ysunek poniżej przedstwi odnośny frgment płyty zołowej modelu. Shemt wewnętrzny pojedynzej rmki NAND z otwrtym kolektorem (O..)

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Podstawy Konstrukcji maszyn 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok II/ semestr III. LICZBA PUNKTÓW

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6, Zdnie PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD 04 Zbiorem wszystkich rozwiązń nierówności x 6 6 jest: A, 4 0, B 4,0 C,0 4, D 0,4 Odpowiedź: C Rozwiąznie Sposób I Nierówność A 6 jest równowżn lterntywie

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU:Podstawy Konstrukcji Maszyn II. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Pierwszego stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU:Podstawy Konstrukcji Maszyn II. 2. KIERUNEK: Mechanika i Budowa Maszyn. 3. POZIOM STUDIÓW: Pierwszego stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU:Podstawy Konstrukcji Maszyn II 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok II/ semestr 1V. LICZBA PUNKTÓW

Bardziej szczegółowo

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw

Zastosowanie analizy widmowej sygnału ultradwikowego do okrelenia gruboci cienkich warstw AMME 1 1th JUBILEE INTERNATIONAL SC IENTIFIC CONFERENCE Zstosownie nlizy widmowej sygnłu ultrdwikowego do okreleni gruboci cienkich wrstw A. Kruk Wydził Metlurgii i Inynierii Mteriłowej, Akdemi Górniczo-Hutnicz

Bardziej szczegółowo

smoleńska jako nierozwiązywalny konflikt?

smoleńska jako nierozwiązywalny konflikt? D y s k u s j smoleńsk jko nierozwiązywlny konflikt? Wiktor Sorl Michł Bilewicz Mikołj Winiewski Wrszw, 2014 1 Kto nprwdę stł z zmchmi n WTC lub z zbójstwem kżnej Diny? Dlczego epidemi AIDS rozpowszechnił

Bardziej szczegółowo

OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW

OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW Ktedr Technicznego Zbezpieczeni Okrętów Lbortorium Bdń Cech PoŜrowych Mteriłów OCHRONA PRZECIWPOśAROWA TABORU KOLEJOWEGO WYMAGANIA PRZECIWPOśAROWE DLA MATERIAŁÓW I KOMPONENTÓW Metody bdń 1 pren 45545-2:

Bardziej szczegółowo

Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-B-03150

Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Wymiarowanie złączy na łączniki trzpieniowe obciążone poprzecznie wg PN-B-03150 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Wstęp Złącza jednocięte

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012

WYMAGANIA I KRYTERIA OCENIANIA DO EGZAMINU POPRAWKOWEGO MATEMATYKA. Zakresie podstawowym i rozszerzonym. Klasa II rok szkolny 2011/2012 mgr Jolnt Chlebd mgr Mri Mślnk mgr Leszek Mślnk mgr inż. Rent itl mgr inż. Henryk Stępniowski Zespół Szkół ondgimnzjlnych Młopolsk Szkoł Gościnności w Myślenicch WYMAGANIA I RYTERIA OCENIANIA DO EGZAMINU

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku Rodzaj zajęć: wykład, projekt I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie przez studentów wiedzy z zakresu

Bardziej szczegółowo

WSTĘP CHARAKTERYSTYKA WZORNICTWA

WSTĘP CHARAKTERYSTYKA WZORNICTWA Annls of Wrsw University of Life Sciences SGGW Forestry nd Wood Technology No 74, 2011: 199-205 (Ann. WULS-SGGW, Forestry nd Wood Technology 74, 2011 Chrkterystyk ozdobnych drewninych posdzek w Muzeum

Bardziej szczegółowo

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH

KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH KOMPLEKSOWE POMIARY FREZÓW OBWIEDNIOWYCH Michł PAWŁOWSKI 1 1. WSTĘP Corz większy rozwój przemysłu energetycznego, w tym siłowni witrowych stwi corz większe wymgni woec producentów przekłdni zętych jeśli

Bardziej szczegółowo

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia

- Wydział Fizyki Zestaw nr 5. Powierzchnie 2-go stopnia 1 Algebr Liniow z Geometri - Wydził Fizyki Zestw nr 5 Powierzchnie -go stopni 1 N sferze 1 + + 3 = 4 znleźć punkt, którego odległość od punktu p = (, 6, 3) byłby njmniejsz Wyznczyć osie elipsy powstłej

Bardziej szczegółowo

Informacje dla producentów dotyczące celowości i sposobów stosowania detektorów zadziałania w sprzęcie chroniącym przed upadkiem z wysokości

Informacje dla producentów dotyczące celowości i sposobów stosowania detektorów zadziałania w sprzęcie chroniącym przed upadkiem z wysokości Informacje dla producentów dotyczące celowości i sposobów stosowania detektorów zadziałania w sprzęcie chroniącym przed upadkiem z wysokości Wstęp dr inż. Marcin Jachowicz, CIOP-PIB 2013 r. Większość przyczyn

Bardziej szczegółowo

Samouczek Metody Elementów Skończonych dla studentów Budownictwa

Samouczek Metody Elementów Skończonych dla studentów Budownictwa Grzegorz Dzierżnowski Mrt Sitek Smouczek Metody Elementów Skończonych dl studentów Budownictw Część I Sttyk konstrukcji prętowych OFICYNA WYDAWNICZA POLITECHNIKI WARSZAWSKIEJ WARSZAWA 2012 Preskrypt n

Bardziej szczegółowo

Projektowanie i bezpieczeństwo

Projektowanie i bezpieczeństwo Projektownie i ezpieczeństwo Systemtyk Z Z-70.3-74 Możliwości Z Z-70.3-74 jest rdzo zróżnicowny. Zwier informcje zrówno n temt szkł jk i mocowń punktowych. Mocowni punktowe mogą yć montowne powyżej lu

Bardziej szczegółowo

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody.

Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 2016/2017 Zawód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zawody. Typ szkoły: ZASADNICZA SZKOŁA ZAWODOWA Rok szkolny 016/017 Zwód: FRYZJER, CUKIERNIK, PIEKARZ, SPRZEDAWCA, FOTOGRAF i inne zwody Przedmiot: MATEMATYKA Kls II (67 godz) Rozdził 1. Funkcj liniow 1. Wzór i

Bardziej szczegółowo

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS

KRYTERIA OCENIANIA TECHNOLOGIA NAPRAW ZESPOŁÓW I PODZESPOŁÓW MECHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS KRYTRIA OCNIANIA TCHNOLOGIA NAPRAW ZSPOŁÓW I PODZSPOŁÓW MCHANICZNYCH POJAZDÓW SAMOCHODOWYCH KLASA I TPS Temt Klsyfikcj i identyfikcj pojzdów smochodowych Zgdnieni - Rodzje ukłdów, - Zdni i ogóln budow

Bardziej szczegółowo

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH Ćwiczenie Grżyn Nowick, Wldemr Nowicki BDNIE RÓWNOWG WSOWO-ZSDOWYC W ROZTWORC ELETROLITÓW MFOTERYCZNYC Zgdnieni: ktywność i współczynnik ktywności skłdnik roztworu. ktywność jonów i ktywność elektrolitu.

Bardziej szczegółowo

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH Mteriły dydktyzne Geodezj geometryzn Mrin Ligs, Ktedr Geomtyki, Wydził Geodezji Górnizej i Inżynierii Środowisk OZWIĄZYWANIE MAŁYCH TÓJKĄTÓW SFEYCZNYCH rezentowne metody rozwiązywni młyh trójkątów sferyznyh

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK

Przedmiotowy system oceniania z matematyki wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Klasa II TAK I Postnowieni ogólne Przedmiotowy system ocenini z mtemtyki wrz z określeniem wymgń edukcyjnych (zkres podstwowy) Kls II TAK 1. Wrunkiem uzyskni pozytywnej oceny semestrlnej z mtemtyki jest: ) zliczenie

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia. Podstawy konstrukcji maszyn I

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia. Podstawy konstrukcji maszyn I Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia Przedmiot: Podstawy konstrukcji maszyn I Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM S 0 4 43-0_ Rok: II Semestr:

Bardziej szczegółowo

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka

Nauki ścisłe priorytetem społeczeństwa opartego na wiedzy Zbiór scenariuszy Mój przedmiot matematyka Stron Wstęp Zbiór Mój przedmiot mtemtyk jest zestwem scenriuszy przeznczonych dl uczniów szczególnie zinteresownych mtemtyką. Scenriusze mogą być wykorzystywne przez nuczycieli zrówno n typowych zjęcich

Bardziej szczegółowo

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02

Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02 Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie

Bardziej szczegółowo

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych Zstosownie multimetrów cyfrowych do pomiru podstwowych wielkości elektrycznych Cel ćwiczeni Celem ćwiczeni jest zpoznnie się z możliwościmi pomirowymi współczesnych multimetrów cyfrowych orz sposobmi wykorzystni

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy

Szczegółowe wymagania edukacyjne z matematyki, klasa 2C, poziom podstawowy Szczegółowe wymgni edukcyjne z mtemtyki, kls 2C, poziom podstwowy Wymgni konieczne () dotyczą zgdnieo elementrnych, stnowiących swego rodzju podstwę, ztem powinny byd opnowne przez kżdego uczni. Wymgni

Bardziej szczegółowo

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych Algorytmy grficzne Filtry wektorowe. Filtrcj orzów kolorowych Filtrcj orzów kolorowych Metody filtrcji orzów kolorowych możn podzielić n dwie podstwowe klsy: Metody komponentowe (component-wise). Cechą

Bardziej szczegółowo

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny

Legenda. Optymalizacja wielopoziomowa Inne typy bramek logicznych System funkcjonalnie pełny Dr Glin Criow Legend Optymlizcj wielopoziomow Inne typy brmek logicznych System funkcjonlnie pełny Optymlizcj ukłdów wielopoziomowych Ukłdy wielopoziomowe ukłdy zwierjące więcej niż dw poziomy logiczne.

Bardziej szczegółowo

Metodyka budowy modeli numerycznych kół pojazdów wolnobieżnych wykorzystywanych do analiz zmęczeniowych. Piotr Tarasiuk

Metodyka budowy modeli numerycznych kół pojazdów wolnobieżnych wykorzystywanych do analiz zmęczeniowych. Piotr Tarasiuk Metodyka budowy modeli numerycznych kół pojazdów wolnobieżnych wykorzystywanych do analiz zmęczeniowych Piotr Tarasiuk Cel pracy Poprawa jakości wytwarzanych kół jezdnych - zwiększenie wytrzymałości zmęczeniowej

Bardziej szczegółowo

Prosta metoda sprawdzania fundamentów ze względu na przebicie

Prosta metoda sprawdzania fundamentów ze względu na przebicie Konstrkcje Elementy Mteriły Prost metod sprwdzni fndmentów ze względ n przebicie Prof dr b inż Micł Knff, Szkoł Główn Gospodrstw Wiejskiego w Wrszwie, dr inż Piotr Knyzik, Politecnik Wrszwsk 1 Wprowdzenie

Bardziej szczegółowo

Profile z falistym œrodnikiem

Profile z falistym œrodnikiem z flistym œrodnikiem Rozwi¹zni konstrukcyjne rys. 1.1 Rysunek systemowy profili SIN mx d³. dostwy = 20.00 m bg(o) H 43 t = 3,0 mm 40 t = 2,0 mm z w bg(u) tg(u) hs tg(o) 155 155 155 155 155 Wysokoœæ œrodnik:

Bardziej szczegółowo

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r.

załącznik nr 3 do uchwały nr V-38-11 Rady Miejskiej w Andrychowie z dnia 24 lutego 2011 r. złącznik nr 3 do uchwły nr V-38-11 Rdy Miejskiej w Andrychowie z dni 24 lutego 2011 r. ROZSTRZYGNIĘCIE O SPOSOBIE ROZPATRZENIA UWAG WNIESIONYCH DO WYŁOŻONEGO DO PUBLICZNEGO WGLĄDU PROJEKTU ZMIANY MIEJSCOWEGO

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia. Podstawy konstrukcji maszyn II

Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia. Podstawy konstrukcji maszyn II Karta (sylabus) modułu/przedmiotu Mechanika i Budowa Maszyn Studia pierwszego stopnia Przedmiot: Podstawy konstrukcji maszyn II Rodzaj przedmiotu: obowiązkowy Kod przedmiotu: MBM S 0 5 52-0_ Rok: III Semestr:

Bardziej szczegółowo

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a

2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy

Bardziej szczegółowo

Klasa obróbki skrawani em (10=bdb ; 1=ndst) Przydatnoś ć do utwardzani. 360-510 bardzo dobra nie 9

Klasa obróbki skrawani em (10=bdb ; 1=ndst) Przydatnoś ć do utwardzani. 360-510 bardzo dobra nie 9 Grup mteriłow Nr mteriłu 1.0038 Skrót DIN / EN St 37 / RSt 37-2 / S235JRG2 Wytrzymłoś ć n rozciągnie (N/mm2) Przydtność do stndrdowe go spwni Przydtnoś ć do utwrdzni Kls skrwni em (10=bdb ; 1=ndst) 360-510

Bardziej szczegółowo

DZIAŁ 2. Figury geometryczne

DZIAŁ 2. Figury geometryczne 1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko

Bardziej szczegółowo

Projektowanie procesów technologicznych Kod przedmiotu

Projektowanie procesów technologicznych Kod przedmiotu Projektowanie procesów technologicznych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Projektowanie procesów technologicznych Kod przedmiotu 06.9-WM-BHP-P-56.1_14 Wydział Kierunek Wydział Mechaniczny

Bardziej szczegółowo

Kryteria dobroci estymacji dla małych obszarów

Kryteria dobroci estymacji dla małych obszarów Jn Prdysz Kryteri dobroci estymcji dl młych obszrów Celem bdń reprezentcyjnych jest uzysknie informcji sttystycznych dl określonego zkresu przedmiotowego, określonej jkości i po określonej cenie. Zczynjąc

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

Projektowanie konstrukcji stalowych według Eurokodów / Jan Bródka, Mirosław Broniewicz. [Rzeszów], cop Spis treści

Projektowanie konstrukcji stalowych według Eurokodów / Jan Bródka, Mirosław Broniewicz. [Rzeszów], cop Spis treści Projektowanie konstrukcji stalowych według Eurokodów / Jan Bródka, Mirosław Broniewicz. [Rzeszów], cop. 2013 Spis treści Od Wydawcy 10 Przedmowa 11 Preambuła 13 Wykaz oznaczeń 15 1 Wiadomości wstępne 23

Bardziej szczegółowo

Modelowanie w wytrzymałości materiałów

Modelowanie w wytrzymałości materiałów Modelownie w wytrzymłości mteriłów Problemtyk wytrzymłości mteriłów Wytrzymłość mteriłów (WM) - (ng. strength of mterils) problemy nukowe i techniczne, trdycyjn nzw dyscypliny nukowej, związne z odksztłcniem

Bardziej szczegółowo

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL

Karta oceny merytorycznej wniosku o dofinansowanie projektu innowacyjnego testującego składanego w trybie konkursowym w ramach PO KL Złącznik nr 5 Krt oceny merytorycznej Krt oceny merytorycznej wniosku o dofinnsownie projektu innowcyjnego testującego skłdnego w trybie konkursowym w rmch PO KL NR WNIOSKU KSI: WND-POKL. INSTYTUCJA PRZYJMUJĄCA

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Ktlog wymgń progrmowych n poszczególne stopnie szkolne Mtemtyk. Poznć, zrozumieć Ksztłcenie w zkresie podstwowym. Kls 2 Poniżej podjemy umiejętności, jkie powinien zdobyć uczeń z kżdego dziłu, by uzyskć

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres podstawowy Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych kls drug zkres podstwowy Wymgni konieczne (K) dotyczą zgdnień elementrnych, stnowiących swego rodzju podstwę, ztem powinny być opnowne przez

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 1 dodr. (PWN).

Bardziej szczegółowo

STYLE. TWORZENIE SPISÓW TREŚCI

STYLE. TWORZENIE SPISÓW TREŚCI STYLE. TWORZENIE SPISÓW TREŚCI Ćwiczenie 1 Tworzenie nowego stylu n bzie istniejącego 1. Formtujemy jeden kpit tekstu i zznczmy go (stnowi on wzorzec). 2. Wybiermy Nrzędzi główne, rozwijmy okno Style (lub

Bardziej szczegółowo

Materiał transportowy

Materiał transportowy Ktedr Mszyn Górniczych, Przeróbczych i Trnsportowych Mterił trnsportowy Dr inż. Piotr Kulinowski pk@imir.gh.edu.pl tel. (617) 30 74 B-2 prter p.6 konsultcje: poniedziłek 11.00-12.00 Litertur Antonik J.:

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W II LICEUM OGÓLNOKSZTAŁCĄCYM im. M. KONOPNICKIEJ W RADOMIU oprcowny n podstwie: Wewnątrzszkolnego Systemu Ocenini w II Liceum Ogólnoksztłcącym im. M. Konopnickiej

Bardziej szczegółowo