Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Podobne dokumenty
Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

jest ciągiem elementów z przestrzeni B(R, R)

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

Wstęp do topologii Ćwiczenia

T O P O L O G I A WPPT I, sem. letni WYK LAD 8. Wroc law, 21 kwietnia D E F I N I C J E Niech (X, d) oznacza przestrzeń metryczn a.

Analiza matematyczna. 1. Ciągi

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

Notatki do wykładu Analiza 4

Informacja o przestrzeniach Sobolewa

Definicja odwzorowania ciągłego i niektóre przykłady

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

F t+ := s>t. F s = F t.

Ciągłość funkcji i podstawowe własności funkcji ciągłych.

Uniwersytet Mikołaja Kopernika w Toruniu

Krzywa uniwersalna Sierpińskiego

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Teoria miary i całki

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

WYKŁAD Z ANALIZY MATEMATYCZNEJ I. dr. Elżbieta Kotlicka. Centrum Nauczania Matematyki i Fizyki

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

1. Struktury zbiorów 2. Miara 3. Miara zewnętrzna 4. Miara Lebesgue a 5. Funkcje mierzalne 6. Całka Lebesgue a. Analiza Rzeczywista.

Analiza Funkcjonalna - Zadania

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

1 Relacje i odwzorowania

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

1 Elementy analizy funkcjonalnej

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania

Zbieżność jednostajna

1 Przestrzenie metryczne

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

1 Ciągłe operatory liniowe

Dystrybucje, wiadomości wstępne (I)

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

1 Przestrzenie Hilberta

Analiza dla informatyków 1 DANI LI1 Pawe l Domański szkicowe notatki do wyk ladu

ANALIZA MATEMATYCZNA 2005/06, semestr 1. Tadeusz Rzeżuchowski

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Matematyka z el. statystyki, # 4 /Geodezja i kartografia I/

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Zadania do Rozdziału X

Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń

Analiza funkcjonalna Wykłady

ALGEBRA Z GEOMETRIĄ BAZY PRZESTRZENI WEKTOROWYCH

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

Matematyka ZLic - 2. Granica ciągu, granica funkcji. Ciągłość funkcji, własności funkcji ciągłych.

2.7 Przestrzenie unormowane skończenie wymiarowe

6. Granica funkcji. Funkcje ciągłe.

O pewnych klasach funkcji prawie okresowych (niekoniecznie ograniczonych)

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

O zastosowaniach twierdzeń o punktach stałych

Zastosowania twierdzeń o punktach stałych

Dekompozycje prostej rzeczywistej

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

1 Przestrzenie metryczne

8 Całka stochastyczna względem semimartyngałów

Zbiory liczbowe widziane oczami topologa

Konstrukcja przestrzeni metrycznej sztywnej i κ-superuniwersalnej

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.

Teoria miary. Matematyka, rok II. Wykład 1

7 Twierdzenie Fubiniego

Informacja o przestrzeniach Hilberta

Analiza funkcjonalna I. Ryszard Szwarc

II. FUNKCJE WIELU ZMIENNYCH

Zagadnienia stacjonarne

26 marzec, Łańcuchy Markowa z czasem ciągłym. Procesy Stochastyczne, wykład 7, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

granicą ciągu funkcyjnego (f n ) n N W symbolicznym zapicie fakt, że f jest granicą ciągu funkcyjnego (f n ) n N możemy wyrazić następująco: ε>0 N N

Ciągłość funkcji f : R R

W. Krysicki, L. Włodarski Analiza matematyczna w zadaniach, część I i II

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

EGZAMIN PISEMNY Z ANALIZY I R. R n

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Konstrukcja liczb rzeczywistych przy pomocy ciągów Cauchy ego liczb wymiernych

G. Plebanek, MIARA I CAŁKA Zadania do rozdziału 1 28

Indukcja matematyczna, zasada minimum i maksimum. 17 lutego 2017

1 Działania na zbiorach

Ciągi. Pojęcie granicy ciągu.

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

Egzamin z Analizy Matematycznej I dla Informatyków, 28 I 2017 Część I

Elementy Teorii Miary i Całki

Transkrypt:

Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013

1 PODSTAWY 2 3

Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej (pozornie): podzbiór A X jest zwarty, jeśli dla każdego ciągu {x n } A istnieje podciąg {x nk } taki, że lim x nk = x 0 A. Przykłady. 1. Odcinek ([0, 1], ) jest przestrzenią zwartą. 2. Odcinek (0, 1) nie jest przestrzenią zwartą. 3. (X, d dys ), gdy X jest nieskończony, nie jest przestrzenią zwartą. Gdy X jest skończony, to jest to przestrzeń zwarta.

Twierdzenie. Domknięty podzbiór przestrzeni metrycznej zwartej jest zbiorem zwartym. Dowód. Niech A X -domknięty w X i X zwarta. Weźmy ciąg {x n } w A. Ze zwartości X istnieje podciąg {x nk } taki, że lim x nk = x X. Ale wyrazy ciągu są w A, a zatem i granica x A. Twierdzenie. Jeżeli (X, d) jest zwarta, to jest zupełna. Dowód. Weźmy ciąg {x n } X spełniający warunek Cauchy ego. Ze zwartości X możemy wybrać podciąg x nk x 0 X. Udowodnimy, że x n x 0.

Weźmy ε > 0 n0 n,m n0 d(x n, x m ) < ε 2 n1 k n1 d(x nk, x 0 ) < ε 2 Wybierzmy n 2 max(n 0, n 1 ). Wtedy dla k, n n 2 mamy n k n i d(x n, x 0 ) d(x n, x nk ) + d(x nk, x 0 ) < ε + ε < ε 2 2

Wniosek. Jeśli (X, d) - przestrzeń metryczna i A X pozbiór zwarty, to A jest domknięty w X Twierdzenie. Przestrzeń zwarta jest ograniczona. Dowód. Przypuśćmy, że X nie jest ograniczona. Wybierzmy a 1 X. Wtedy istnieje a 2 X taki, że d(a 1, a 2 ) 1. a3 d(a 1, a 3 ) 1, i d(a 2, a 3 ) 1. itd... Dostajemy ciąg nieskończony {a n } taki, że d(a i, a j ) 1 gdy i j. Z tego ciągu nie da się wybrać podciągu zbieżnego, bo żaden podciąg nie spełnia warunku Cauchy ego.

Definicja. Zbiór A (X, d) nazywamy ε-siecią, jeśli x X p A d(x, p) < ε. Lemat. Jeśli (X, d) jest zwarta, to dla każdego ε > 0 istnieje w X skończona ε-sieć. Dowód. Ustalmy ε > 0. Niech p 1 X. Punkt p 2 wybieramy tak, by d(p 1, p 2 ) ε. Jeśli takiego nie ma, to dowód jest zakończony: A = {p 1 }. Punkt p 3 wybieramy tak, by d(p 1, p 3 ) ε, d(p 2, p 3 ) ε. Jeśli takiego nie ma, to dowód jest zakończony: A = {p 1, p 2 }.

itd: Punkt p n wybieramy tak, by m<n d(p n, p m ) ε. Jeśli takiego nie ma, to dowód jest zakończony: A = {p 1, p 2,..., p n 1 }. Jeśli ten algorytm można kontynuować w nieskończoność, to otrzymamy ciąg {p n }, z którego nie da się wybrać podciągu zbieżnego. Zatem X nie mogłaby być zwarta. Stąd N A = {p 1, p 2,..., p N } jest ε-siecią.

Twierdzenie. Przestrzeń zwarta jest ośrodkowa. Dowód. Stosujemy lemat dla ε = 1 n A 1/n. Niech B := A 1 A 1/2... A 1/n... otrzymując zbiór Każdy ze zbiorów A 1/n jest skończony, zatem B jest przeliczalny. Weźmy x X. n bn b n A 1/n B d(x, b n ) < 1 n. Wtedy lim b n = x (z tw. o trzech ciągach), czyli x B. Zatem X = B, czyli B jest ośrodkiem.

Twierdzenie. Jeżeli f : X Y ciągła, i A X zwarty, to f (A) Y jest zwarty. Dowód. Rozważmy ciąg {y n } f (A). n xn A f (x n ) = y n. Ale A jest zwarty, stąd istnieje podciąg zbieżny x nk x 0. Zatem z ciągłości f mamy lim f (x nk ) = f (x 0 ). Ale f (x nk ) = y nk, czyli y n ma podciąg zbieżny w f (A). Wniosek 1. Jeśli h : X Y jest homeomorfizmem, to X jest zwarta wtedy i tylko wtedy, gdy Y jest zwarta.

Wniosek 2 (Tw. uogólnione Weierstrassa). Jeżeli (X, d) jest zwarta i f : X R ciągła, to f jest ograniczona i przyjmuje wartość najmniejszą i najmniejszą. Dowód. f (X ) R jest zwarty, a zatem domknięty i ograniczony. Zatem istnieją a = inf x f (x), b = sup x f (x) oraz f (X ) [a, b] Z definicji kresu ε>0 x a f (x) < a + ε. Stosując to dla ε = 1/n dostajemy ciąg x n taki, że f (x n ) a. Ale z x n można wybrać podciąg zbieżny (zwartość!) x nk x 0. Z definicji Heine go ciągłości f (x nk ) f (x 0 ), więc f (x 0 ) = a. Analogicznie dla kresu górnego.

Twierdzenie (uogólnione Heine go). Jeśli f : X Y ciągła i X jest zwarta, to f jest jednostajnie ciągła. Dowód. Przypuśćmy, że f nie jest jednostajnie ciągła : ε>0 δ>0 x,x d(x, x ) < δ i d(f (x), f (x )) ε. Przy ustalonym ε > 0 bierzemy δ = 1/n : n d(x n, x n) < 1 n i d(f (x n ), f (x n)) ε. Z ciągu x n można wybrać podciąg zbieżny x nk x. Wtedy również x n k x. Stąd lim f (x nk ) = f (x) = lim f (x n k ), Ale d(f (x nk ), f (x n k )) ε > 0. Sprzeczność.

Twierdzenie Heine go - Borela. Podzbiór A (R k, d e ) jest zwarty wtedy i tylko wtedy, gdy jest domknięty i ograniczony. Dowód. Implikacja jest prawdziwa w dowolnej przestrzeni metrycznej. Niech X n = (x 1 n, x 2 n,..., x k n ) A Ponieważ A jest ograniczony, to każdy z ciągów współrzędnych jest ograniczony. Zatem możemy wybrać taki podciąg X nk, aby pierwsze współrzędne x 1 n k x 1. Z tego podciągu wybieramy podciąg taki, aby także ciąg drugich wspórzędnych był zbieżny

x 2 n kl x 2, x 1 n k x 1 itd... po k takich krokach otrzymujemy nieskończony podciąg X ns, który jest zbieżny po współrzędnych do punktu (x 1, x 2,..., x k ). Jest to zbieżność w metryce euklidesowej. Z domkniętości A wynika, że (x 1, x 2,..., x k ) A. Przykład. Zbiór Cantora C. To zbiór liczb dających się zapisać w postaci gdzie t n {0, 2}. t = t 1 3 + t 2 3 2 + + t n 3 n +...

np. liczba 1 3 C: 1 = 0 + 2 + 2 3 3 9 27 + = (0, 02222...) 3 Ale np. 1 2 / C. Geometryczna konstrukcja: C 0 = [0, 1], C 1 = [0, 1] \ (1/3, 2/3), itd... Każdy z odcinków w C n dzielimy na trzy równe odcinki i usuwamy wszystkie środkowe części (otwarte), otrzymując nowy zbiór domknięty C n+1 C n. C := C n. n=0 ( ) C jest zwarty, bo jest domknięty i ograniczony w R.

Definicja. Rodzinę zbiorów {U t } t T nazywamy pokryciem X, gdy U t = X. t T Jeżeli wszystkie zbiory U t są otwarte w X, to mówimy o pokryciu otwartym. Jeśli wyróżnimy podzbiór indeksów S T, to rodzinę {U t } t S nazywamy podpokryciem {U t } t T, gdy U t = X. t S Twierdzenie Lindelöfa. Jeśli (X, d) jest przestrzenią metryczną ośrodkową, to z każdego jej pokrycia otwartego można wybrać podpokrycie przeliczalne.

Dowód. Niech A = {a j } będzie ośrodkiem w X. Wtedy rodzina kul {K(a j, 1 ); j N, n N} jest przeliczalnym n pokryciem X. Niech {U t } t T będzie pokryciem otwartym. Wtedy x t x U t Również istnieje n N takie, że K(x, 1 n ) U t. Niech a j A taki, że d(x, a j ) < 1 4n. Wtedy x K(a j, 1 4n ) K(x, 1 n ) U t 1 Pokrycie {K(a j, 4n j )} j N jest przeliczalne. Dla każdego j 1 wybieramy jedno t j takie, że K(a j, 4n j ) U tj.

Stąd X = 1 K(a j, ) 4n j j=1 U tj, j=1 czyli {U tj } j=1 jest szukanym podpokryciem. Definicja. Rodzina zbiorów {A s } s S jest scentrowana, jeśli k N s1,s 2,...,s k A s1 A s2 A sk. Twierdzenie. Równoważne są warunki: 1 Z każdego pokrycia otwartego przestrzeni X można wybrać podpokrycie skończone. 2 Dla każdej scentrowanej rodziny {F s } s S zbiorów domkniętych s S F s.

Dowód. 1 2 Niech {F s } s S -rodzina zbiorów domkniętych taka, że F s =. s S Wtedy X = X \ F s = (X \ F s ) = U s, s S s S s S gdzie zbiory U s = X \ F s są otwarte. Zatem z 1 k X = U s1 U s2 U sk = X \ F si. i=1 Zatem nasza rodzina nie jest scentrowana.

Dowód. 2 1 Weźmy pokrycie otwarte: X = U s S s. Przypuśćmy, że nie da się wybrać podpokrycia skończonego. Określamy zbiory domknięte F s = X \ U s. Dla dowolnego skończonego zbioru indeksów X \ k U si = i=1 k (X \ U si ) = i=1 k F si. i=1 Zatem rodzina {F s } s S F s S s. Stąd jest scentrowana. Z 2 mamy X X \ s S F s = s S (X \ F s ) = s S U s. Czyli {U s } s S nie jest pokryciem.

Twierdzenie. Przestrzeń metryczna (X, d) jest zwarta wtedy i tylko wtedy, gdy z każdego pokrycia otwartego X można wybrać podpokrycie skończone. Dowód. Załóżmy, że X nie jest zwarta, czyli istnieje ciąg {x n }, z którego nie da się wybrać podciągu zbieżnego. Niech F k := {x k, x k+1, x k+2,...}. Wtedy F k są domknięte. Rodzina {F k } k N jest zstępująca, a zatem scentrowana: l F ki = F kl. Ale i=1 F k =. k=1 Z poprzedniego twierdzenia zbiory U k = X \ F k tworzą pokrycie otwarte, z którego nie da się wybrać podpokrycia skończonego.

Dowód. Niech {U s } s S - pokrycie otwarte. Na mocy Tw. Lindelöfa możemy wybrać podpokrycie przeliczalne: X = i=1 U s i. Przypuśćmy, że n X \ n i=1 U s i. Wybieram ciąg: x n F n = X \ n i=1 U s i. Z założenia istnieje podciąg x nk x 0. Zauważmy, że dla każdego ustalonego n 0 N mamy nk n 0 x nk F n0. Zatem x 0 F n0 n0. Czyli x 0 F i = (X \ U si ) = X \ i=1 i=1 Sprzeczność kończy dowód. i=1 U si =

Twierdzenie Lebesgue a o pokryciu. Jeśli (X, d) jest zwarta, {U t } t T -pokrycie otwarte, to istnieje takie ε > 0, że dla każdego x X istnieje t T K (x, ε) U t. Dowód. Dla każdego x wybierzmy ε x > 0 takie, że K(x, 2ε x ) U t dla pewnego t T. Z pokrycia {K(x, ε x )} x X wybieramy podpokrycie skończone K ε1,..., K εk. Niech ε := min{ε x1, ε x2,..., ε xk }. Weźmy y K(x, ε). Wtedy xj d(x, x j ) < ε xj. d(y, x j ) d(y, x) + d(x, x j ) < ε + ε xj 2ε xj. Zatem y K(x j, ε xj ) U t dla pewnego t T.

Liczbę ε z poprzedniego twierdzenia nazywa się liczbą Lebesgue a pokrycia U. Twierdzenie (Hausdorff). Jeśli f : X Y ciągła, X zwarta, to f jednostajnie ciągła. Dowód (nowy). Niech ε > 0. Rozważmy otwarte pokrycie X : A := {f 1 (K(y, ε )} y Y. 2 Określamy δ > 0 jako liczbę Lebesgue a tego pokrycia. Niech d(x, x ) < δ. Stąd y Y x K(x, δ) f 1 (K(y, ε 2 ). f (x), f (x ) K(y, ε 2 ) d(f (x), f (x )) < ε.

Twierdzenie. Jeśli (X, d) zwarta i f : X Y spełnia lokalnie warunek Lipschitza, to spełnia warunek Lipschitza globalnie. Dowód. x X Ux x Lx y,z Ux d Y (f (y), f (z)) L x d(y, z) Rodzina {U x } x X jest otwartym pokryciem X. Wybieramy skończone podpokrycie {U x1, U x2,..., U xk }. Niech M i,j = d Y (f (x i ), f (x j )) d(x i, x j ) Wtedy jest stałą Lipschitza dla f. L = 3 max{l xi, M ij } i,j

Jeśli mamy ciąg przestrzeni metrycznych (X i, d i ), i = 1, 2, 3,..., to w produkcie kartezjańskim X = X 1 X 2 X 3... metrykę zadaje wzór d((x 1, x 2,...), (y 1, y 2,...)) := i=1 1 2 i d i (x i, y i ) 1 + d i (x i, y i ). Twierdzenie. Jeśli wszystkie X i są zwarte, to ich produkt kartezjański X z powyższą metryką jest przestrzenią zwartą. Uwaga Dowód podaliśmy dla skończonego ciągu przestrzeni. Przykład Kostka Hilberta: X = [0, 1] [0, 1] [0, 1]... z powyższą metryką jest zwarta.