ANALIZA POLA MAGNETYCZNEGO W PRZEKŁADNI MAGNETYCZNEJ

Podobne dokumenty
Badania symulacyjne przekładni magnetycznej

PRZYCZYNY I SKUTKI ZMIENNOŚCI PARAMETRÓW MASZYN INDUKCYJNYCH

Układ kaskadowy silnika indukcyjnego pierścieniowego na stałą moc

SK-7 Wprowadzenie do metody wektorów przestrzennych SK-8 Wektorowy model silnika indukcyjnego, klatkowego

OPTYMALIZACJA PRZETWARZANIA ENERGII DLA MAŁYCH ELEKTROWNI WODNYCH Z GENERATORAMI PRACUJĄCYMI ZE ZMIENNĄ PRĘDKOŚCIĄ OBROTOWĄ

Sterowanie prędkością silnika krokowego z zastosowaniem mikrokontrolera ATmega8

= ± Ne N - liczba całkowita.

Zastosowanie algorytmu Euklidesa

WPŁYW ASYMETRII SZCZELINY POWIETRZNEJ NA WARTOŚĆ NAPIĘĆ I PRĄDÓW WAŁOWYCH W SILNIKACH INDUKCYJNYCH DUśEJ MOCY

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI

dr inż. Zbigniew Szklarski

ANALIZA PRACY PRZEKŁADNI MAGNETYCZNEJ

1. Ciało sztywne, na które nie działa moment siły pozostaje w spoczynku lub porusza się ruchem obrotowym jednostajnym.

dr inż. Zbigniew Szklarski

MAGISTERSKA PRACA DYPLOMOWA

Ćwiczenie nr 4 Badanie zjawiska Halla i przykłady zastosowań tego zjawiska do pomiarów kąta i indukcji magnetycznej

Mikrosilniki synchroniczne

Ruch obrotowy. Wykład 6. Wrocław University of Technology

Wykład Półprzewodniki

cz.1 dr inż. Zbigniew Szklarski

Modelowanie przepływu cieczy przez ośrodki porowate Wykład III

Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem Podstawowe zjawiska magnetyczne

WYKŁAD 1. W przypadku zbiornika zawierającego gaz, stan układu jako całości jest opisany przez: temperaturę, ciśnienie i objętość.

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

MECHANIKA OGÓLNA (II)

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie silnika indukcyjnego klatkowego

XXXVII OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

00507 Praca i energia D

11. DYNAMIKA RUCHU DRGAJĄCEGO

Model klasyczny gospodarki otwartej

Wpływ błędów parametrów modelu maszyny indukcyjnej na działanie rozszerzonego obserwatora prędkości

ROZWIĄZUJEMY PROBLEM RÓWNOWAŻNOŚCI MASY BEZWŁADNEJ I MASY GRAWITACYJNEJ.

ZASTOSOWANIE ANALIZY WIDMOWEJ PRĄDU STOJANA DO MONITOROWANIA EKCENTRYCZNOŚCI SILNIKÓW INDUKCYJNYCH

Atom wodoru w mechanice kwantowej

PRĘDKOŚCI KOSMICZNE OPRACOWANIE

SYSTEMY BEZSTYKOWEGO ZASILANIA KOMPUTERÓW PRZENOŚNYCH

WYKŁAD 11 OPTYMALIZACJA WIELOKRYTERIALNA

GEOMETRIA PŁASZCZYZNY

WPŁYW WARUNKÓW EKSPLOATACJI NA WŁASNOŚCI CIEPLNE BEZSTYKOWEGO USZCZELNIENIA CZOŁOWEGO

KINEMATYCZNE WŁASNOW PRZEKŁADNI

Kinematyka odwrotna:

II.6. Wahadło proste.

ZASTOSOWANIE MODELU POLOWO-OBWODOWEGO DO MONI- TOROWANIA EKSCENTRYCZNOŚCI SILNIKÓW INDUKCYJNYCH

Zastosowanie teorii pierścieni w praktyce

Próba określenia miary jakości informacji na gruncie teorii grafów dla potrzeb dydaktyki

WŁAŚCIWOŚCI UZWOJEŃ KONCENTRYCZNYCH UŁAMKOWO-ŻŁOBKOWYCH W ASPEKCIE JAKOŚCI NAPIĘCIA GENERATORÓW SYNCHRONICZNYCH

LIST EMISYJNY nr 3 /2014 Ministra Finansów

Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

15. STANOWISKOWE BADANIE MECHANIZMÓW HAMULCOWYCH Cel ćwiczenia Wprowadzenie

BRYŁA SZTYWNA. Umowy. Aby uprościć rozważania w tym dziale będziemy przyjmować następujące umowy:

Zasady dynamiki ruchu obrotowego

Siła. Zasady dynamiki

SYSTEMY ELEKTROMECHANICZNE

WYKORZYSTANIE MODELI CIEPLNYCH SILNIKÓW INDUKCYJNYCH DO ESTYMACJI PRĘDKOŚCI OBROTOWEJ

BUDOWA I ZASADA DZIAŁANIA MASZYN ASYNCHRONICZNYCH. l pod wpływem indukcji magnetycznej B) pojawi się napięcie indukowane:

Binarne Diagramy Decyzyjne

Pole magnetyczne prąd elektryczny

Łożyska walcowe z pełną liczbą wałeczków

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

10. Ruch płaski ciała sztywnego

2 Przykład C2a C /BRANCH C. <-I--><Flux><Name><Rmag> TRANSFORMER RTop_A RRRRRRLLLLLLUUUUUU 1 P1_B P2_B 2 S1_B SD_B 3 SD_B S2_B

Badanie właściwości magnetyczne ciał stałych

dr inż. Zbigniew Szklarski

cz.2 dr inż. Zbigniew Szklarski

Ruch jednostajny po okręgu

Źródła pola magnetycznego

BEZPOŚREDNIE STEROWANIE MOMENTU I MOCY BIERNEJ MASZYNY ASYNCHRONICZNEJ DWUSTRONNIE ZASILANEJ

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI. Wyznaczanie bezwzględnego współczynnika lepkości cieczy metodą Stokesa.

Wstęp. Prawa zostały znalezione doświadczalnie. Zrozumienie faktu nastąpiło dopiero pod koniec XIX wieku.

1. Prawo Ampera i jego uzupełnienie przez Maxwella

Optymalizacja pasywnej przekładni magnetycznej

POMIAR PRĘDKOŚCI OBROTOWEJ

KOMPLEKSOWE BADANIE WSPÓŁCZYNNIKA PARCIA BOCZNEGO W GRUNTACH LABORATORYJNĄ METODĄ POMIARU OPORÓW TARCIA

STEROWANIE WG. ZASADY U/f = const

MODELOWANIE OBSZARÓW WIELOSPÓJNYCH W PURC DLA DWUWYMIAROWEGO RÓWNANIA RÓŻNICZKOWEGO NAVIERA

REZONATORY DIELEKTRYCZNE

3.GRAWITACJA 3.1. Wielkości charakteryzujące pole grawitacyjne. Siły Centralne F21

- substancje zawierające swobodne nośniki ładunku elektrycznego:

Siła tarcia. Tarcie jest zawsze przeciwnie skierowane do kierunku ruchu (do prędkości). R. D. Knight, Physics for scientists and engineers

MECHANIKA BUDOWLI 12

KOLOKACJA SYSTEMÓW BEZPRZEWODOWYCH NA OBIEKTACH MOBILNYCH

Magnetyzm. A. Sieradzki IF PWr. Pole magnetyczne ŁADUNEK ELEKTRYCZNY ŁADUNEK MAGNETYCZNY POLE ELEKTRYCZNE POLE MAGNETYCZNE

dr inż. Zbigniew Szklarski

INSTRUKCJA DO ĆWICZENIA

Energia kinetyczna i praca. Energia potencjalna

WYKORZYSTANIE KOMBINACJI POTENCJAŁÓW T- DO WYZNACZANIA PARAMETRÓW SZTYWNOŚCI SIŁOWNIKA ŁOŻYSKA MAGNETYCZNEGO

Szczególna i ogólna teoria względności (wybrane zagadnienia)

9. 1. KOŁO. Odcinki w okręgu i kole

Obserwator prędkości kątowej wirnika maszyny indukcyjnej klatkowej oparty na metodzie backstepping ze ślizgowymi funkcjami przełączającymi

FIZYKA 2. Janusz Andrzejewski

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wykład 5: Dynamika. dr inż. Zbigniew Szklarski

WYZNACZANIE PRĘDKOŚCI PRECESJI ŻYROSKOPU. BADANIE MODELU STABILIZATORA ŻYROSKOPOWEGO

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

Kształty żłobków stojana

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

Transkrypt:

Zezyty oblemowe Mazyny Elektyczne N 1/213 cz. I 163 Macin Kowol, Januz Kołodziej, Maian Łukanizyn Politechnika Oolka, Wydział Elektotechniki, Automatyki i Infomatyki ANALIZA POLA MAGNETYCZNEGO W PRZEKŁADNI MAGNETYCZNEJ FIELD ANALYSIS OF PERMANENT-MAGNETIC GEAR Stezczenie: W acy zedtawiono budowę oaz zaadę działania zmodyfikowanej zekładni magnetycznej. Dla zykładowej kontukcji zekładni, o zełożeniu 4:1, oacowano dwuwymiaowy model numeyczny, dla któego wykonano zeeg obliczeń olowych. Pzeowadzono analizę ozkładu kładowej omieniowej indukcji magnetycznej w zczelinach owietznych. Za omocą metody tenoa naężeń Maxwella wyznaczono chaakteytyki zenozonego momentu magnetycznego. Abtact: Thi ae eent the contuction and oeation incile of the modified magnetic gea. Fo the eented gea contuction (with gea atio 4:1) a eie of calculation wa caied out uing two-dimenional numeical field model. On the bae of field calculation, an analyi of the ditibution of the adial comonent of the magnetic flux denity in the ai ga wee efomed. The magnetic toque chaacteitic wee calculated uing the Maxwell Ste Teno Method. Słowa kluczowe: zekładnia magnetyczna, 2D metoda elementów kończonych, moment magnetyczny Keywod: magnetic gea, 2D finite element method, magnetic toque 1. Wtę We wółczenym świecie zekładnie mechaniczne tanowią itotny moduł w óżnego odzaju naędach. Bezośedni kontakt omiędzy wółacującymi elementami zekładni mechanicznej wływa niekozytnie na awność zenozonego momentu, jak ównież na zwiękzenie wibacji oaz oziomu hałau. Pzekładnie tego tyu dodatkowo wymagają okeowych zeglądów i kontoli, co owoduje zwiękzenie koztów ekloatacji. Altenatywą dla tego odzaju uządzeń mogą tać ię zekładnie magnetyczne, któe ofeują wiele otencjalnych kozyści takich jak: fizyczna izolacja omiędzy naędem a odbionikiem, zmniejzenie oziomu hałau i wibacji, natualne zabezieczenie zed zeciążeniem, wyoką awność oaz beztykowe zenozenie momentu obotowego. Pomimo tak wielu zalet, zatoowanie tyowych zekładni magnetycznych (y. 1) jet badzo oganiczone. Głównym tego owodem jet tounkowo mała gętość zenozenia momentu w oównaniu z zekładniami mechanicznymi, któy nie zekacza 1kNm/m 3, jak ównież związane z tym oblemy kontukcyjne [1-5]. Ry. 1. Pzykłady tyowych kontukcji zekładni magnetycznych

164 Zezyty oblemowe Mazyny Elektyczne N 1/213 cz. I W atykule zedtawiono zmodyfikowaną kontukcję zekładni magnetycznej, któa może być konkuencyjna w oównaniu z wybanymi kontukcjami mechanicznymi. Budowę zekładni magnetycznej zilutowano na yunku 2. wytwazanego zez magney twałe, za ośednictwem ieścienia feomagnetycznego, w taki oób, aby liczba a biegunów w zetzeni hamonicznych ozkładu indukcji magnetycznej w zczelinie owietznej, odowiadała liczbie a biegunów winika z magneami twałymi. Rozkład kładowej omieniowej indukcji magnetycznej w zczelinie owietznej można oiać zależnością [1, 4, 5]: B, B,, m m1,3,5,... b com t m con t n n1,2,3... (1) Ry. 2. Zmodyfikowana kontukcja zekładni magnetycznej Uządzenie kłada ię z tzech odtawowych elementów tj. winika wewnętznego i zewnętznego, na któych naklejone ą magney twałe oaz z ieścienia ośedniczącego wykonanego w otaci biegunów feomagnetycznych. Taka kontukcja, dzięki zatoowaniu wyokoenegetycznych magneów twałych, umożliwia zwiękzenie gętości zenozonego momentu magnetycznego, nawet do 15kNm/m 3 [1, 3, 5]. 2. Zaada działania Pzekładnia magnetyczna, zilutowana na yunku 2, może acować w dwóch tybach acy. W ytuacji, w któej naędzany jet winik wewnętzny a ieścień ośedniczący jet nieuchomy, winik zewnętzny obaca ię w zeciwnym kieunku do kieunku obotu winika wewnętznego. Natomiat w tanie acy, w któym to nieuchomy jet winik zewnętzny, ieścień ośedniczący obaca ię zgodnie z kieunkiem obotu winika wewnętznego. Pzełożenie zekładni, w iewzym i dugim zyadku, nie jet takie ame i jet ściśle okeślone liczbą a biegunów zaówno winika wewnętznego, zewnętznego oaz biegunów ieścienia ośedniczącego. Zaadą działania zekładni magnetycznej jet związana z modulacją ola magnetycznego, natomiat dla kładowej tycznej indukcji magnetycznej obowiązuje ównanie:, B,, B m b m 1,3,5,... inm t m con t n n1,2,3... (2) gdzie: B, B kładowa omieniowa i tyczna indukcji magnetycznej bez ieścienia ośedniczącego;, kładowe funkcji modulującej, wynikającej z wowadzenia ieścienia feomagnetycznego; liczba a biegunów winika z magneami twałymi; liczba nabiegunników ieścienia feomagnetycznego;, ędkość obotowa winika z magneami twałymi oaz ieścienia ośedniczącego; b m, b m, m, m, wółczynniki zeegu Fouiea. Dokonując ozwiązania ównań (1) i (2), liczba a biegunów w zetzeni hamonicznych ozkładu indukcji magnetycznej może być oiana zależnością [1]: m, n m n gdzie : m 1,3,5,.., n, 1; 2, 3,..., (3) natomiat ędkość obotowa indukcji magnetycznej w zetzeni hamonicznych:

Zezyty oblemowe Mazyny Elektyczne N 1/213 cz. I 165 m n m, n (4) m n m n Analizując ównanie (4), można zauważyć, że widmo hamonicznych ędkości obotowej, któe owtaje w wyniku wowadzenia ieścienia feomagnetycznego (n), óżni ię od ędkości obotowej winika, któego ole magnetyczne jet modulowane. Dlatego aby była możliwość tanmiji momentu magnetycznego zy óżnych ędkościach obotowych, liczba a biegunów dugiego winika mui być ówna liczbie a biegunów w widmie hamonicznych, dla n. Ponieważ dla m=1 i n=-1 uzykujemy najwiękzą watość w zetzeni hamonicznych, liczba a biegunów dugiego winika mui być ówna óżnicy liczby nabiegunników ieścienia ośedniczącego i liczby a biegunów winika modulującego. Na tej odtawie można wyznaczyć zełożenie zekładni magnetycznej (i ), któe dla oiywanej kontukcji w zyadku nieuchomego ieścienia feomagnetycznego wyaża ię zależnością: i (5) W ytuacji, w któej nieuchomy jet jeden z winików z magneami twałymi, zełożenie zekładni okeśla ię zależnością: i (6) Równania (5) i (6) okazują, że dla danego zełożenia zekładni, itnieje tounkowo duża liczba kombinacji liczby a biegunów winika wewnętznego, zewnętznego oaz liczby nabiegunników feomagnetycznych ozwalająca na uzykanie danego zełożenia. 3. Badania ymulacyjne Pzedmiotem badań w niniejzej acy jet nowa kontukcja zekładni magnetycznej, zilutowanej na yunku 3, o zełożeniu 4:1, zy założeniu ze wejście zekładni to winik wewnętzny, a wyjście winik zewnętzny, ieścień ośedniczący jet nieuchomy. Ry. 3. Stuktua zekładni magnetycznej o zełożeniu 4:1 Tabela 1. Podtawowe aamety zekładni magnetycznej Liczba a biegunów winika wewnętznego ( wew ) 2 Liczba a biegunów winika zewnętznego ( zew ) 8 Liczba biegunów ieścienia ośedniczącego ( ) 1 Pomień zewnętzny winika wewnętznego (R2) 25 mm Pomień wewnętzny ieścienia ośedniczącego (R3) 27 mm Pomień zewnętzny ieścienia ośedniczącego (R4) 37 mm Pomień wewnętzny winika zewnętznego (R5) 39 mm Pomień zewnętzny winika zewnętznego (R7) 52 mm Gubość magneu twałego 5 mm Podtawowe aamety zekładni zetawiono w tabeli 1. Obliczenia numeyczne wykonano za omocą dwuwymiaowej metody elementów kończonych. Model numeyczny waz z iatką dyketyzacyjną zilutowano na yunku 4. W zekładni zatoowano magney neodymowe N35 oaz zyjęto tałą zenikalność magnetyczną tali. Punktem bazowym w modelu numeycznym jet ołożenie kątowe, w któym moment magnetyczny, obliczony za omocą metody tenoa naężeń Maxwella, ówny jet zeu.

166 Zezyty oblemowe Mazyny Elektyczne N 1/213 cz. I obwodowy ozkład kładowej omieniowej indukcji magnetycznej w zczelinie owietznej zy winiku wewnętznym i zewnętznym, w zyadku ola magnetycznego wytwazanego zez winik wewnętzny oaz w zyadku jego modulacji ozez wowadzenie ieścienia ośedniczącego. B.3.25.2.15.1 m=1; n=-1 Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym.5 Ry. 4. Model numeyczny zekładni magnetycznej B B 1.8.6.4.2 -.2 -.4 Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym -.6 5 1 15 2 25 3 35 Położenie kątowe [].3.2.1 -.1 -.2 Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym -.3 5 1 15 2 25 3 35 Położenie kątowe [] Ry. 5. Obwodowy ozkład kładowej omieniowej indukcji magnetycznej zy winiku wewnętznym ( i zewnętznym ( W oaciu o oacowany model olowy zeowadzono zeeg obliczeń numeycznych. Na yunku 5 zedtawiono B 2 4 6 8 1 12 14 16 18 2 Liczba a biegunów.6.5.4.3.2.1 m=1; n= Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym m=1; n=-1 2 4 6 8 1 12 14 16 18 2 Liczba a biegunów Ry. 6. Widmo amlitudowe obwodowego ozkładu kładowej omieniowej indukcji magnetycznej zy winiku wewnętznym ( i zewnętznym ( Z kolei na yunku 6 zilutowano widmo amlitudowe, na odtawie któego widać, że najwiękzą watość hamonicznej kładowej omieniowej indukcji magnetycznej w zczelinie owietznej zy winiku zewnętznym uzykujemy dla liczby a biegunów ównej 8 (m=1 i n=-1). A więc dla tej liczby a biegunów winika zewnętznego uzykujemy najwiękzą zdolność tanmiji momentu obotowego. Wykeślając te ame chaakteytyki kładowej omieniowej indukcji magnetycznej (y. 7) oaz analizując jej widmo amlitudowe (y. 8), w odnieieniu do ola magnetycznego wytwazanego zez winik zewnętzny, najwiękzą watość hamonicznej uzykujemy dla liczby a biegunów ównej 2.

Zezyty oblemowe Mazyny Elektyczne N 1/213 cz. I 167 B B.2.15.1.5 -.5 -.1 Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym -.15 5 1 15 2 25 3 35 Położenie kątowe [] 1.2 1.8 Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym.6.4.2 -.2 -.4 -.6 -.8-1 5 1 15 2 25 3 35 Położenie kątowe [] Ry. 7. Obwodowy ozkład kładowej omieniowej indukcji magnetycznej zy winiku wewnętznym ( i zewnętznym ( B B.3.25.2.15.1.5.5.4.3.2.1 m=1; n=-1 Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym m=1; n= 2 4 6 8 1 12 14 16 18 2 Liczba a biegunów Bez ieścienia ośedniczącego Z ieścieniem ośedniczącym m=1; n= 2 4 6 8 1 12 14 16 18 2 Liczba a biegunów Ry. 8. Widmo amlitudowe obwodowego ozkładu kładowej omieniowej indukcji magnetycznej zy winiku wewnętznym ( i zewnętznym ( Ryunek 9 zedtawia kolejno kątową zmienność momentu magnetycznego w funkcji kąta obotu winika wewnętznego (winik zewnętzny jet nieuchomy) oaz winika zewnętznego zy nieuchomym winiku wewnętznym. Moment obotowy [Nm/m] Moment magnetyczny [Nm/m] 5 4 3 2 1-1 -2-3 X: 45 Y: 416.2 X: 45 Y: -82.23 X: 45 Y: -334 Winik wewnętzny Pieścień ośedniczący Winik zewnętzny -4-5 2 4 6 8 1 12 14 16 18 Kąt obotu winika wewnętznego [ o ] 5 4 3 2 1-1 -2-3 -4 X: 11 Y: 419.1 X: 11 Y: -85.17 X: 11 Y: -334 Winik wewnętzny Pieścień ośedniczący Winik zewnętzny -5 5 1 15 2 25 3 35 4 45 Kąt obotu winika zewnętznego [] Ry. 9. Kątowa zmienność momentu magnetycznego w funkcji kąta obotu winika wewnętznego ( i zewnętznego ( Natomiat na yunku 1 zilutowano zmianę momentu magnetycznego, zy nieuchomym ieścieniu ośedniczącym, odcza gdy winik zewnętzny obaca ię w kieunku zeciwnym do kieunku obotu winika wewnętznego zgodnie z zależnością: zew _ wew wew (7) _ zew gdzie: wew, zew kąt obotu winika wewnętznego oaz zewnętznego. Jako unkt tatowy zyjęto zeunięcie o 45 toni mechanicznych winika wewnętznego względem zewnętznego. Na odtawie wykeu można zaobewować, że tounek watości śedniej momentu magnetycznego winika zewnętznego do wewnętznego, odowiada zełożeniu zekładni.

168 Zezyty oblemowe Mazyny Elektyczne N 1/213 cz. I Moment magnetyczny [Nm/m] Położenie kątowe winika zewnętznego [] 5-5 -1-15 -2-25 -3-35 -4 4 3 Winik wewnętzny 2 Pieścień ośedniczący 1 Winik zewnętzny -1-2 -3-4 -5 5 75 1 125 15 175 2 Kąt obotu winika wewnętznego [] 5 4 3 2 1-1 -2-3 -4-5 Ry. 1. Kątowa zmienność momentu magnetycznego z uwzględnieniem zeunięcia kątowego winika zewnętznego Na yunku 11 zedtawiono zykładowe ozkłady linii ola magnetycznego dla zeowego oaz makymalnego momentu magnetycznego. 4. Podumowanie W atykule zedtawiono zmodyfikowaną kontukcję zekładni magnetycznej, umożliwiającą znaczne zwiękzenie tanmiji momentu obotowego. Oiano zaadę działania oaz wykonano obliczenia dla zykładowej zekładni o zełożeniu 4:1, dla któej uzykano gętość zenozonego momentu zekaczającą 4kNm/m 3. Autozy edecznie dziękują of. Maiuzowi Jagiele za konultacje oaz udotęnienie autokiego ogamu do obliczeń olowych. 5. Liteatua [1] Atallah K., Howe D.: A novel high-efomance magnetic gea. IEEE Tan. Magn., vol. 37, no. 4,. 2844 2846, Jul. 21. [2] Atallah, K., S. Calveley, and Howe D.: Deign, analyi and ealization of a high-efomance magnetic gea, IEE Poc. Electic Powe Al., Vol. 151, no. 2,. 135-143, 24. [3] Niguchi N. Hiata K.: Cogging Toque Analyi of Magnetic Gea. Indutial Electonic, IEEE Tanaction on, vol. 59,. 2189-2197, 212. [4] Kowol M, Łukanizyn M.: Budowa i zaada działania zekładni magnetycznej, Wybane Zagadnienia Elektotechniki i Elektoniki, WZEE, Utoń, 27-29 wześnia 212 (Conf. CD 25.df). [5] Ren J., Clak R., Calveley S., Atallah K., Howe D.: Deign, analyi and ealization of a novel magnetic hamonic gea. in Poc. ICEM,. 1 4, 28. Autozy d inż. Macin Kowol, d inż. Januz Kołodziej, of. d hab. inż. Maian Łukanizyn Intytut Układów Elektomechanicznych i Elektoniki Pzemyłowej Ade: ul. Pózkowka 76 (budynek 1), 45-758 Oole Tel. 77 449 88 E-mail: m.kowol@o.oole.l; ja.kolodziej@o.oole.l; m.lukanizyn@o.oole.l Ry. 11. Pzykładowy ozkład linii ola magnetycznego dla zeowego ( oaz makymalnego ( momentu magnetycznego. Recenzent Pof. d hab. inż. Lech Nowak