M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej części skryptu. 1.1 Zbiory i suma zbiorów Zbiory będziemy oznaczać dużymi literami np. A, B, itp. Przez IR, IN, Q będziemy oznaczać odpowiednio zbiór liczb rzeczywistych, liczb naturalnych i liczb wymiernych. Przez #(A) będziemy oznaczać liczbę elementów zbioru A. Jeśli #(A) <, to zbiór A będziemy nazywać zbiorem skończonym, gdy #(A) = to zbiorem nieskończonym. W przypadku zbiorów nieskończonych będziemy używać pojęcia mocy zbiorów, którą będziemy oznaczać przez A. Jeśli zbiór A jest skończony, to oczywiście #(A) = A. Zbiór A będziemy nazywać przeliczalnym jeśli A IN. Jak wiadomo wtedy elementy tego zbioru można ustawić w ciąg (skończony, gdy A jest zbiorem skończonym lub nieskończony, gdy A jest zbiorem nieskończonym). Przykładami nieskończonych zbiorów przeliczalnych są zbiór liczb naturalnych (co jest oczywiste), zbiór liczb całkowitych, czy zbiór liczb wymiernych. Można również wykazać, że każda funkcja monotoniczna f : IR IR ma przeliczalną ilość punktów nieciągłości. Zbiór nieskończony, który nie jest zbiorem przeliczalnym będziemy nazywać zbiorem nieprzeliczalnym. Przykładami takiego zbioru są zbiór liczb rzeczywistych IR, zbiór liczb niewymiernych, czy np. dowolny przedział w IR o niepustym wnętrzu. Jeżeli każdy element zbioru A jest elementem zbioru B, to mówimy, że A jest podzbiorem B (A jest zawarty w B) lub że B jest nadzbiorem A (B zawiera A) i zapisujemy to w następujący sposób A B lub B A. Bardziej formalnie powyższą definicję można zapisać jako A B ( A B). Zbiory A i B są równe wtedy i tylko wtedy, gdy mają te same elementy co możemy zapisać jak następuje: A = B ( A B). Dla przypomnienia podajemy poniżej podstawowe własności zawierania (inkluzji) zbiorów Lemat 1.1 Dla dowolnych zbiorów A, B, C: A oraz A A,
M. Beśka, Wstęp do teorii miary, rozdz. 1 2 (A B B C) A C, (iii) (A B B A) A = B, A B (A B B A), gdzie znak jest zamiast spójnika i. Przez sumę zbiorów A i B rozumiemy zbiór, którego elementami są wszystkie elementy zbioru A i wszystkie elementy zbioru B. Sumę zbiorów A i B oznaczać będziemy przez A B. Możemy więc bardziej formalnie napisać [( A B) ( A B)], gdzie znak jest zamiast słowa lub. Z definicji sumy zbiorów dostajemy natychmiast [( A B) ( A B)], Następujące własności wynikają bezpośrednio z definicji sumy zbiorów. Lemat 1.2 Dla dowolnych zbiorów A, B, C: A B = B A (przemienność sumy zbiorów), A (B C) = (A B) C (łączność sumy zbiorów), (iii) A = A oraz A A = A. Twierdzenie poniżej podaje związki między inkluzją zbiorów, a dodawaniem zbiorów. Twierdzenie 1.3 Dla dowolnych zbiorów A, B, C, D: A A B oraz B A B, (A C B C) A B C, (iii) (A C B D) A B C D, A B A B = B.
M. Beśka, Wstęp do teorii miary, rozdz. 1 3 1.2 Iloczyn i różnica zbiorów Przez iloczyn zbiorów (przekrój zbiorów) A i B rozumiemy ich część wspólną tj. zbiór do którego należą te elementy, które jednocześnie należą do zbioru A i do zbioru B. Iloczyn zbiorów A i B oznaczmy przez A B. Możemy więc napisać [ A B ( A B)]. Z definicji iloczynu wynika, że [ A B ( A B)]. Następujące własności wynikają bezpośrednio z definicji iloczynu zbiorów, Lemat 1.4 Dla dowolnych zbiorów A, B, C: A B = B A (przemienność iloczynu zbiorów), A (B C) = (A B) C (łączność iloczynu zbiorów), (iii) A = oraz A A = A. Związki między inkluzją, a mnożeniem zbiorów podaje poniższe twierdzenie Twierdzenie 1.5 Dla dowolnych zbiorów A, B, C, D: A B A oraz A B B, (A B A C) A B C, (iii) (A C B D) A B C D, A B A B = A. O dwóch zbiorach A i B mówimy, że są rozłączne, gdy A B = tzn., gdy nie mają wspólnych elementów. Zanotujemy jeszcze związki między dodawaniem i iloczynem zbiorów. Twierdzenie 1.6 Dla dowolnych zbiorów A, B, C: A (A B) = A, (A B) B = B, (iii) A (B C) = (A B) (A C) (prawo rozdzielności dodawania względem iloczynu),
M. Beśka, Wstęp do teorii miary, rozdz. 1 4 A (B C) = (A B) (A C) (prawo rozdzielności iloczynu względem dodawania). Różnicą zbiorów A i B nazywamy zbiór, którego elementami są te, które należą do zbioru A i nie należą do zbioru B. Różnicę zbiorów będziemy oznaczać symbolem A \ B. Możemy więc napisać [ A \ B ( A B)]. Z definicji różnicy zbiorów wynika, że [ A \ B ( A B)]. Następujące własności wynikają bezpośrednio z definicji różnicy zbiorów, Lemat 1.7 Dla dowolnych zbiorów A, B, C, D: A \ B A, (A B C D) A \ D B \ C, (iii) (C D) A \ D A \ C, A B A \ B =. Prawa de Morgana dla sumy i iloczynu zbiorów maja postać: Twierdzenie 1.8 Dla dowolnych zbiorów A, B, C: A \ (B C) = (A \ B) (A \ C), A \ (B C) = (A \ B) (A \ C), Dalsze własności różnicy zbiorów zebrane są w kolejnym lemacie. Lemat 1.9 Dla dowolnych zbiorów A, B, C: A (B \ A) = A B, (A B) A (B \ A) = B, (iii) A \ (A \ B) = A B, A \ (B C) = (A \ B) \ C.
M. Beśka, Wstęp do teorii miary, rozdz. 1 5 Różnicą symetryczną (r.s.) zbiorów A i B nazywamy zbiór, którego elementami są te elementy, które należą do A i nie należą do B lub należą do B i nie należą do A. Różnicę symetryczną zbiorów A i B będziemy oznaczać symbolem A B. Z definicji różnicy symetrycznej zbiorów i różnicy zbiorów wynika, że A B = (A \ B) (B \ A). Dalsze własności różnicy symetrycznej zbiorów podane są w lemacie poniżej Lemat 1.10 Dla dowolnych zbiorów A, B, C: A B = B A (przemienność r.s.), A A = oraz A = A, (iii) (v) A B = (A B) \ (A B), A (B C) = (A B) C (łączność r.s), A (B C) = (A B) (A C) (rozdzielność mnożenia względem r.s.). W dalszej części skryptu będziemy rozważali zbiory, które są podzbiorami pewnego ustalonego zbioru X zwanego przestrzenią. Na przykład, gdy rozważamy podzbiory zbioru liczb rzeczywistych, to X = IR. Niech X będzie ustaloną przestrzenią. Dopełnieniem zbioru A X nazywamy zbiór X \ A i oznaczamy go symbolem A tzn. A = X \ A. Z definicji różnicy zbiorów wynika, że ( A ) ( A). X Z definicji przestrzeni i dopełnienia zbioru dostajemy Lemat 1.11 Dla dowolnych podzbiorów A i B przestrzeni X: X A = A oraz X A = X, X = oraz = X, (iii) (A ) = A, A B B A. Prawa de Morgana dla dopełnień mają postać: Twierdzenie 1.12 Dla dowolnych podzbiorów A i B przestrzeni X:
M. Beśka, Wstęp do teorii miary, rozdz. 1 6 (A B) = A B, (A B) = A B. Dalsze własności dopełnień zbiorów zanotujmy w kolejnym lemacie Lemat 1.13 Dla dowolnych podzbiorów A i B przestrzeni X: A A = X oraz A A =, (A A ) = X oraz (A A ) =, (iii) A \ B = A B oraz A \ B = (A B), A B A B =, (v) A B A B = X. 1.3 Produkt kartezjański zbiorów Mając dane dwa elementy a A i b B możemy z nich utworzyć parę uporządkowaną o poprzedniku a i następniku b, którą będziemy oznaczać przez (a, b). Formalna definicja pary uporządkowanej o poprzedniku a i następniku b ma postać (a, b) = { {a}, {a, b} }. Jeśli a b to para uporządkowana (a, b) jest różna od pary uporządkowanej (b, a). Ogólnie dwie pary uporządkowane (a, b) i (c, d) uważamy za równe, gdy a = c i b = d co możemy zapisać symbolicznie [(a, b) = (c, d)] (a = c b = d). Produktem kartezjańskim zbiorów A i B nazywamy zbiór par uporządkowanych (a, b), gdzie a A i b B. Zauważmy, że jeśli co najmniej jeden ze zbiorów A i B jest zbiorem pustym, to ich produkt kartezjański też jest zbiorem pustym. Produkt kartezjański zbiorów A i B oznaczamy symbolem A B. Możemy więc napisać [(a, b) A B (a A b B)]. a,b Prawa rozdzielności sumy, iloczynu, różnicy zbiorów względem produktu kartezjańskiego zbiorów podano w lemacie poniżej. Lemat 1.14 Dla dowolnych zbiorów A, B, C:
M. Beśka, Wstęp do teorii miary, rozdz. 1 7 Na ogół A B B A, (iii) (v) (vi) (vii) A (B C) = (A B) (A C), (B C) A = (B A) (C A), A (B C) = (A B) (A C), (B C) A = (B A) (C A), A (B \ C) = (A B) \ (A C), (B \ C) A = (B A) \ (C A). Ponadto zauważmy, że jeśli A, B X i C, D Y, to oraz dopełnienie A B w X Y jest równe (A C) (B D) = (A B) (C D). (A C) = (A C ) (A C) (A C ), gdzie jak łatwo zauważyć suma po prawej stronie jest rozłączna. 1.4 Uogólnione sumy i iloczyny Niech {A t } t T będzie rodziną indeksowaną zbiorów. Sumę i iloczyn rodziny indeksowanej zbiorów definiujemy następująco { A t = : A t }, t T A t = t T { : Gdy T = IN, to sumę i iloczyn zapisujemy jako t T t T A t }. A i oraz A i. Gdy natomiast T = {1, 2,..., n}, to piszemy n A i oraz n A i.
M. Beśka, Wstęp do teorii miary, rozdz. 1 8 Zauważmy, że w tym przypadku n A i = A 1 A 2... A n oraz n A i = A 1 A 2... A n. Następujące twierdzenie zawiera podstawowe własności sum i iloczynów rodzin indeksowanych Twierdzenie 1.15 Dla dowolnej indeksowanej rodziny zbiorów {A t } t T zachodzi: Dla każdego t T zachodzi A t t T A t oraz t T A t A t, jeśli dla każdego t T zachodzi zawieranie A t A, to t T A t A, (iii) jeśli dla każdego t T zachodzi zawieranie A A t, to A t T A t. Z i wynika, że suma t T A t jest najmniejszym zbiorem zawierającym zbiory A t dla każdego t T, a z i (iii) wynika, że t T A t jest największym zbiorem zawartym w każdym A t dla t T. Twierdzenie 1.16 Dla dowolnych indeksowanych rodzin zbiorów {A t } t T i {B t } t T zachodzi: t T A t t T B t = t T (A t B t ), t T A t t T B t = t T (A t B t ), (iii) t T (A t B t ) t T A t t T B t, t T A t t T B t t T (A t B t ). Można wykazać, że inkluzji w (iii) i nie można zastąpić równością. Prawa de Morgana do uogólnionych sum i iloczynów mają postać: Twierdzenie 1.17 Dla dowolnej indeksowanej rodziny zbiorów {A t } t T oraz dla dowolnego zbioru A mamy A \ t T A t = t T (A \ A t), A \ t T A t = t T (A \ A t). W szczególności, gdy rodzina indeksowana {A t } t T jest rodziną podzbiorów przestrzeni X, to prawa de Morgana można napisać w postaci: ( t T t) A = t T A t, ( t T A t) = t T A t.
M. Beśka, Wstęp do teorii miary, rozdz. 1 9 1.5 Zadania Zad. 1. Niech X będzie niepustym zbiorem oraz A i, B i podzbiorami X dla i 1. Wykazać następujące zawierania: B 1 B 2 (B 1 A) (A B 2 ) dla dowolnego A X. A 1 A 2 = B 1 B 2 (A 1 B 1 ) (A 2 B 2 ) (iii) (v) ( ( ( ) ( A i ) ( A i ) ( A i \ B i ) B i ) B i ) (A i B i ) (A i B i ) (A i \ B i ) Zad. 2. Wyznaczyć n=1 A n oraz n=1 A n, gdy (a) A n = (c) A n = ( 3 1 n, 5 + 1 n ), n 1, (b) A n = ( 3 + 1 n, 5 1 ), n 1, n ( 3 + 1 n, 5 + 1 ) (, n 1, (d) A n = 3 1 n n, 5 1 ), n 1. n Zad. 3. Wyznaczyć n=1 A n oraz n=1 A n, gdy (a) A n = (c) A n = [ 3 1 n, 5 + 1 n ], n 1, (b) A n = [ 3 + 1 n, 5 1 ], n 1, n [ 3 + 1 n, 5 + 1 ] [, n 1, (d) A n = 3 1 n n, 5 1 ], n 1. n Zad. 4. Niech {A n } n 1, {B n } n 1 będą zstępującymi ciągami zbiorów tzn. A n A n+1 i B n B n+1 dla n 1. Wykazać równość (A n B n ) = n=1 A n B n. Zad. 5. Niech {A n } n 1 będzie wstępującym ciągiem zbiorów tj. A n A n+1 dla n 1. Przyjmijmy C 1 = A 1 oraz C n = A n \ A n 1 dla n 2. Udowodnić, że n=1 n=1 C n C m = dla n m,
M. Beśka, Wstęp do teorii miary, rozdz. 1 10 oraz że A n = C 1 C 2... C n i A n = C n. n=1 n=1 Zad. 6. Niech {A n } n 1 będzie przeliczalną rodziną zbiorów. Przyjmijmy B n = A 1... A n dla n 1. Udowodnić, że B n B n+1, n 1 i A n = B n. n=1 n=1 Przyjmijmy jeszcze C 1 = A 1 i C n = A n \ (A 1... A n 1 ) dla n 2. Udowodnić, że C n C m = dla n m, oraz że A n = C n. n=1 n=1 Zad. 7. Niech X będzie niepustym zbiorem. Dla B X określmy { B ε B gdy ε = 1, = B gdy ε = 0. Niech A 1, A 2,..., A n X. Dla ε = (ε 1, ε 2,..., ε n ) {0, 1} n, określmy teraz A ε = n A ε i i. Wykazać, że A ε A ε = dla ε ε i ε, ε {0, 1} n oraz, że ε {0,1} n A ε = X, ε {0,1} n ε i =1 A ε = A i, i = 1, 2,..., n, ε {0,1} n ε (0,...,0) A ε = n A i. Zad. 8. Niech X = (0, 3] (0, 3] oraz A 1 = (0, 2] (0, 2], A 2 = (1, 3] (1, 3]. Wyznaczyć rodzinę {A ε }.