Arkusz 6. Elementy geometrii analitycznej w przestrzeni

Podobne dokumenty
Geometria analityczna

Arkusz 4. Elementy geometrii analitycznej w przestrzeni

Geometria analityczna

GEOMETRIA ANALITYCZNA W PRZESTRZENI

Zadania z z matematyki dla studentów gospodarki przestrzennej UŠ. Marek Majewski Aktualizacja: 31 pa¹dziernika 2006

Geometria analityczna - przykłady

Elementy geometrii analitycznej w R 3

Prosta i płaszczyzna w przestrzeni

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

ALGEBRA z GEOMETRIA, ANALITYCZNA,

1 Geometria analityczna

Geometria w R 3. Iloczyn skalarny wektorów

Geometria Analityczna w Przestrzeni

ALGEBRA LINIOWA 1. Lista zadań

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami

WSTĘP DO ANALIZY I ALGEBRY, MAT1460

Ekoenergetyka Matematyka 1. Wykład 6.

Algebra liniowa z geometria. - zadania Rok akademicki 2010/2011

GEOMETRIA ANALITYCZNA W PRZESTRZENI

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Algebra z geometrią analityczną zadania z odpowiedziami

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Algebra z geometrią analityczną zadania z odpowiedziami

Spis treści. Spis treści 2

Geometria Lista 0 Zadanie 1

Odległośc w układzie współrzędnych. Środek odcinka.

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

PRÓBNY EGZAMIN MATURALNY

Zadania do samodzielnego rozwiązania zestaw 11

PRÓBNY EGZAMIN MATURALNY

Iloczyn skalarny, wektorowy, mieszany. Ortogonalność wektorów. Metoda ortogonalizacji Grama-Schmidta. Małgorzata Kowaluk semestr X

GEOMETRIA ANALITYCZNA. Poziom podstawowy

Równania prostych i krzywych; współrzędne punktu

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

Geometria analityczna

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

Algebra z geometrią analityczną zadania z odpowiedziami

I. Potęgi. Logarytmy. Funkcja wykładnicza.

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

1. Potęgi. Logarytmy. Funkcja wykładnicza

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

PRÓBNY EGZAMIN MATURALNY

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE PIERWSZEJ.

Grafika komputerowa Wykład 4 Geometria przestrzenna

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

Scenariusz lekcji matematyki w klasie trzeciej technikum po zasadniczej szkole zawodowej

PRÓBNY EGZAMIN MATURALNY

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

Wektory. Algebra. Aleksander Denisiuk. Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi Gdańsk

Rachunek różniczkowy funkcji wielu zmiennych

Iloczyn wektorowy. Autorzy: Michał Góra

PRÓBNY EGZAMIN MATURALNY

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

Informatyka Stosowana. a b c d a a b c d b b d a c c c a d b d d c b a

Kryteria oceniania z matematyki Klasa III poziom podstawowy

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

Algebra z geometrią Lista 1 - Liczby zespolone

Elementy geometrii w przestrzeni R 3

Repetytorium z matematyki ćwiczenia

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

FUNKCJA LINIOWA, OKRĘGI

PRÓBNY EGZAMIN MATURALNY

PODSTAWY RACHUNKU WEKTOROWEGO

M10. Własności funkcji liniowej

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

LUBELSKA PRÓBA PRZED MATURA

Rozkład materiału nauczania

PRÓBNY EGZAMIN MATURALNY

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

SPIS RZECZY. GEOMETRJA ANALITYCZNA NA PŁASZCZYŹNIE.

PRÓBNY EGZAMIN MATURALNY

1 Funkcje dwóch zmiennych podstawowe pojęcia

Prosta, płaszczyzna, powierzchnie drugiego. stopnia. stopnia. JJ, IMiF UTP

Położenia, kierunki, płaszczyzny

POWTÓRKA ROZDZIAŁU III FUNKCJA LINIOWA

PRÓBNY EGZAMIN MATURALNY

DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

PRÓBNY EGZAMIN MATURALNY

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Spis treści 1. Macierze, wyznaczniki, równania liniowe 2 2. Geometria analityczna 7 3. Granice, pochodne funkcji i ich zastosowania 10 4.

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Transkrypt:

Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos ψ, ρ sin φ cos ψ, ρ sin ψ], ρ 0, φ, ψ R Zadanie 6.2. Obliczyć iloczyny skalarne podanych par wektorów a) a = [1, 2, 5], b = [, 1, 0] b) a = [, 4, 1], b = [2,, 0] c) u = i 2 k, v = i + j + 7 k d) u = 2 i j, v = i + 4 k Zadanie 6.. Obliczyć iloczyny wektorowe par wektorów z zadania 6.2. Zadanie 6.4. Sprawdzić, czy wektory u, v sa równoległe, czy prostopadłe, jeśli: a) u = [ 1, 0, ], v = [, 0, 9] b) u = [ 1, 0, ], v = [6, 7, 2] Zadanie 6.5. Czy można dobrać parametr m tak, aby wektory u i v były prostopadłe, jeśli: a) u = [m, 0, 1], v = [ 1, m, m] b) u = [m, m, m + 4], v = [m + 1,, 9] c) u = [2, m, 1], v = [m, 2m, 2] d) u = [m,, 4], v = [1, m, 1]? Zadanie 6.6. Czy można dobrać parametr k tak, aby wektory u i v z zadania 6.5 były równoległe? Zadanie 6.7. Znaleźć trzy wektory równoległe do wektora u = [4, 2, 8]. Zadanie 6.8. Znaleźć trzy wektory prostopadłe do wektora u = [4, 2, 8]. Zadanie 6.9. Obliczyć sin φ i cos φ, gdzie φ jest katem między wektorami: a) u = [1, 2, 2], v = [2, 1, 2] b) u = [0,, 4], v = [2, 2, 1] c) u = [1, 1, 1], v = [5, 1, 1] d) u = [5, 0, ], v = [0, 4, 0] Zadanie 6.10. Obliczyć pole równoległoboku ABCD oraz znaleźć punkt D, jeśli: a) A = (1, 2, ), B = (4, 0, ), C = ( 2,, 0) b) A = (0, 0, 0), B = (5, 0, ), C = (1, 1, 1) c) A = ( 1, 2, ), B = (4, 5, 6), C = (0, 1, 2) Zadanie 6.11. Obliczyć pole trójkata ABC, jeśli: a) A = (1, 2, ), B = ( 1, 0, 4), C = (5, 6, 0) b) A = (1, 2, 0), B = ( 1, 0, 0), C = (5, 6, 0) c) A = (0, 0, 0), B = (, 4, 5), C = (0, 0, 6) Zadanie 6.12. Sprawdzić, czy punkty P, Q, R leża na jednej prostej, jeśli: a) P = (0, 0, ), Q = ( 1, 2, 4), R = (2, 4, 1) b) P = (1, 2, 1), Q = (, 0, 2), R = ( 1, 1, 1) c) P = ( 1, 0, 0), Q = (5, 6, 7), R = ( 1, 12, 14) Aktualizacja: 16 stycznia 2012 1

Zadanie 6.1. Obliczyć iloczyny mieszane podanych trójek wektorów: a) a = [, 2, 1], b = [0, 1, 5], c = [2,, 4] b) u = i + j, v = 2 i j + k, w = i + 2 j 5 k. Zadanie 6.14. Sprawdzić, czy punkty P, Q, R, S leża na jednej płaszczyźnie, jeśli: a) P = (0,, 4), Q = ( 1, 2, 2), R = (2, 0, ), S = ( 1, 1, 1) b) P = (1, 1, 1), Q = ( 1, 0, 14), R = (0, 4, 0), S = (, 2, 0) c) P = (, 2, 2), Q = ( 1, 1, 2), R = (, 4, 1), S = ( 2, 1, 0) Zadanie 6.15. Obliczyć objętości podanych wielościanów: a) równoległościan rozpięty na wektorach a = [0, 0, 1], b = [ 1, 2, ], c = [2, 5, 1] b) czworościan o wierzchołkach A = (1, 1, 1), B = (1, 2, ), C = (2,, 1), D = ( 1,, 5). Zadanie 6.16. Napisać równanie płaszczyzny π przechodzacej przez punkt P 0 i równoległej do płaszczyzny π 1, gdy: a) P 0 = (, 2, 1), π 1 : 2x 2y 4z 7 = 0 b) P 0 = (0, 0, 0), π 1 : x + z 11 = 0 c) P 0 = (2,, 0), π 1 jest płaszczyzna d) P 0 = (2,, 0), π 1 jest płaszczyzna Oxz Zadanie 6.17. Napisać równanie płaszczyzny π przechodzacej przez punkty P 1 i P 2 i prostopadłej do płaszczyzny π 1, gdy: a) P 1 = (6, 2, 1), P 2 = (, 1, 1), π 1 : x + 2y z 6 = 0 b) P 1 = ( 2, 0, ), P 2 = (1, 1, 1), π 1 : 2x z 8 = 0 b) P 1 = (1, 2, 4), P 2 = ( 2, 4, 5), π 1 jest płaszczyzna Zadanie 6.18. Napisać równanie płaszczyzny π przechodzacej przez punkt P 0 i prostopadłej do płaszczyzn π 1, i π 2, gdy: a) P 0 = (, 2, 1), π 1 : 2x 2y 4z 7 = 0, π 2 : x + y z 1 = 0 b) P 0 = (0, 0, 0), π 1 : x + z 11 = 0, π 2 : x + 2y z = 0 b) P 0 = (1,, 4), π 1 : x z = 0, π 2 jest płaszczyzna b) P 0 = (1,, 4), π 1 jest płaszczyzna, π 2 jest płaszczyzna Oxz Zadanie 6.19. Znaleźć punkty przecięcia płaszczyzny π z osiami układu współrzędnych z, gdy a) π : 2x + y + z 6 = 0 b) π : 2x y z = 0 c) 2x + y 6 = 0 d) 2x + z 6 = 0 Zadanie 6.20. Napisać równanie płaszczyzny przechodzacej przez punkty P 1, P 2, P, gdy: a) P 1 = (5, 2, 1), P 2 = (0,, 4), P = (5, 6, 7) b) P 1 = (0, 0, 12), P 2 = (2, 2, 5), P = (4, 0, 6) c) P 1 = (4, 4, ), P 2 = (0, 6, 0), P = (8, 1, 6) Aktualizacja: 16 stycznia 2012 2

Zadanie 6.21. Znaleźć wartości parametru k, dla których płaszczyzny π 1 i π 2 sa równoległe, gdy a) π 1 : 2x + ky + z + 6 = 0, π 2 : kx + 2y + (k 1)z + = 0 b) π 1 : x + (k + 1)y + 6z + 1 = 0, π 2 : (k + 1)x + 4ky + ( 11 + k 2) z = 0 Zadanie 6.22. Dla jakich wartości parametru k płaszczyzny π 1 i π 2 z zadania 6.21 sa prostopadłe? Zadanie 6.2. Sprawdzić, że płaszczyzny π i π 2 sa równoległe, a następnie obliczyć odległość między tymi płaszczyznami, jeśli: a) π 1 : 6x y + 6z + 5 = 0, π 2 : 4x 2y + 4z = 0 b) π 1 : 6x 8z 1 = 0, π 2 : 9x 12z + 48 = 0 c) π 1 : 2x 4y 6z 2 = 0, π 2 : x 6y 9z = 0 Zadanie 6.24. Napisać równanie płaszczyzny π zawierajacej krawędź przecięcia płaszczyzn π 1 i π 2 i przechodzacej przez punkt P, gdy: a) π 1 : 2x y z 8 = 0, π 2 : x y z 6 = 0, P = (1, 0, 2) b) π 1 : x z 6 = 0, π 2 : x + y z 6 = 0, P = (1, 2, ) c) π 1 : x + y 2z = 0, π 2 : y + 2z 8 = 0, P = (0, 2, 1) d) π 1 : 2x + 2y + z 2 = 0, π 2 : x y z 2 = 0, P = (1, 1, 2) Zadanie 6.25. Napisać równanie płaszczyzny π zawierajacej krawędź przecięcia płaszczyzn π 1 i π 2 i prostopadłej do płaszczyzny π, gdy: a) π 1 : x y z 6 = 0, π 2 : 2x y z 8 = 0, π : x + y 6z 12 = 0 b) π 1 : 2x y = 0, π 2 : y + z 8 = 0, π : x + y 6z 12 = 0 c) π 1 : x + y z = 0, π 2 : 2x y z 8 = 0, π : 2x y + z 6 = 0 d) π 1 : x + y z = 0, π 2 : 2x y z 8 = 0, π : 4x y + z = 0 Zadanie 6.26. Napisać równania parametryczne prostej przechodzacej przez punkt (, 4, 2) i równoległej do osi: a) Ox b) Oy c) Oz Zadanie 6.27. Napisać równania parametryczne prostej przechodzacej l przez punkt (, 4, 2) i równoległej do prostej l 1, gdy: x = t a) l 1 : y = z = 2 t t R { b) l 1 : x = 4y = z 6 2x y z 6 = 0 c) l 1 : x + y + z 5 = 0 Zadanie 6.28. Napisać równania parametryczne prostej l przechodzacej przez punkty P = (, 4, 2) i Q = (5, 6, 2), a następnie sprawdzić, czy punkt R = (1, 2, ) należy do tej prostej. Aktualizacja: 16 stycznia 2012

Zadanie 6.29. Napisać równania parametryczne prostej przechodzacej przez punkt (, 4, 5) i przecinajacej oś Oy w punkcie o współrzędnej y = 5. Zadanie 6.0. Napisać równania parametryczne prostej przechodzacej przez punkt P = ( 1, 2, ) i prostopadłej do prostych l 1 i l 2, gdy: x = 2 + t a) l 1 : y = t z = t R, l 2 : b) l 1 : x 1 = 2 y = 2z, l 2 : { 2x y + 2z 6 = 0 x + y + z 4 = 0 { x + y 6 = 0 2x y z 8 = 0 Zadanie 6.1. Napisać równania parametryczne, kierunkowe i krawędziowe prostej przechodzacej przez punkty P = (1, 2, 0), Q = ( 1,, 4). Zadanie 6.2. Sprawdzić, że proste l 1 i l 2 sa równoległe, jeśli: { a) l 1 : x 1 = 2y = z 4x + 12y 5z = 0 2, l 2 : 4x + 4y z + 1 = 0 b) l 1 : x = y = z 1, l 2 : x+ = y + 1 = z+2. Zadanie 6.. Znaleźć (jeśli istnieja) punkty wspólne prostych l 1 i l 2, jeśli: a) l 1 : x = y = z 1, l 2 : x 2 = y = z 1 2. b) l 1 : x = y = z 1, l 2 : x 2 = y = z 4 6. Zad. 6.1 a) 1 4, c) ρ 2 + h 2, d) ρ. Zad. 6.2 a) 5 6, c) 17, d) 2. Zad. 6. a) [5, 15, 5], b) [, 2, 17], c)[6, 19, 9] d) [ 4, 8, 1]. Zad. 6.4 a) równoległe prostopadłe. Zad. 6.5 a) k może być dowolne m = 4 lub m = 9, c) nie, d) m = 1. Zad. 6.6 a) nie m = 2, c) m = 4, d) nie. Zad. 6.7 każdy wektor postaci [4k, 2k, 8s], gdzie k R jest równoległy do u. Zad. 6.8 wektor v = [x, y, z] jest prostopadły do u, gdy 4x + 2y 8z = 0. Zad. 6.9 65 9, cos φ = 4 9 sin φ = 221 15, cos φ = 2 15, c) sin φ = 4 2 9, cos φ = 7 9, d) a) sin φ = sin φ = 1, cos φ = 0. Zad. 6.10 a) 14, D = ( 5, 5, 0) 8, D = (4, 1, 2), c) 2 106, D=(-5,-4,-1). Zad. 6.11 a) 2 12, c) 15. Zad. 6.12 a) tak nie, c) tak. Zad. 6.1 a) 55 22. Zad. 6.14 a) tak tak, c) nie. Zad. 6.15 a) 9 2. Zad. 6.16 a) x y 2z = 0, b) x + z = 0, c) z = 0, d) y = 0. Zad. 6.17 a) x y z = 0 x 5y + 2z = 0, c) 2x + y 8 = 0. Zad. 6.18 a) 5x + y + 2z 15 = 0 x y z = 0, c) y = 0, d) x 1 = 0. Zad. 6.19 a) (, 0, 0), (0, 6, 0), (0, 0, 2) (0, 0, 0), c) (, 0, 0), (0, 6, 0), d) (, 0, 0), (0, 0, 2). Zad. 6.20 a) x 15y + 10z + 5 = 0 x 4y 2z 24 = 0, c) x 4z = 0. Zad. 6.21 a) k = 2 k = 1. Zad. 6.22 a) k = 5 1 19 nie ma takiego k. Zad. 6.2 a) d = 18 d = 10, c) d = 0. Zad. 6.24 a) 14x 25y + 1z 40 = 0 4x + 7y + 2z 24 = 0, c) x + y 2z = 0, d) takich płaszczyzn jest nieskończenie wiele; każda płaszczyzna postaci π : λ 1 (2x + 2y + z 2) + λ 2 (x y z 2) = 0, gdzie λ 1, λ 2 = 0. Zad. 6.25 a) 1x 49y z 114 = 0 6x + z 17 = 0, c) x + y z = 0, d) takich płaszczyzn jest nieskończenie wiele; każda płaszczyzna postaci π : λ 1 (x + y z ) + λ 2 (2x y z 8) = 0, gdzie λ 1, λ 2 = 0. Zad. 6.26 a) x = + t y = 4 z = 2 x = y = 4 + t z = 2, c) x = y = 4 z = 2 + t. Zad. 6.27 Aktualizacja: 16 stycznia 2012 4

x = + t a) y = 4 z = 2 t Zad. 6.29 a) x = 1 + 2t y = 2 t z = 4t (1, 1, 2). 6 Elementy geometrii analitycznej w przestrzeni x = t y = 5 t z = 5t x = + t y = 4 + t 4 z = 2 + t, c), Zad. 6.0 a) x = 2t y = 4 7t z = 2 + t x = 1 t y = 2 + 9t z = + 7t, x 1 2 = y 2 1 = z 4, { x + 2y 5 = 0 4y + z 8 = 0. Zad. 6.28 x = 1 + 41t y = 2 + 9t z = 12t x = + 2t y = 4 + 2t z = 2 + 4t, nie.. Zad. 6.1a). Zad. 6. a) brak (proste skośne) Aktualizacja: 16 stycznia 2012 5