Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008 1 / 23
Rynki finansowe Rynek towarów/akcji obiektem handlu jest towar (ziemniaki, węgiel, ropa) lub dobro umowne (udział w spółce) instrumenty podstawowe sa wielkościami namacalnymi najprostszy do modelowania Rynek walut wymiana abstrakcyjnych obiektów (pieniędzy): środka do zakupu dóbr symetria spojrzenia Rynek stóp procentowych obiektem handlu jest operacja lokowania i pożyczania pieniędzy na ustalonych warunkach stopa procentowa jest abstrakcyjnym opisem jednego z warunków inne to: nominał, okres inwestycji... Jan Palczewski Wycena opcji Warszawa, 2008 2 / 23
Instrumenty pochodne akcji i walut dwie podstawowe zasady rozliczeń: opcje europejskie i amerykańskie europejska opcja call możliwość zakupu określonej ilości towaru/waluty po ustalonej cenie K w momencie T reprezentacja jako wypłata: max(s T K, 0) wypłata (S T K) + plus zakup towaru na rynku = opcja europejska opcja put (K S T ) + opcja binarna opcja barierowa Jan Palczewski Wycena opcji Warszawa, 2008 3 / 23
Instrumenty pochodne stopy procentowej caplet/floorlet zabezpieczenie przed zbyt wysoka/nisk a stopa procentowa cap/floor pakiet capletów/floorletów swap zamiana stopy stałej na zmienna i vice versa zamiana stopy kredytu/lokaty swapcja Jan Palczewski Wycena opcji Warszawa, 2008 4 / 23
Cele matematyki finansowej 1 budowa złożonych instrumentów finansowych (inżynieria finansowa) 2 wycena instrumentów pochodnych 3 zebezpieczenie wypłat czy jest jak zabezpieczać? CDO (Collateral Debt Obligation) subprime crisis 4 ocena ryzyka zabezpieczenia Główny wysiłek praktyków skupiony jest na (1) i (2). Nasz cel: WYCENA Jan Palczewski Wycena opcji Warszawa, 2008 5 / 23
Realizacja 1 wyabstrahowanie najważniejszych dla wyceny danego instrumentu cech rynku i budowa modelu matematycznego 2 kalibracja modelu 3 wycena metody analityczne i numeryczne 4 strategie zabezpieczenia; obliczenie Greeks Jan Palczewski Wycena opcji Warszawa, 2008 6 / 23
Model Black a-scholes a Instrumenty podstawowe rachunek bankowy ze stopa procentową r B t = e rt akcja S t = S 0 e σw t+(µ σ 2 /2)t, gdzie W t jest procesem Wienera. ds t = S t µdt + S t σdw t Jan Palczewski Wycena opcji Warszawa, 2008 7 / 23
Założenia modelowe Jest możliwość krótkiej sprzedaży akcji. Nie ma możliwości arbitrażu. Handlowanie jest ciagłe. Nie ma kosztów transakcji i podatków. Wszystkie instrumenty finansowe sa nieskończenie podzielne. Stopa procentowa pożyczki i lokaty jest identyczna niezależnie od okresu i nominału. Jan Palczewski Wycena opcji Warszawa, 2008 8 / 23
Trochę teorii... Definicja Wypłata w momencie T nazywamy zmienna losowa mierzalna względem historii rynku do chwili T. Twierdzenie Jeśli σ 0 to model Black a-scholes a jest zupełny, zaś cena wypłaty X wynosi e rt E Q (X), gdzie Q jest miara probabilistyczna taka, że B t = e rt, oraz S t = S 0 e σ W t +(r σ 2 /2)t, zaś W t jest procesem Wienera względem miary Q. Jan Palczewski Wycena opcji Warszawa, 2008 9 / 23
Przykłady optymistyczne 1 Europejska opcja call: X = (S T K) + ) + } cena = e rt E Q {(S 0 e σz+(r σ2 /2)T K, gdzie Z N(0, T). 2 Europejska opcja barierowa down-and-out call: { (S T K) +, jeśli min 0 t T S t > H, X = 0, jeśli min 0 t T S t H, gdzie S t = S 0 e σw t+(r σ 2 /2)t. Wówczas cena = e rt E Q (X) Jan Palczewski Wycena opcji Warszawa, 2008 10 / 23
Przykłady nieco mniej optymistyczne 1 Opcja azjatycka call: gdzie X = (S ave K) +, S ave = S t 1 + S t2 +... + S tn, lub S ave = 1 T S t dt. n T 0 Wówczas cena = e rt E Q (X). 2 Opcja amerykańska put: (twierdzenie) τ to moment stopu. { cena = sup E Q e rτ (K S τ ) +}. 0 τ T Jan Palczewski Wycena opcji Warszawa, 2008 11 / 23
Główne problemy kalibracja: znalezienie parametrów modelu stopa procentowa r, zmienność σ, uwaga! stopa zwrotu z akcji µ nie gra żadnej roli przy wycenie policzenie ceny metody analityczne wyrażenie składajace się ze znanych i łatwo obliczalnych funkcji, metody numeryczne jak się nie da analitycznie Jan Palczewski Wycena opcji Warszawa, 2008 12 / 23
Kalibracja 1 stopa procentowa różna dla różnych okresów jak wybrać r? 2 σ to zmienność cen akcji (ale to nie działa): σ = 3 zmienność implikowana Var ( 1 log S t+ S t ) 4 rażacy brak zgodności modelu z rzeczywistościa Jan Palczewski Wycena opcji Warszawa, 2008 13 / 23
Uśmiech zmienności Tego będzie dziś sporo. Jan Palczewski Wycena opcji Warszawa, 2008 14 / 23
Co robić? Nauczyć się sprawnie oszukiwać model obecnie najpowszechniejsza technika w praktyce Budować modele lepiej oddajace funkcjonowanie rynku np. model stochastycznej zmienności ds t = S t µdt + S t Vt dw 1 t, dv t = α(σ V t )dt + βv t dw 2 t. Ale wtedy jeszcze trudniej policzyć cenę = metody numeryczne. Jan Palczewski Wycena opcji Warszawa, 2008 15 / 23
Metody numeryczne Kiedy? Wycena trudniejszych wypłat, w tym wielu powszechnie handlowanych. Wycena w bardziej zaawansowanych modelach. Jak? Monte Carlo Równania różniczkowe czastkowe (PDE) Drzewa dwumianowe Jan Palczewski Wycena opcji Warszawa, 2008 16 / 23
Monte Carlo - teoria Mocne Prawo Wielkich Liczb Niech (X n ) bedzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie. Wówczas X 1 +... + X n n E(X 1 ) p.n. Jan Palczewski Wycena opcji Warszawa, 2008 17 / 23
Monte Carlo - praktyka Jak policzyć cenę wypłaty X? cena = e rt E Q (X). Symulacja Niech X 1,...,X n niezależne zmienne losowe o rozkładzie zmiennej X względem Q. Wówczas X 1 +... + X n n E Q (X) Jan Palczewski Wycena opcji Warszawa, 2008 18 / 23
Oszacowanie błędu Centralne Twierdzenie Graniczne Niech (X n ) bedzie ciagiem niezależnych zmiennych losowych o tym samym rozkładzie. Wówczas X 1 +... + X n n E(X 1 ) sdev(x 1 ) n N ( 0, 1 ) wg. rozkładu. Symulacja Niech X 1,...,X n niezależne zmienne losowe o rozkładzie zmiennej X względem Q. Wówczas X 1 +... + X n n ( N E Q (X), Var Q(X) n ). Jan Palczewski Wycena opcji Warszawa, 2008 19 / 23
Metoda różniczkowa - teoria Twierdzenie Jeśli X = h(s T ), to cena X w momencie t wynosi V(S t, t), gdzie funkcja V(s, t) dana jest wzorem Ponadto, V(s, t) = e r(t t) E Q ( h(st ) S t = s ). 1 2 σ2 s 2 V(s, t) V(s, t) V(s, t) s 2 + rs rv(s, t) + = 0. s t Przykłady: TAK: europejska opcja call/put, opcje binarne NIE: opcje barierowe, azjatyckie Jan Palczewski Wycena opcji Warszawa, 2008 20 / 23
Metoda różniczkowa - praktyka Opcja call V(s, T) = (s K) +, s > 0 1 2 σ2 s 2 V(s, t) V(s, t) V(s, t) s 2 + rs rv(s, t) + = 0 s t lim V(s, t) = 0, t [0, T] s 0 V(s, t) lim = 1, t [0, T] s s Jan Palczewski Wycena opcji Warszawa, 2008 21 / 23
Drzewo dwumianowe Aproksymacja modelu Black a-scholes a za pomoca: S 0 S 2 = S 0 u 2... p u S 1 = S 0 u... p u 1 p u 1 p u S 2 = S 0 ud... p u S 1 = S 0 d... 1 p u S 2 = S 0 d 2... B 0 = 1 B 1 = 1 + r B 2 = (1 + r) 2... Wycena przy pomocy wstecznej rekurencji. Jan Palczewski Wycena opcji Warszawa, 2008 22 / 23
Podsumowanie 1 Monte Carlo bardzo uniwersalna (opcje zależne od trajektorii; różne modele), łatwa do zapisania wolna zbieżność (da się czasami przyspieszyć) 2 Metoda różniczkowa szybka i dokładna daje cała funkcję wyceniajac a V(s, t) trudna do zapisania (warunki brzegowe, trudne wyprowadzenie równania) 3 Drzewo dwumianowe dobra do opcji niezależnych od trajektorii i opcji amerykańskich aproksymuje tylko model Black s-scholes a (z małymi uogólnieniami) nie nadaje się do wyceny opcji zależnych od trajektorii Jan Palczewski Wycena opcji Warszawa, 2008 23 / 23