Zasada włączeń i wyłączeń 1 ZASADA WŁACZEŃ I WYŁĄCZEŃ. Przypominamy, że w wykładzie 1 udowodniliśmy następujące dwie równości:



Podobne dokumenty
Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

i = n = n 1 + n 2 1 i 2 n 1. n(n + 1)(2n + 1) n (n + 1) =

Uwaga 1.1 Jeśli R jest relacją w zbiorze X X, to mówimy, że R jest relacją w zbiorze X. Rozważmy relację R X X. Relację R nazywamy zwrotną, gdy:

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Analiza B. Paweł Głowacki

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE

Algebra liniowa z geometrią analityczną

σ-ciało zdarzeń Niech Ω będzie niepustym zbiorem zdarzeń elementarnych, a zbiór F rodziną podzbiorów zbioru Ω spełniającą warunki: jeśli A F, to A F;

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

P k k (n k) = k {O O O} = ; {O O R} =

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Wybrane rozkłady zmiennych losowych i ich charakterystyki

Podstawy rachunku prawdopodobieństwa (przypomnienie)

W. Guzicki Zadanie 41 z Informatora Maturalnego poziom podstawowy 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. . (odp. a)

Luty 2001 Algorytmy (7) 2000/2001

Przykładowe zadania z teorii liczb

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Podstawy nauk przyrodniczych Matematyka

Rachunek prawdopodobieństwa

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

Matematyka dyskretna dla informatyków

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

Indukcja matematyczna

MNRP r. 1 Aksjomatyczna definicja prawdopodobieństwa (wykład) Grzegorz Kowalczyk

Zestaw zadań dotyczących liczb całkowitych

Matematyka Dyskretna - zagadnienia

Sumy kwadratów kolejnych liczb naturalnych

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Zasada indukcji matematycznej

Zbiory, relacje i funkcje

Matematyka Dyskretna. Andrzej Szepietowski. 17 marca 2003 roku

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 5.

S n = a 1 1 qn,gdyq 1

Metody probabilistyczne Rozwiązania zadań

Indukcja matematyczna

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Zasada indukcji matematycznej

i=7 X i. Zachodzi EX i = P(X i = 1) = 1 2, i {1, 2,..., 11} oraz EX ix j = P(X i = 1, X j = 1) = 1 7 VarS 2 2 = 14 3 ( 5 2 =

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY 3g. zakres rozszerzony

Prawa wielkich liczb, centralne twierdzenia graniczne

Zajęcia nr. 3 notatki

KOMBINATORYKA. Problem przydziału prac

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

F t+ := s>t. F s = F t.

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

1 Działania na zbiorach

LOGIKA I TEORIA ZBIORÓW

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

5 Wyznaczniki. 5.1 Definicja i podstawowe własności. MIMUW 5. Wyznaczniki 25

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja wykładnicza kilka dopowiedzeń

Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska

Indukcja matematyczna. Zasada minimum. Zastosowania.

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Matematyka Dyskretna Zadania

2 Podstawowe obiekty kombinatoryczne

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Układy równań i nierówności liniowych

domykanie relacji, relacja równoważności, rozkłady zbiorów

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

6. FUNKCJE. f: X Y, y = f(x).

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

III. Funkcje rzeczywiste

Kombinatoryka i rachunek prawdopodobieństwa

WYKŁAD 3. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki

Kongruencje pierwsze kroki

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

WYKŁAD 1. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Instytut Matematyki Uniwersytet Warszawski

Wojciech Kordecki. Matematyka dyskretna. dla informatyków

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Rozdział 5. Szeregi liczbowe. 5.1 Szeregi liczbowe. Definicja sumy częściowej ciągu. Niech dany będzie ciąg liczbowy (a n ) n=1.

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

Matematyka Dyskretna Zestaw 2

E-learning - matematyka - poziom rozszerzony. Funkcja wykładnicza. Materiały merytoryczne do kursu

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

Przykładami ciągów, które Czytelnik dobrze zna (a jeśli nie, to niniejszym poznaje), jest ciąg arytmetyczny:

LX Olimpiada Matematyczna

Wykład z równań różnicowych

1. Wielomiany Podstawowe definicje i twierdzenia

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Transkrypt:

Zasada włączeń i wyłączeń 1 ZASADA WŁACZEŃ I WYŁĄCZEŃ 1. Przypomnienie Przyjmiemy również oznaczenie [n]{1,...,n} dlan>0, P (n){a [n]: A }. P (n){a [n]: A }. Przypominamy, że w wyładzie 1 udowodniliśmy następujące dwie równości: oraz A B A B A B (.1) A B C A B C A B A C B C A B C. (.) Udowodnimy teraz twierdzenie będące uogólnieniem tych dwóch równości na przypade dowolnej liczby zbiorów sończonych.. Wzór włączeń i wyłączeń Twierdzenie.1.JeśliA 1,...,A n sązbioramisończonymi,to A 1... A n Dowód. Wprowadźmy oznaczenie: (1) 1 S (B 1,...,B m ) Teza twierdzenia przybiera wtedy postać: A 1... A n T P (m) T P (n). (.3) B j. (1) 1 S (A 1,...,A n ). Twierdzenia dowodzimy przez inducję względem n. Dla n 1 twierdzenie jest oczywiste.dlanin3byłojużudowodnione.załadamyteraz,żedladowolnychn zbiorów(gdzie n ) twierdzenie jest prawdziwe i dowodzimy, że jest prawdziwe dla dowolnychn1zbiorów.niechwięca 1,...,A n1 będądowolnymizbioramisończonymi. Wówczas A 1... A n1 (A 1... A n ) A n1 A 1... A n A n1 (A 1... A n ) A n1 A 1... A n A n1 (A 1 A n1 )... (A n A n1 ). Wyłady z ombinatoryi

Wyład Korzystamyterazdwurotniezzałożeniainducyjnego:dlazbiorówA 1,...,A n oraz dlazbiorówa 1 A n1,...,a n A n1 : A 1... A n (1) 1 S (A 1,...,A n ), (A 1 A n1 )... (A n A n1 ) (1) 1 S (A 1 A n1,...,a n A n1 ). Zauważmy następnie, że A 1... A n A n1 S 1 (A 1,...,A n ) A n1 (1) 1 S (A 1,...,A n ) A 1... A n A n1 S 1 (A 1,...,A n1 ) (1) 1 S (A 1,...,A n ) (1) 1 S (A 1,...,A n ) oraz (A 1 A n1 )... (A n A n1 ) (1) 1 S (A 1 A n1,...,a n A n1 ) n1 (1) 1 S (A 1 A n1,...,a n A n1 ) (1) n1 S n (A 1 A n1,...,a n A n1 ) n1 (1) 1 S (A 1 A n1,...,a n A n1 ) (1) n1 (A 1 A n1 )... (A n A n1 ) n1 (1) 1 S (A 1 A n1,...,a n A n1 )(1) n1 A 1... A n A n1 (1) S 1 (A 1 A n1,...,a n A n1 )(1) n A 1... A n A n1 (1) S 1 (A 1 A n1,...,a n A n1 )(1) n S n1 (A 1,...,A n1 ) (1) 1 S 1 (A 1 A n1,...,a n A n1 )(1) n S n1 (A 1,...,A n1 ). Zatem A 1... A n S 1 (A 1,...,A n1 ) (1) 1 S (A 1,...,A n ) Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 3 (1) 1 S 1 (A 1 A n1,...,a n A n1 )(1) n S n1 (A 1,...,A n1 ) S 1 (A 1,...,A n1 ) Następnie zauważmy, że (1) 1 (S (A 1,...,A n )S n1 (A 1,...,A n1 )) (1) n S n1 (A 1,...,A n1 ). S (A 1,...,A n )S 1 (A 1 A n1,...,a n A n1 )S (A 1,...,A n1 ) Stąd ostatecznie dostajemy A 1... A n S 1 (A 1,...,A n1 ) (1) 1 S (A 1,...,A n1 )(1) n S n1 (A 1,...,A n1 ) n1 (1) 1 S (A 1,...,A n1 ), co ończy dowód twierdzenia. Wzór(.3) nazywamy wzorem włączeń i wyłączeń. Inny dowód. Przeglądamy olejne sładnii sumy stojącej po prawej stronie równości iprzyażdymelemencieiloczynu od tego, czy liczba rysujemyznapluslubminuswzależności występowaławsumiezeznaiemplusczyminus.inaczej mówiąc, jeśli zbiór T ma nieparzystą liczbę elementów, to rysujemy zna plus; jeśli zaś zbiór T ma parzystą liczbę elementów, to rysujemy zna minus. Zilustrujemy tę procedurę(w przypadu sumy trzech zbiorów A B C) serią rysunów. Dowodzimy równości A B C A B C A B A C B C A B C. Przeglądamy sładnii sumy po prawej stronie i rysujemy znai plus olejno przy ażdym elemencie zbiorów A, B i C, potem znai minus przy ażdym elemencie zbiorów A B,A CiB C,wreszcieznaiplusprzyażdymelemenciezbioruA B C. Rysune 1: zbiory A, B i C wraz z zaznaczonymi przyładowymi elementami(po jednym elemencie w ażdej sładowej). A B C Wyłady z ombinatoryi

4 Wyład Rysune : przy ażdym elemencie zbioru A rysujemy zna plus A B C Rysune 3: przy ażdym elemencie zbioru B rysujemy zna plus A B C Rysune 4: przy ażdym elemencie zbioru C rysujemy zna plus A B C Rysune5:przyażdymelemenciezbioruA Brysujemyznaminus A B C Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 5 Rysune6:przyażdymelemenciezbioruA Crysujemyznaminus A B C Rysune7:przyażdymelemenciezbioruB Crysujemyznaminus A B C Rysune8:przyażdymelemenciezbioruA B Crysujemyznaplus A B C Zauważamy,żeprzyażdymelemenciesumyA B Cliczbanarysowanychplusów jest o jeden więsza od liczby narysowanych minusów: przy elementach należących do jednego zbioru narysowaliśmy tylo jeden plus, przy elementach należących do dwóch zbiorów narysowaliśmy dwa plusy i jeden minus, wreszcie przy elementach należących do wszystich trzech zbiorów narysowaliśmy cztery plusy i trzy minusy. To daje równość (liczbaplusów)(liczbaminusów) A B C. Wyłady z ombinatoryi

6 Wyład Nietrudno przy tym zauważyć, że w ażdym z siedmiu powyższych roów liczba narysowanych znaów była równa liczbie elementów rozpatrywanego zbioru. Stąd dostajemy równość (liczba plusów)(liczba minusów) A B C A B A C B C A B C, z tórej wynia równość(.). Powróćmy do dowodu twierdzenia.1. Znów zauważamy, że prawa strona równości(.3) jest różnicą między liczbą plusów i liczbą minusów. Wystarczy zatem poazać, że przy ażdymelemenciesumyzbiorówa 1... A n narysowaliśmyojedenpluswięcej.niech x A 1... A n.niechnastępnie M{j: x }. Inaczejmówiąc,x wtedyitylowtedy,gdyj M.Oznaczmym M ;oczywiście m>0.niechterazt P (n)ipopatrzmynazbiór ;jesttojedenzezbiorów występującychpoprawejstronierówności(.3).jeślit\m,tooczywiściemamy x.przypuśćmyzatem,żet M.Wtedyprzyelemenciexrysowaliśmyzna plus lub minus, w zależności od parzystości : plus dla nieparzystych, minus dla parzystych.dladanegoliczbataichzbiorówt jestrówna ( m ).Liczbyplusów i minusów narysowanych przy x są zatem równe liczbaplusów. liczbaminusów, >0, sąd dostajemy liczba plusów liczba minusów m ( m (1) 1 ). Zrówności(przypominamy,żem>0) m (1) 0 wynia, że czyli 1 0 m (1) 0, m (1) m ( m (1) 1 ). Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 7 Stąd wynia, że przy elemencie x narysowaliśmy o jeden plus więcej. Ta jest dla ażdego elementuxsumya 1... A n.tozaśoznacza,żesumapoprawejstronierówności będzierównaliczbieelementówsumya 1... A n,coończydowód. 3. Liczba funcji z jednego zbioru sończonego na drugi zbiór sończony Twierdzenie..DanesądwazbiorysończoneAiB.Niech A mi B n. Wtedy m {f A B : fjest na } (1) (m) n. (.4) Dowód.Bezzmniejszeniaogólnościmożemyprzyjąć,żeA[m]iB[n].Definiujemy zbiorya 1,...,A m wnastępującysposób: dlaj1,,...,m.inaczejmówiąc {f A B : j R f } (A\{j}) B. Korzystając ze wzoru włączeń i wyłączeń otrzymujemy A 1... A m NiechzatemT P (m).wtedy m (1) 1. T P (m) (A\{j}) B (A\T) B, sąd otrzymujemy A j (A\T) B (m) n. Zatem A 1... A m m (1) 1 T P (m) (m) n m ( m (1) 1 ) (m) n. Dozaończeniadowoduwystarczyzauważyć,żesumazbiorówA 1... A m sładasię ztychfuncjif:b A,tóreniesą na.zatem {f A B : fjest na }A B \(A 1... A m ), Wyłady z ombinatoryi

8 Wyład czyli c.b.d.o. {f A B : fjest na } m n A 1... A m m m n (1) 1 (m) n m m n (1) (m) n m (1) (m) n, 4. Liczba nieporządów Permutacją zbioru sończonego A nazywamy funcję różnowartościową π: A A przeształcającą zbiór A na siebie. Puntem stałym permutacji π nazywamy tai element a zbioru A, dla tórego π(a) a. Nieporządiem nazywamy permutację bez puntów stałych. Zbiór wszystich permutacji zbioru A oznaczymy symbolem S(A), a zbiór nieporządów zbioru A symbolem D(A). Powyższa definicja permutacji nie jest identyczna z definicją przyjętą w wyładzie pierwszym. Poażemy teraz, że w pewnym sensie te dwie definicje opisują te same obiety ombinatoryczne. Przypuśćmy zatem, że mamy dany zbiór sończony A. Ustalmy pewne uporządowanie tego zbioru: A{a 1,a,...,a n }. Niechπ:A AbędziepermutacjązbioruAwsensiepowyższejdefinicji.Przeształcenieπmożemywtedyutożsamićzciągiem ( π(a 1 ),π(a ),...,π(a n ) ) elementówzbioru A. Oczywiście ten ciąg jest różnowartościowy, a więc jest permutacją zbioru A w sensie definicji z wyładu pierwszego. Zwróćmy uwagę na to, że utożsamienie przeształcenia π z ciągiem elementów zbioru est zależne od przyjętego na początu uporządowania zbiorua.zauważmyteż,żewprzypadu,gdya[n],obiedefinicjeporywająsię. NiechwreszcieD n oznaczaliczbęnieporządówzbiorun-elementowego,toznaczynp. D n D([n])dlan>0.PrzyjmujemyponadtoD 0 1. Twierdzenie.3Niech A n>0.wtedy D n D(A) n! (1). (.5)! Dowód.DefiniujemyzbioryA 1,...,A n wnastępującysposób: dlaj1,...,n.mamywówczas A 1... A n {π S(A): π(j)j} (1) 1 T P (n) Wyłady z ombinatoryi.

Zasada włączeń i wyłączeń 9 NiechterazT P (n).wówczas {π: π(j)j}{π: (π(j)j)}{π: π Tid}. Stądwynia,że Zatem A 1... A n (n)! (1) 1 T P (n) n (1) 1 ( ) n (1) 1 (n)! (1) 1 n!!. (1) 1 T P (n) (n)! n!! (n)! (n)! Następniezauważamy,żesumazbiorówA 1... A n sładasięztychpermutacji,tóre mają co najmniej jeden punt stały. Zatem sąd wynia, że D(A)S(A)\(A 1... A n ), D(A) n! A 1... A n n! n! n! To ończy dowód twierdzenia. (1) n! n! (1).! (1) 1 n!! (1) n!! Z powyższego twierdzenia wyprowadzimy wniose dotyczący prawdopodobieństwa wylosowania nieporządu. Przypuśćmy, że losujemy permutację ustalonego zbioru n-elementowego A i pytamy o to, jaie jest prawdopodobieństwo tego, że wylosujemy nieporząde. Zbiorem zdarzeń elementarnych Ω w tym przypadu jest zbiór S(A) wszystich permutacji zbioru A; przyjmujemy, że wylosowanie ażdej permutacji jest jednaowo prawdopodobne. Interesuje nas prawdopodobieństwo zdarzenia D(A) Ω. To prawdopodobieństwo jest równe P ( D(A) ) D(A) n! (1).! Wyłady z ombinatoryi

10 Wyład Zauważmy, że lim n (1) e 1,! sąd wynia, że dla dużych n rozważane prawdopodobieństwo jest w przybliżeniu równe e 1 0,367879(jużdlan9uzysujemydoładnośćprzybliżenia6cyfrpoprzecinu). 5. Uogólnienie wzoru włączeń i wyłączeń Przypuśćmy,żemamydanezbiorysończoneA 1,...,A n X,gdzieXjestustalonym zbiorem sończonym. Przyjmiemy, że j X. Korzystając z tej umowy, możemy wysłowić zasadę włączeń i wyłączeń w inny sposób. Zastanówmysię,ileelementówzbioruXnienależydożadnegozezbiorówA 1,...,A n. Otóż mamy X\(A 1... A n ) X j (1) 1 T P (n) n (1) (1) T P (n) T P (n). NiechnadalA 1,...,A n X.Przyjmiemywtedyoznaczenie: D r (X,A 1,...,A n ) { x X: {i [n]: x A i } r }, gdzie0 r n.inaczejmówiąc,d r (X,A 1,...,A n )jestzbioremtychelementówzbioru X,tórenależądozbiorówA i dladoładnierindesówi.jeślizbiorya 1,...,A n są ponumerowanebezpowtórzeń,tod r (X,A 1,...,A n )jestzbioremtychelementówzbioru X,tórenależądodoładnierzbiorówspośródA 1,...,A n.wdalszymciągu,będziemy pisaćwsrócie,żeelementzbioruxnależydodoładnierzbiorówspośróda 1,...,A n, mającnamyślito,żeistniejedoładnierindesówitaich,żetenelementnależydo zbiorua i. Poazaliśmy przed chwilą, że Tę równość można uogólnić. D 0 (X,A 1,...,A n ) (1) Wyłady z ombinatoryi T P (n). (.6)

Zasada włączeń i wyłączeń 11 Twierdzenie.4NiechA 1,...,A n będąsończonymipodzbioramizbiorusończonego X.Wówczasdladowolnegor0,1,...,nmamy D r (X,A 1,...,A n ) (1) r. (.7) r r T P (n) Dowód.NiechR P r (n).wyznaczymyliczbętychx X,tóremająwłasność: x wtedyitylowtedy,gdy j R. Inaczej mówiąc, wyznaczymy liczbę tych x X, tóre należą doładnie do tych zbiorów,dlatórychj R. Niech B oraz B j B j R dla j R. Naszym celem jest wyznaczenie liczby elementów zbioru (B\B j ), j R czyliobliczenied 0 (B,B i1,...,b inr ),gdzie[n]\r{i 1,...,i nr }. Ze wzoru(.6) wynia, że nr D 0 (B,B i1,...,b inr ) (1) nr nr nr nr nr r T R T [n] T P ([n]\r) T P ([n]\r) T P ([n]\r) T P ([n]\r) T P ([n]\r) T P r ([n]) R T T P ([n]) R T B j (1) ( B) (1) ( ) A i i R (1) ( ( ) A i ) i R (1) R (1) (1) r (1) T r. Wyłady z ombinatoryi

1 Wyład Dla ustalonego zbioru R obliczyliśmy, ile jest taich x X, tóre należą do doładnie tychzbiorów,dlatórychj R.Terazchcemyobliczyć,ilejesttaichx,tóre należądodoładnierzbiorów (doładniej:chcemyobliczyć,ilejesttaichx,dla tórych {i [n]: x A i } r).wtymcelumusimyzsumowaćotrzymaneliczbydla wszystich r-elementowych podzbiorów R zbioru[n]. Mamy zatem D r (X,A 1,...,A n ) co ończy dowód twierdzenia. R P r (n) T P r (n) T P r (n) r r T R T [n] R P r (T) (1) T r (1) T r ( ) T (1) T r r (1) r r T P (n) (1) r, r T P (n) 6. Liczba permutacji mających r puntów stałych W tym paragrafie obliczymy, ile jest permutacji zbioru n-elementowego mających doładnie r puntów stałych. Niech WszczególnościD 0 (A)D(A). D r (A) { π S(A): {i A: π(i)i} r }. Twierdzenie.5Niech A niniech0 r n.wtedy D r (A) n! nr r! (1). (.8)! Dowód. Sposób I. Wybieramy najpierw zbiór r puntów stałych permutacji, a następnie permutujemy pozostałe elementy ta, by nie utworzyć nowego puntu stałego; inaczej mówiąc permutacja pozostałych elementów jest nieporządiem. Stąd wynia wzór D r (A) ( ) n D nr r n! r! (nr)! (nr)! nr (1)! n! nr r! (1).! SposóbII.Korzystamyztwierdzenia.4.DefiniujemyzbioryA 1,...,A n wnastępujący sposób: {π S(A): π(j)j} Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 13 dlaj 1,...,n.Tajawdowodzietwierdzenia.3stwierdzamy,żedlaT [n] zachodzirówność (n)! Z twierdzenia.4 otrzymujemy teraz D r (A) D r (S(A),A 1,...,A n ) (1) r r r T P (n) (1) r r r (n)! ( ) n (1) r (n)! r (1) r r r r n! (1) r r! r r r n! r! (1) r (1) r r (1) r n! nr (1) r! 1!, co ończy dowód twierdzenia. 7. Średnia liczba puntów stałych n!! (n)! (n)!! r! (r)! n!! n! r! (r)! 1 (r)! T P (n) Niech A n. Przypuśćmy, że wybieramy losowo jedną permutację ze zbioru S(A). Oznaczmyprzezp r prawdopodobieństwotego,żewylosowanapermutacjabędziemiała doładnie r puntów stałych. Z twierdzenia.5 wynia, że p r D r(a) n! r! 1 nr (1) 1!. Niech zmienna losowa X będzie oreślona wzorem X(π) {j A: π(j)j}. Wyłady z ombinatoryi

14 Wyład Zatem X(π) jest liczbą puntów stałych permutacji π. W tym paragrafie obliczymy wartość średnią zmiennej X. Z definicji wartości średniej mamy Mamy zatem E(X) r p r r0 r1 Korzystamy teraz ze wzoru E(X) r p r. r0 r p r r1 r1 nr 1 (1) (r1)! 1 n! nr r 1 (1) r! 1! nr r1 (1) (r1)!!. Mamy zatem nr j a r, a r,jr. r1 j1r1 E(X) nr r1 j j1r1 j j1r1 j1 j1r0 n1 j0 (1) j j! (1) n (r1)!! j j1r1 (1) jr (r1)! (jr)! (1) jr (j1)! n (j1)! (r1)! (jr)! (1) jr (j1)! (1) jr1 (j1)! ( ) j1 r1 j (1) r r0 Korzystamy teraz z równości Stąd ostatecznie ( ) j1 r j (1) r r0 j. r j1 j1r0 j1 j j1r1 (1) jr1 (j1)! (1) jr (j1)! r0 ( ) j1 r (j1)! (r1)! (jr)! (1) j1 j1 ( ) (1) (j1)! r j1 r { j 1 jeślij0, r 0 jeślij>0. E(X) n1 j0 (1) j j! j (1) r r0 ( j ) (1)0 r 0! 1. Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 15 Średnią liczbę puntów stałych permutacji można obliczyć znacznie prościej, orzystając z następującej własności wartości średniej zmiennych losowych: E(X 1...X n )E(X 1 )...E(X n ). ZdefiniujmyteraznzmiennychlosowychX 1,...,X n : { 1 jeśliπ(i)i, X i (π) 0 jeśliπ(i) i. Nietrudnozauważyć,żewtedyXX 1...X n,gdziexjestzmiennąlosowązdefiniowanąwyżej.następniełatwoobliczyć,żee(x i )P(X1) 1 n.stąddostajemy E(X)E(X 1 )...E(X n )n 1 n 1. 8. Problem par małżeńsich W tym paragrafie rozwiążemy następujący problem pochodzący od Lucasa(le problème des ménages). Dany jest orągły stół, woół tórego mamy posadzić na numerowanych miejscach n par małżeńsich w tai sposób, by panie i panowie siedzieli naprzemian i by żadnapaniniesiedziałaoboswojegomęża.lucaspytałoto,nailesposobówmożemy te osoby posadzić woół stołu z zachowaniem podanych reguł. Popatrzmy najpierw na przyład.otoorągłystółz1miejscami(awięctutajn6): 1 11 1 10 9 3 8 4 7 5 6 Przede wszystim widzimy, że panie muszą zająć albo miejca parzyste, albo nieparzyste. Ponumerujmy więc oddzielnie liczbami od 1 do 6 miejsca parzyste i nieparzyste: 6 6 1 5 1 5 4 4 3 3 Wyłady z ombinatoryi

16 Wyład Najpierw posadzimy panie. Ich miejsca możemy wybrać na n! sposobów: musimy zdecydować, czy wybieramy miejsca parzyste, czy nieparzyste, a następnie na wybranych miejscachmamyn!możliwościposadzenianpań.ponumerujmypanie:k 1,K,...,K n, przyczymprzyjmujemy,żepanik i siedzinamiejscui.dlaustaleniauwagiprzypuśćmy, że panie posdziliśmy na miejscach parzystych, czyli białych na rysunu drugim. Ponumerujmynastępniepanów:M 1,M,...,M n,przyczymzaładamy,żepanm i jest mężempanik i.przyładowysposóbposadzenianpanówwidzimynanastępnymrysunu: K 6 M 4 M 6 3 6 1 K 5 5 1 K 1 M 1 5 M 5 K 4 4 M 4 3 K 3 Widzimy, że usadzenie panów jest zgodne z wymaganiami, jeśli spełnione są następujące waruni: panm 1 niesiedzinażadnymzmiejsc1i, panm niesiedzinażadnymzmiejsci3, panm 3 niesiedzinażadnymzmiejsc3i4, panm 4 niesiedzinażadnymzmiejsc4i5, panm 5 niesiedzinażadnymzmiejsc5i6, panm 6 niesiedzinażadnymzmiejsc6i1. Ogólnie dla n par waruni te możemy sformułować w trzech puntach: żadenzpanówm i (dlai1,...,n)niemożesiedziećnamiejscui, żadenzpanówm i (dlai1,...,n1)niemożesiedziećnamiejscui1, panm n niemożesiedziećnamiejscu1, Niechterazπ(i)oznaczanumermiejsca,natórymsiedzipanM i.naszymcelemjest znalezienie liczby µ(n) permutacji π S([n]), spełniających następujące waruni: 1)π(i) idlai1,...,n, )π(i) i1dlai1,...,n1, 3)π(n) 1. Liczba M(n) wszystich możliwych sposobów posadzenia n par małżeńsich będzie równa M(n) n! µ(n). (.9) 3 M 6 Wyłady z ombinatoryi K

Zasada włączeń i wyłączeń 17 Definiujemy n zbiorów: Wówczas A i1 {π S([n]): π(i)i} dlai1,...,n, A i {π S([n]): π(i)i1} dlai1,...,n1, A n {π S([n]): π(n)1}. µ(n) S([n])\(A 1... A n ) D 0 (S([n]),A 1,...,A n ) (1) T P (n) NiechT P (n).chcemyobliczyć. Zauważmy, że, wtedy i tylo wtedy, gdy spełniony jest co najmniej jeden z trzech warunów: 1)i1,i Tdlapewnegoi1,...,n, )i,i1 Tdlapewnegoi1,...,n1, 3)1,n T. Przypuśćmy bowiem, że π orazspełnionyjestwarunepierwszydlapewnegoi.wtedyπ A i1 A i,czyli π(i)iorazπ(i)i1,cojestniemożliwe.podobnie,jeślispełnionyjestwarune drugidlapewnegoi,toπ A i A i1,czyliπ(i)i1orazπ(i1)i1. Totażejestniemożliwe.Wreszcie,jeśli1,n T,toπ A 1 A n,czyliπ(1)1 orazπ(n)1,cotażejestniemożliwe.naodwrót,jeśliżadenztychtrzechwarunów niejestspełniony,czyliwzbiorzet niewystępujądwieolejneliczby(liczbyni1 tratujemy tu jao liczby olejne), to w permutacji π mamy ustalone wartości. Taie permutacjeistniejąijestich(n)!.zauważmy,żewtedyoczywiście n. Wprowadźmy na użyte tego dowodu następujące oznaczenia. Oznaczmy przez g(n, ) liczbętaichzbiorówb P (n),że: a)jeślii B,toi1 Bdlai1,...,n1, b)jeślin B,to1 B. Oznaczmynastępnieprzezh(n,)liczbęzbiorówB P (n)spełniającychtylopowyższy warune a): a)jeślii B,toi1 Bdlai1,...,n1, Wyłady z ombinatoryi

18 Wyład Wtedy µ(n) (1) (n)! g(n,). (.10) Naszym celem jest zatem obliczenie g(n, ). Lemat.6.h(n,) ( ) n1. Dowód. Sposób I. Mamy policzyć, ile jest -elementowych podzbiorów zbioru[n] nie zawierających dwóch olejnych liczb. Każdy -elementowy podzbiór zbioru[n] jest zbiorem wartości doładnie jednej funcji rosnącej f :[] [n]. Warune, że ten podzbiór nie zawiera dwóch olejnych liczb jest równoważny następującej własności funcjif: f(i1)f(i) dlai1,,...,n1. ( ) Dladowolnejfuncjif:[] [n]definiujemyfuncjęg:[] [n1]wzorem dlai1,,...,.mamyzatem g(i)f(i)i1 g(1)f(1), g()f()1, g(3)f(3),...... g(1)f(1)(), gf(1). Nietrudno zauważyć, że funcja f spełnia warune( ) wtedy i tylo wtedy, gdy funcja gjestrosnąca.zatemfuncjif:[] [n]spełniającychwarune( )jesttyle,ilefuncji rosnącychg:[] [n1],awięc ( ) n1. SposóbII.Rozumowaniebędziemyilustrowaćprzyładem,wtórymn13i4. Narysujmywjednejliniinółecze. Tworząonen1(wnaszymprzyładzien110)wolnychmiejsc:jednoprzed wszystimi ółeczami, n 1 miejsc między olejnymi ółeczami i jedno na ońcu, zawszystimiółeczami.ztychn1miejscwybierzmymiejsc(wnaszym przyładzie będzie to miejsce pierwsze, miejsce między trzecim i czwartym ółiem, miejsce między siódmym i ósmym ółiem oraz miejsce między ósmym i dziewiątym ółiem) i wstawmy w nie czarne óła: Mamy razem n ółe, w tym czarnych. Sposób wstawiania gwarantuje, że żadne dwa czarne óła nie będą stały obo siebie. Tai ciąg ółe oduje podzbiór zbioru[n]: {i [n]: nai-tymmiejscustoiczarneóło}. Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 19 W naszym przyładzie jest to zbiór{1, 5, 10, 1}. Zauważmy wreszcie, że czarne óła możemywstawićna ( ) n1 sposobów,coończydowódlematu. ) Lemat.7.g(n,) n (n n. Dowód.ZliczamyzbioryB P (n)spełniającewarunia)ib). NajpierwzajmiemysiętaimizbioramiB,że1 B.Wtedy Borazn B. PonadtozbiórB\{1} P 1 ({3,...,n1})spełniawarunea).Stądwynia,że istniejeh(n3,1)taichzbiorówb. ZajmijmysięnastępnietaimizbioramiB,że1 B.WtedyzbiórB P ({,...,n}) spełniawarunea).istniejezatemh(n1,)taichzbiorówb.zatem c.b.d.o. g(n,)h(n3,1)h(n1,) ( ) ( ) n1 n 1 n ( ) ( ) n n n n ( ) n, Twierdzenie.8. Liczba sposobów posadzenia n par małżeńsich przy orągłym stole jest równa M(n) n! (1) ( ) n n (n)! (.11) n Dowód. Z równości(.9) i(.10) wynia, że liczba sposobów posadzenia n par małżeńsich przy orągłym stole jest równa M(n) n! µ(n) n! Korzystając z lematu.7 otrzymujemy c.b.d.o. (1) (n)! g(n,). M(n) n! (1) ( ) n n (n)!, n 9. Sumy potęg liczb naturalnych Przypomnijmy z wyładu 1 oznaczenie S (n) j 1...n, j1 Wyłady z ombinatoryi

0 Wyład gdzien, 1.Zwyładu1wiemy,że S 0 (n)n, ( ) n1 S 1 (n) n(n1), S (n) 4 1 ( ) n n(n1)(n1), 3 6 ( ) n1 S 3 (n) S 1 (n) n (n1). 4 Wyprowadzimy teraz pewien wzór ogólny. Będzie to wzór reurencyjny, pozwalający obliczyćs (n),jeślisąznanewszyties j (n)dlaj<. Twierdzenie.9.Jeślin, 1,to n (1) j1 S j (n). (.1) j j1 Zanim udowodnimy to twierdzenie, przyjrzymy się jego początowym przypadom i poażemy,jazniegomożnaotrzymaćwzorynas (n)dla 3.Oczywiście S 0 (n)1 0...n 0 n. Teraz,orzystającztwierdzenia.9dlamamy n (1) j1 S j (n) S 1 (n) j 1 j1 sąd otrzymujemy czyli Następnie,dla3mamy n 3 3 ( 3 (1) j1 j j1 S 1 (n)n nn(n1), ) S 3j (n) 3S (n)3 n(n1) sąd dostajemy S 1 (n) n(n1). n, 3S (n)n 3 3 n(n1) n3 3n 3nn) n(n1)(n1), 3 S (n) 1 S 0 (n)s 1 (n)n, 3 S 1 (n) n n3 3n(n1)n n(n 3n1) Wyłady z ombinatoryi 3 S 0 (n) 3

Zasada włączeń i wyłączeń 1 czyli Wreszciedlan4mamy sąd wynia, że czyli n 4 4 ( 4 (1) j1 j j1 4 1 S 3 (n) S (n) n(n1)(n1). 6 ) S 4j (n) 4 S (n) 4 S 1 (n) 3 4 S 0 (n) 4 4S (n)6 n(n1)(n1) 4 n(n1) 3 n 6 4S 3 (n)n(n1)(n1)n(n1)n, 4S 3 (n)n 4 n(n1)(n1)n(n1)n n (n 3 (n1)(n1)(n1)1 ) n ((n 3 1)(n1)(n1) ) n ((n1)(n n1)(n1)(n1) ) n(n1)(n n1n1)n(n1)(n n) n (n1), Udowodnimy teraz twierdzenie.9. Dowód. Weźmy zbiór S 3 (n) n (n1). 4 X[n] {(x 1,...,x ): x 1,...,x [n]}. Wtedyoczywiście X n.definiujemyteraznastępującepodzbioryzbiorux: A m {(x 1,...,x ) X: i(x i x m )} dlam1,...,.inaczejmówiąc,dozbiorua m należąteciągi,wtórychnajwięszy wyraz znajduje się na m-tym miejscu. Oczywiście ciągi mające najwięszy wyraz na ilumiejscach,należądoilutaichzbiorówa m.naprzyład,jeślin5i7,to (1,3,4,,5,4,) A 5 oraz(1,3,4,,1,4,) A 3 A 6.Ogólnie,niechT P j,gdzie 1 j.wtedy m T A m n {(x 1,...,x ) X: m T(x m l)oraz m []\T(x m l)}. l1 Wyłady z ombinatoryi

Wyład Zauważmy następnie, że oraz zbiory {(x 1,...,x ) X: m T(x m l)oraz m []\T(x m l)} l j {(x 1,...,x ) X: m T(x m l)oraz m []\T(x m l)} dla różnych l są rozłączne. Zatem Wreszcie m T n l j S j (n). l1 XA 1... A, a więc z zasady włączeń i wyłączeń otrzymujemy czyli c.b.d.o. 10. Dwie tożsamości X (1) j1 j1 T P j (1) j1 j1 j1 n T P j m T A m S j (n) (1) j1 S j (n), j (1) j1 S j (n), j j1 Rozważania tego paragrafu będą w zasadzie powtórzeniem rozważań z paragrafu 3. Zajmiemy się funcjami f:[n] [m] i będziemy chcieli policzyć funcje f spełniające dlapewnegowarune[] R f.definiujemyzbiorya 1,...,A wnastępującysposób: {f [m] [n] : j R f } dlaj1,...,.korzystajączewzoruwłączeńiwyłączeń,podobniejawparagrafie 3, otrzymujemy A 1... A (1) j1 j1 ( (1) j1 j j1 T P j i T A i (1) j1 ) (mj) n. j1 Wyłady z ombinatoryi T P j (mj) n

Zasada włączeń i wyłączeń 3 Funcje,tórenasinteresują,tworzązbiór[m] [n] \(A 1... A ).Zatemliczbataich funcji jest równa m n (1) j1 (mj) n j j1 (1) j (mj) n. j Wszczególności,jeślinorazm n,toistniejen!taichfuncji.zatem j0 Zdefiniujmy teraz wielomian W(x) wzorem j0 ( ) n (1) j (mj) n n! dlam n. (.13) j W(x) ( ) n (1) (x) n. Jest to wielomian stopnia co najwyżej n. Z tożsamości(.13) wynia jedna, że tę samą wartość n! przyjmuje on w niesończenie wielu puntach: W(m)n! dlam n. Stąd wynia, że ten wielomian jest wielomianem stałym, czyli ( ) n (1) (x) n n! (.14) Z rozumowaniem, tóre przeprowadziliśmy, pozwalającym przejść od tożsamości udowodnionej dla liczb naturalnych do równości wielomianów, spotamy się jeszcze w następnych wyładach. 11. Nierówności Bonferroniego Udowodnimy teraz dwie nierówności, zwane nierównościami Bonferroniego. Oto one: r A 1... A n (1) 1 (.15) oraz A 1... A n r1 T P (n) (1) 1 T P (n). (.16) Powtarzamy drugi dowód zasady włączeń i wyłączeń polegający na przeglądaniu olejnych sładniów sumy stojącej po prawej stronie nierówności i rysowaniu przy ażdym elemencieiloczynu znaupluslubminuswzależnościodtego,czyliczba Wyłady z ombinatoryi

4 Wyład występujewsumiezeznaiemplusczyminus.inaczejmówiąc,jeślizbiórtmanieparzystą liczbę elementów, to rysujemy zna plus; jeśli zaś zbiór T ma parzystą liczbę elementów, to rysujemy zna minus. Ta ja w poprzednim dowodzie zauważamy, że prawa strona równości(.3) jest różnicą między liczbą plusów i liczbą minusów. Musimy zatem oszacować różnicę między liczbą plusówiminusównarysowanychprzyażdymelemenciesumyzbiorówa 1... A n. Zajmiemy się najpierw nierównością(.15). Mamy teraz poazać, że przy ażdym elemenciesumyzbiorówa 1... A n narysowaliśmyconajwyżejojedenpluswięcej.niech x A 1... A n.tajapoprzednio,niech M{j: x }. Inaczejmówiąc,x wtedyitylowtedy,gdyj M.Oznaczmym M ;oczywiście m>0.niechterazt P (n)ipopatrzmynazbiór ;jesttojedenzezbiorów występującychpoprawejstronierówności(.3).jeślit\m,tooczywiściemamy x.przypuśćmyzatem,żet M.Wtedyprzyelemenciexrysowaliśmyzna plus lub minus, w zależności od parzystości : plus dla nieparzystych, minus dla parzystych.dladanegoliczbataichzbiorówt jestrówna ( m ).Liczbyplusów i minusów narysowanych przy x są zatem równe liczba plusów liczba minusów r. r, 1 sąd dostajemy r ( m liczba plusów liczba minusów (1) 1 ). Tym razem orzystamy z równości(1.7)(przypominamy, że m > 0): r (1) ( m ) 1 (1) r r ( m1 Mamyterazdwiemożliwości.Jeślim1<r,czylim r(tzn.elementxnależydo conajwyżejrzbiorów ),totajapoprzednio liczbaplusówliczbaminusów0. r ). Jeślizaśm>r,to 1 1 r Wyłady z ombinatoryi

Zasada włączeń i wyłączeń 5 sąd wynia, że czyli Zatem r 0 r r (1) 1, (1) 0. r (1) 1 (1) 0. Stąd wynia, że przy elemencie x narysowaliśmy co najwyżej tyle plusów, ile minusów. ZatemdlaażdegoelementuxsumyA 1... A n wobuprzypadachnarysowaliśmyco najwyżej o jeden plus więcej, co dowodzi nierówności(.15). Dowód nierówności(.16) jest analogiczny i pozostawimy go jao ćwiczenie. Zpowyższegodowoduwynia,żejeśliażdyelementsumyA 1... A n należydoco najwyżejrzbiorów,tonierówność(.15)stajesięrównością.jeślinatomiastistnieje conajmniejjedenelementnależącydowięcejniżrzbiorów,tonierówność(.15) jestostra.podobniejestznierównością(.16).jeśliażdyelementsumya 1... A n należydoconajwyżejr1zbiorów,tomamyrówność;wprzeciwnymprzypadu nierówność jest ostra. Wyłady z ombinatoryi

6 Wyład Spis tożsamości ombinatorycznych A B A B A B (.1) A B C A B C A B A C B C A B C. (.) A 1... A n (1) 1 T P (n). (.3) m {f A B : fjest na } (1) (m) n. (.4) (1) D(A) n!. (.5)! D 0 (X,A 1,...,A n ) (1). (.6) D r (X,A 1,...,A n ) µ(n) T P (n) (1) r r r D r (A) n! nr r! T P (n). (.7) (1). (.8)! M(n) n! µ(n). (.9) (1) (n)! g(n,). (.10) M(n) n! (1) ( ) n n (n)! (.11) n n (1) j1 S j (n). (.1) j j1 ( ) n (1) j (mj) n n! dlam n. (.13) j j0 ( ) n (1) (x) n n! (.14) A 1... A n A 1... A n m m1 (1) 1 T P (n) (1) 1 T P (n). (.15). (.16) Wyłady z ombinatoryi